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Abstract— Model Predictive Control (MPC) is widely used
in the process industries. It is an optimization-based approach,
where several tuning parameters such as the penalty matrices in
the cost function and the prediction and control horizons must
be chosen. Tuning such parameters can be challenging as they
are related to the closed-loop performance in a complex manner.
This problem becomes even more complicated when tuning
MPC controllers for MIMO systems. This paper addresses this
problem and presents a systematic approach to determine MPC
tuning parameters for MIMO systems based on a specification
of the desired behaviour of the loop for small changes where the
MPC controller acts as a linear controller. In this manner, the
robustness of the closed loop to model mismatch can be taken
into account systematically using results from robust linear
control theory. The approach involves solving sequentially
two semidefinite programming problems (convex optimization
problems), one of which is formulated in the frequency-domain.
A key feature of our approach is that the tuning parameters are
determined such that in the unconstrained case they guarantee
a nominal robust closed-loop performance. The approach is
tested on two process control examples.

I. INTRODUCTION

Model Predictive Control (MPC) is one of the most popu-

lar advanced process control method and used frequently in

the process industries. It is a model-based control technique

in which a (usually quadratic) cost function that is computed

from the predicted future plant outputs and the future control

moves is minimized at every time step. From the vector

of control movements obtained as a solution to the above-

mentioned optimization problem, only the first control input

is applied to the plant and the optimization process is

repeated at the next time instant. In addition to its optimizing

nature, what makes MPC attractive is that:

(i) it can be easily applied to multivariable (MIMO) pro-

cesses, and

(ii) input/output constraints as well as other external con-

straints can be easily incorporated into the overall

optimization problem.

Hence, in comparison to the classical linear controllers (P,

PI or PID), MPC has found wide acceptance in varying

applications.

Since MPC is an optimization-based approach, in order to

successfully implement an MPC several tuning parameters

must be appropriately set. These include the prediction

horizon, the control horizon and the penalty matrices used in

the cost function. These tuning parameters are related to the

process behaviour in a very complex manner and it is not
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straightforward to determine them. This poses a challenge

and experience is needed to solve real-world problems suc-

cessfully [1], [2]. Several papers have been published which

discuss MPC tuning for closed-loop stability and robustness

to uncertainties, however usually in a qualitative manner.

With reference to the MIMO systems, the problem of MPC

tuning becomes even more complicated as a compromise

between speed of response, decoupling of the loops and

robustness must be found.

A commonly followed procedure is to fix all the MPC

tuning parameters except one, for example one could fix the

prediction and the control horizons as well as the penalty

matrix for the setpoint error at the beginning, leaving the

penalty matrix for the change in the control movements

as the only available degree of freedom. Then by varying

this degree of freedom, an analysis can be performed which

relates the closed-loop performance to this degree of free-

dom. From this analysis, tuning guidelines can be derived,

see [3]-[8]. Alternatively, optimization can be applied to

determine this degree of freedom, see [9]-[15]. The difficulty

of determining an appropriate set of tuning parameters can

be partly resolved by considering a linear quadratic regulator

(LQR) design problem [16] which is equivalent to an infinite-

horizon MPC. For the constrained case, Scokaert et al. [17]

discuss a constrained LQR problem which leads to a finite-

horizon MPC.

Another approach to the tuning of multivariable MPC

controllers is to decouple the MIMO system using an external

decoupler [18] and then design MPC’s for the resulting

individual SISO loops [19], [20] or to use the sequential

loop closure method [21]. A more rigorous approach to the

decoupling design using an MPC would be to modify the

standard quadratic cost function. See papers by Middleton et

al. [22] and Chai et al. [23].

Despite some progress made so far, there is still a need

for a more systematic approach to perform MPC tuning.

MPC tuning is usually performed ad-hoc based on some

experience. Most of the time, several simulation runs are

performed to check if the chosen tuning parameters are

suitable. Linear control theory is well-established and ma-

ture. Many important results on the robust stability and

performance of linear control loops have been derived. For

linear plants, MPC control algorithms are linear controllers

as long as the constraints are not active. This implies that in

the unconstrained case MPC tuning parameters can be chosen

such that a specified desired closed-loop transfer function

with guaranteed performance and robustness properties is

achieved. None of the above-mentioned references related

MPC tuning to the closed-loop transfer function or frequency
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response. To our knowledge, only Trierweiler et al. [24]

provide a formal relationship between the tuning parameters

and the desired closed-loop performance, but it is mainly

based on the robust performance number (RPN) which is

a qualitative indicator of the ease of achieving a desired

performance robustly.

In [25], we proposed a new MPC tuning approach for

unconstrained SISO systems. The novelty of our approach

is that we develop a formal relationship between the tuning

parameters and the desired closed-loop performance. As a

result of this, it is possible to choose the prediction horizon,

the control horizon and the penalty weights simultaneously

by solving optimization problems. The desired closed-loop

performance may result from the desired step-responses or

e.g. from an H∞−optimal design which guarantees robust-

ness properties.

In this paper, we extend the above approach to the case of

unconstrained MIMO systems. First, we develop a closed-

loop formulation of MIMO MPC the properties of which

then become easy to analyze. We equate the closed-loop

representation with the desired closed-loop transfer function.

After some algebraic postprocessing, two optimization prob-

lems result, one of which is solved in the frequency-domain.

Solving these optimization problems sequentially directly

provides the values of the penalty weights in the cost function

which is the main contribution of this paper. The approach

is systematic and easy to implement. To our knowledge,

there exists so far no such approach that systematically

determines the tuning parameters for a desired closed-loop

performance and robustness of an MPC controller. The

optimization problems are semidefinite programming (SDP)

problems which can be solved using convex optimization.

This paper is organized as follows. We start with a

preliminary discussion of MPC and discuss its closed-loop

formulation in section II. In section III, we present our tuning

approach and derive optimization problems for determining

the weights of the quadratic performance criterion. We test

our approach on some challenging examples in section IV.

Finally, we conclude with some outlook on future work in

section V.

II. PRELIMINARIES

A. Notations

We distinguish between a scalar variable and a vector (or

a matrix) by using an underlined variable representing the

latter. Let Sn denote a set of symmetric matrices of size

n×n. An underlined � 0 indicates positive semidefiniteness

of a matrix. N is a set of natural numbers excluding zero. R

and C denote real and complex vector spaces respectively. A

discrete polynomial P (z−1) is defined as a map f : C → C

and denoted as P (z−1) = p0+p1z
−1+ . . .+pnz−n, pi ∈ R,

z ∈ C, n ∈ N. z−1 is a backward shift operator such that

(1 − z−1)y(k) = ∆(z−1)y(k) = y(k) − y(k − 1) where ∆
is the difference operator and 1/∆ is a summation operator.

dim(M) represents the size of a matrix M .

The symbols os and tr denote the overshoot and the rise-

time of a step-response.

B. Closed-Loop Formulation

A linear discrete-time plant is represented as:

y(t + 1) = A−1(z−1)B(z−1)u(t) = B̄(z−1)Ā
−1

(z−1)u(t),
(1)

where A and Ā are diagonal matrices of polynomials ob-

tained using the least common multiple of the denominators

of the corresponding row (or column) of the overall MIMO

plant transfer function. Here, dim(A) = n × n, dim(B) =
dim(B̄) = n × m, dim(Ā) = m × m where n, m ∈ R are

the no. of outputs and inputs respectively.

Generalized Predictive Control (GPC) [26] is a popu-

lar form of MPC. It uses a CARIMA (Controlled Auto-

Regressive and Integrated Moving Average) prediction

model:

A(z−1)y(t + k) = B(z−1)u(t + k − 1) +
T (z−1)

∆(z−1)
e(t + k),

k = 1 . . .Np,
(2)

where T (z−1) is a matrix of noise filter polynomials, e(t)
is a vector of white noise, Np is the prediction horizon and

dim(T ) = n×n. For the sake of simplicity, we shall denote

a matrix M(z−1) by only M henceforth. Multiplying Eq. (2)

with Ēk∆, it can be written as [2]:

T̄ ky(t+k) = ĒkB∆u(t+k−1)+ F̄ky(t)+ T̄ kEke(t+k),
(3)

where T̄ k, Ēk, Ek, F̄ k are obtained from the Diophantine

equations:

T = EkA∆ + z−kF k, T̄ k = ĒkA∆ + z−kF̄ k,

where TE−1
k = Ē

−1
k T̄ k. Assuming the future noise to be

zero, that is e(t + k) = 0, the prediction of y(t + k) at time

step t + k − 1 is given by

ŷ(t + k) = JkĒkB∆u(t + k − 1) + (JkF̄ k + Lk)y(t), (4)

where

I = JkT̄ k + z−kLk.

Using the Diophantine equation:

JkĒkB = GkI + z−kHk,

Eq. (4) can be written as:

ŷ(t + k) = Gk∆u(t + k − 1)
︸ ︷︷ ︸

free response

+

Hk∆u(t − 1) + (JkF̄ k + Lk)y(t)
︸ ︷︷ ︸

forced response

.
(5)

Cost Function: For the unconstrained case, the quadratic

cost function:

J =

k=N2∑

k=N1

[

[ŷ(t + k) − w(t + k)]Q1/2
]2

+

k=Nu∑

k=1

[

∆u(t + k − 1)Λ1/2
]2

,

Q ∈ S
n(N2−N1+1) ≻ 0, Λ ∈ S

mNu � 0,

(6)
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Fig. 1. MPC analysis as a closed-loop control scheme.

is minimized where N1, N2 denote the lower and upper

prediction horizons, Nu is the control horizon, w(t+ k) is a

vector of future setpoints, Q and Λ are the penalty matrices

which must be tuned. Minimizing the above cost function

gives the optimal control input as:

∆u(t + k − 1) = (GT QG + Λ)−1GT Q
︸ ︷︷ ︸

K

·

[
w(t + k) − Hk∆u(t − 1) − (JkF̄ k + Lk)y(t)

]
,

(7)

where G is a matrix containing the coefficients of the

elements of Gk, k = N1 . . . N2 and G ∈ Rn(N2−N1+1)×m.

For a more transparent representation, let’s consider a 2× 2
MIMO system. Assuming w(t + k) = w(t) = w, the first

optimal control input is given by
[

∆u1(t)
∆u2(t)

]

=

[
ks,11 ks,12

ks,21 ks,22

]

︸ ︷︷ ︸

ks

[
w1

w2

]

−

[
k11 · · · k1(2N ′

p)

k21 · · · k2(2N ′

p)

]

︸ ︷︷ ︸

k
0








H1

H2
...

HN ′

p








︸ ︷︷ ︸

R1(z−1)

[
∆u1(t − 1)
∆u2(t − 1)

]

−

[
k11 · · · k1(2N ′

p)

k21 · · · k2(2N ′

p)

]








J1F̄ 1 + L1

J2F̄ 2 + L2
...

JN ′

p
F̄N ′

p
+ LN ′

p








︸ ︷︷ ︸

S(z−1)

[
y1(t)
y2(t)

]

,

(8)

where N ′

p = N2 − N1 + 1, k0 ∈ K(1 . . . 2, 1 . . .2N ′

p),

ks,11 = k11 + k13 + · · · + k1(2N ′

p−1),

and similarly the other elements of ks can be determined as

linear combinations of elements of k0. It is straightforward to

generalize Eq. (8) to a n×n MIMO system. After rearranging

the terms, a closed-loop form of MPC results as shown below

and represented by Fig. (1):

R(z−1)∆u(t) = ks w − S(z−1)y(t), R = I + R1. (9)

C. Stability Analysis

From Eqns. (1) and (9),

R∆u(t) = ks w − z−1SB̄Ā
−1

u(t)

⇔ (RĀ∆ + z−1SB̄)Ā
−1

u(t) = ks w.

This implies

u(t) = Ā(RĀ∆ + z−1SB̄)−1ks w, (10)

and y(t) = z−1 B̄(RĀ∆ + z−1SB̄)−1ks
︸ ︷︷ ︸

Gcl,true(z−1)

w, (11)

where Gcl,true(z
−1) is the true resulting closed-loop trans-

fer function. From the above equation, the term (RĀ∆ +
z−1SB̄)−1 determines the closed-loop stability. Substituting

for R and S gives

(RĀ∆ + z−1SB̄)

=







I + z−1

[
k11 · · · k1(2N ′

p)

k21 · · · k2(2N ′

p)

]








H1

H2
...

HN ′

p















Ā∆+

z−1

[
k11 · · · k1(2N ′

p)

k21 · · · k2(2N ′

p)

]








J1F̄ 1 + L1

J2F̄ 2 + L2
...

JN ′

p
F̄N ′

p
+ LN ′

p








B̄.

After subsituting for H1...N ′

p
, F̄ 1...N ′

p
and L1...N ′

p
, this finally

leads to

(RĀ∆ + z−1SB̄) = Ā∆+

z−1

[
k11 · · · k1(2N ′

p)

k21 · · · k2(2N ′

p)

]

︸ ︷︷ ︸

degrees of freedom (k
0

)








zB̄ − zG1Ā∆
z2B̄ − z2G2Ā∆

...

zN ′

pB̄ − zN ′

pGN ′

p
Ā∆








.

(12)

A properly chosen gain matrix k0 leads to a stable matrix

(RĀ∆+z−1SB̄)−1. As a simple approach one could assume

a diagonal matrix (RĀ∆ + z−1SB̄) and use the method in

[25] to determine k0 in the above equation in order to obtain

a stable closed-loop system. This however does not provide

the desired closed-loop performance due to the presence of

the coupled terms in Eq. (11).

III. TUNING APPROACH

The tuning problem is tackled in two steps:

(i) determine the required k0 values in Eq. (12) for obtain-

ing the desired closed-loop performance,

(ii) determine the MPC tuning parameters (i.e. Q, Λ) which

correspond to these k0 values.

A. Determining the k0 Values

Let Gcl,desired(z−1) be the desired closed-loop transfer

function. Its diagonal elements define the desired tracking

performance of the main loops while the off-diagonal ele-

ments can be specified such that they have small gains at all

frequencies. It is desired to have Gcl,true ≈ Gcl,desired.

Let Gcl,desired2 = (RĀ∆ + z−1SB̄)−1ks. Substituting

in Eq. (11) and comparing the resulting equation with

Gcl,desired, we obtain

Gcl,desired2 = B̄
−1

Gcl,desired. (13)
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Since Gcl,desired2 = (RĀ∆ + z−1SB̄)−1ks, we have

(RĀ∆ + z−1SB̄) · Gcl,desired2 = ks. (14)

This implies that we have in the frequency-domain
[

R(ω)Ā(ω)∆(ω)+
e−jωTsS(ω)B̄(ω)

]

· Gcl,des.2(ω) − ks = 0, (15)

where R(ω) = R(e−jωTs) and Ts is the sampling time of

the discrete system. Equivalently, Eq. (15) can be formulated

as
∣
∣
∣
∣

[
R(ω)Ā(ω)∆(ω)+
e−jωTsS(ω)B̄(ω)

]

· Gcl,des.2(ω) − ks

∣
∣
∣
∣
= 0. (16)

Eq. (16) is relaxed into an inequality constraint as below:
∣
∣
∣
∣

[
R(ω)Ā(ω)∆(ω)+
e−jωTsS(ω)B̄(ω)

]

· Gcl,des.2(ω) − ks

∣
∣
∣
∣
≤ ǫ

1

2

k , (17)

where our goal is to minimize ‖ǫk‖2. Discretizing the fre-

quency range and comparing the elements on both sides of

Eq. (17), we have

[Reijω ]2 + [Imijω ]2 ≤ ǫijω , ǫijω ≥ 0, ǫijω ∈ ǫk,

where Reijω refers to the real part of an element (i, j) of the

left-hand side of Eq. (15) at the frequency ω rad/s while

Imijω refers to the imaginary part of the same. The above

inequality can be transformed into a linear matrix inequality

(LMI) as follows:




1 Reijω 0
Reijω ǫijω Imijω

0 Imijω 1



 � 0. (18)

So the optimization problem for determining k0 results as:

min k
0
, ǫ

k
ǫT
k ǫk subject to:

Ineq. (18)|ω=ωl
, ∀ωl ∈ [0, ω1], ω1 <

π

Ts
.

(19)

Eq. (19) is a SDP problem and hence can be solved using a

convex optimization method. A solution to the optimization

problem with small ǫk values implies that the obtained k0

values achieve Gcl,desired. This values can then be used to

determine the penalty matrices Q, Λ in the cost function.

Analysis of the optimization problem: Eq. (17) can be

written as a minimization problem as follows:

mink
0

∥
∥
∥
∥

[
R(ω)Ā(ω)∆(ω)+
e−jωTsS(ω)B̄(ω)

]

· Gcl,des.2(ω) − ks

∥
∥
∥
∥

2

.

Substituting Eq. (13), we get

mink
0

∥
∥
∥
∥

[
R(ω)Ā(ω)∆(ω)+
e−jωTsS(ω)B̄(ω)

]

B̄
−1

(ω)Gcl,des.(ω) − ks

∥
∥
∥
∥

2

.

Using Eq. (11), we get

mink
0

∥
∥
∥ksG

−1
cl,true(ω)Gcl,desired(ω) − ks

∥
∥
∥

2
.

Simplifying further, we have

mink
0

∥
∥
∥ksG

−1
cl,true(ω) [Gcl,desired(ω) − Gcl,true(ω)]

∥
∥
∥

2

⇔ mink
0
||ksG

−1
cl,true

[
Gcl,desired − Gcl,true

]

︸ ︷︷ ︸

error term

||2. (20)

If Gcl,true ≈ Gcl,desired, in solving the minimization prob-

lem (19), the error term is minimized weighted by ksG
−1
cl,true.

So if the frequency range is ω1 ≈ 3ωB, where ωB is the

largest bandwidth of all the diagonal elements of Gcl,desired,

this weighting emphasizes the region around the open-loop

gain crossover frequency.

B. Determining the Penalty Matrices Q, Λ

This step is identical to that described in [25]. For sim-

plicity, we assume Nu = 1. For a given k0 ∈ K, we have

(GT QG + Λ)−1GT Q = k0

⇒ GT Q = (GT QG + Λ)k0

⇒ GT Q − (GT QG + Λ)k0 = 0.

(21)

The above equation results in a set of linear equality con-

straints in the coefficients of Q and Λ:

fi(qxy, λvw) = 0, i = 1 . . . (m · n · (N2 − N1 + 1)),

qxy ∈ Q, λvw ∈ Λ,

which can be relaxed into inequality constraints:

−ǫi ≤ fi(qxy, λvw) ≤ ǫi. (22)

We formulate the optimization problem for determining Q,

Λ as:

minQ, Λ, ǫ
k0

ǫT
k0ǫk0 subject to:

− ǫi ≤ fi(qxy, λvw) ≤ ǫi,

∀ i = 1 . . .m · n · (N2 − N1 + 1),

Q ≻ 0, Λ � 0,

qxy ∈ Q, λvw ∈ Λ, ǫi ∈ ǫk0.

(23)

Eq. (23) is a SDP problem and hence is a convex optimiza-

tion problem. A solution with small ǫk0 values implies that

the obtained matrices Q, Λ satisfy Eq. (21) which in turn

results in achieving Gcl,desired. If small ǫk0 values do not

result, we can increase the number of degrees of freedom by

increasing the term N2−N1+1 and repeat the optimization.

It is possible to obtain diagonal or semi-diagonal Q, Λ by

augmenting Eq. (23) with additional linear constraints.

IV. EXAMPLES

We formulate our optimization problems in YALMIP [27],

a MATLAB-based toolbox and we use the SeDuMi solver 1,

which can be accessed from YALMIP, to solve the convex

optimization problems. In some cases, the discrete-time

plant models were obtained from their continuous transfer

functions using the MATLAB-based System Identification

Toolbox (V7.3). The optimization problems were solved on

an Intel Core2 Duo CPU with 1.96 GB RAM. We would like

to point out that different feasible solutions may result on

different machines and with different optimization solvers.

1freely available at http://sedumi.ie.lehigh.edu/
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A. A Simplified Distillation Column

We consider a simplified distillation column model [28, p.

100] which is a good example of an ill-conditioned statically

coupled plant. The example has been proposed as a case

study in linear robust control in [29]. The continuous plant

is discretized with a sampling time of Ts = 1 s and the

discrete-time plant is obtained as below:

(1 − 0.9868z−1)I y(t) = z−1

[
1.1629 −1.1444
1.4331 −1.4516

]

u(t).

The following closed-loop behaviour, (tr, os), is specified:

w1 → y1 : (10 s, 10%), w2 → y2 : (10 s, 20%).

In order to achieve minimal coupling between different

loops, the behaviour of channels w1 → y2 and w2 → y1 can

be specified considering a high-pass filter having relatively

low gain in the low-frequency region. These correspond to

the following closed-loop transfer matrix (Gcl,desired):
[

0.0334(1+0.8978z−1)
1−1.661z−1+0.724z−2

0.001(1−0.98z−1)
1−0.3333z−1

0.001(1−0.98z−1)
1−0.3333z−1

0.0245(1+0.9325z−1)
1−1.764z−1+0.811z−2

]

.

We choose the prediction and the control horizons as N1 = 1,

N2 = 6 and Nu = 1 respectively. The frequency range ω =
[0, 0.4] rad/s with 30 grid-points spaced at 0.0138 rad/s
was chosen for solving the optimization problem (19).

Solving the optimzation problem (19), we obtained:

k0 =

[
0.0782 −0.1178 0.2114 −0.1993 0.2529 −0.1739 · · ·

0.0765 −0.1204 0.2095 −0.2016 0.2497 −0.1766 · · ·

0.3272 −0.1910 0.3827 −0.1809 0.4374 −0.1704

0.3232 −0.1941 0.3778 −0.1839 0.4316 −0.1732

]

.

Solving the optimization problem (23) gives the required

values of Q, Λ. Since, dim(Q) = 12× 12, it is not possible

to present it here. Λ results as:

Λ =

[
323.8076 −319.2207
−319.2207 314.7139

]

.

In Fig. (2) the desired closed-loop performance and the

obtained closed-loop performance after solving the optimiza-

tion problem (23) are compared. Observe that only the mag-

nitude plots are shown for the off-diagonal elements. Fig. (3)

shows the closed-loop responses with the MPC controller

to step changes in w1 and w2. We have decoupled plant

responses meeting the desired closed-loop specifications.

B. A Glass-Tube Manufacturing Process

We consider a glass-tube manufacturing process discussed

in [30]. The model is discretized with a sampling time of

Ts = 10 s. The discrete-time plant matrices are given as

below:

A(1, 1) =1 − 2.426z
−1 + 2.11z

−2
− 0.7784z

−3+

0.1035z
−4 + 0.001929z

−5
− 0.0008307z

−6
,

A(2, 2) =1 − 2.522z
−1 + 2.118z

−2
− 0.5919z

−3
,

B(1, 1) = − 0.0279 + 0.0034z
−1 + 0.02124z

−2
− 0.002867z

−3
,

B(1, 2) =0.0044 − 0.004874z
−1 + 0.0005004z

−2+

0.0005999z
−3

− 9.312 · 10−5
z
−4

− 9.94 · 10−6
z
−5

,

B(2, 1) = − 0.0239 + 0.03974z
−1

− 0.01646z
−2

,

B(2, 2) = − 0.0031 + 0.002665z
−1

.
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Fig. 2. Ex. (IV-A) - Bode plot of desired vs. obtained performances.
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Fig. 3. Ex. (IV-A) - Plant responses to a step change in w1 & w2.

Owing to technical reasons, y2 is measured with a time delay

of 214 s. As a result of this and considering additional ro-

bustness margins, the second-loop is made relatively slower

compared to the first loop. Hence, the following closed-loop

behaviour, (tr, os), is desired:

w1 → y1 : (90 s, 5%), w2 → y2 : (560 s, 10%).

The requirement for the minimal coupling between different

loops can be specified similarly as in the previous exam-

ple. These correspond to the following closed-loop transfer

matrix (Gcl,desired):

[
0.054178(1+0.8478z−1)
(1−1.51z−1+0.61z−2)

0.01(1−0.98z−1)
1−0.3333z−1

0.01(1−0.98z−1)
1−0.3333z−1

z−210.002953(1+0.9697z−1)
(1−1.906z−1+0.9119z−2)

]

.

Note the additional time delay in the loop w2 → y2 whose

desired transfer function has a rise time of 350 s. We

choose the prediction and the control horizons as N1 = 1,

N2 = 10 and Nu = 1. We choose the frequency range ω =
[0, 0.03] rad/s with 30 grid-points spaced at 0.0010 rad/s
for solving the optimization problem (19). Since, dim(Q) =
20 × 20, it is not possible to present it here. Λ results as:

Λ =

[
0.0789 −0.0048
−0.0048 0.0008

]

.
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Fig. 4. Ex. (IV-B) - Plant responses to a step change in w1 & w2.

Fig. (4) shows the closed-loop responses to step changes in

w1 and w2. The desired closed-loop specifications are almost

met. The Bode plots showing the comparison of the desired

and the obtained closed-loop performances are not shown

owing to the lack of space.

V. CONCLUSIONS AND FUTURE WORK

We have presented a new systematic approach to deter-

mine MPC tuning parameters for unconstrained MIMO sys-

tems. The tuning approach is based upon the specification of

the closed-loop performance in the frequency-domain. Then,

two optimization problems are solved. First, the degrees of

freedom, that is the feedback gain matrix k0, is determined

using frequency response approximation. In the next step,

we solve an another optimization problem to determine the

penalty matrices Q, Λ which correspond to the obtained

matrix k0. Both the optimization problems are SDP problems

which can be solved using convex optimization solvers.

So far, we have performed the tuning with Nu = 1. If

we set Nu > 1, Eq. (23) becomes bilinear in the unknown

coefficients of Q, Λ and K and hence is no longer a SDP

problem. The resulting bilinear problem can be solved using

global optimization approaches which is currently under

investigation. We intend to extend the approach to larger

MIMO systems with some additional robust performance

criteria, in particular bounds on the closed-loop transfer

matrices that result from the necessary robustness to plant-

model mismatch, an issue for which no systematic approach

so far is available in the MPC literature.
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