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Abstract

Background: Multiple imputation is a commonly used method for handling incomplete covariates as it can provide

valid inference when data are missing at random. This depends on being able to correctly specify the parametric

model used to impute missing values, which may be difficult in many realistic settings. Imputation by predictive mean

matching (PMM) borrows an observed value from a donor with a similar predictive mean; imputation by local residual

draws (LRD) instead borrows the donor’s residual. Both methods relax some assumptions of parametric imputation,

promising greater robustness when the imputation model is misspecified.

Methods: We review development of PMM and LRD and outline the various forms available, and aim to clarify some

choices about how and when they should be used. We compare performance to fully parametric imputation in

simulation studies, first when the imputation model is correctly specified and then when it is misspecified.

Results: In using PMM or LRD we strongly caution against using a single donor, the default value in some

implementations, and instead advocate sampling from a pool of around 10 donors. We also clarify which matching

metric is best. Among the current MI software there are several poor implementations.

Conclusions: PMM and LRD may have a role for imputing covariates (i) which are not strongly associated with

outcome, and (ii) when the imputation model is thought to be slightly but not grossly misspecified. Researchers

should spend efforts on specifying the imputation model correctly, rather than expecting predictive mean matching

or local residual draws to do the work.
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Background
The presence of missing data is a common issue in medi-

cal research, leading to reduced precision and sometimes

bias in parameter estimates.Multiple imputation (MI) can

alleviate these issues and is popular approach to dealing

with missing data [1-3].

It is impossible to know for certain how data went

missing. In thinking about the process there are three

important scenarios [4]:

1. Missing completely at random (MCAR). The

probability of data being missing does not depend on
observed or unobserved data.
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2. Missing at random (MAR). Conditional on observed
data, the probability of data being missing does not

depend on unobserved data. MCAR is a special case

of MAR.
3. Missing not at random (MNAR). Conditional on

observed data, the probability of data being missing

still depends on unobserved data.

Researchers analysing incomplete datasets should con-

sider the process by which data may have gone missing,

and perform analyses that are valid given this assumption.

MI involves specifying a parametric model for the miss-

ing data given the observed data and drawing missing

values from the posterior predictive distribution M >

1 times. This model is henceforth referred to as the

imputation model. The M filled-in datasets are analysed

identically according to the model that would have been

used in the absence of missing data. We term this model
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the analysis model. The M parameter estimates are then

combined using ‘Rubin’s rules’ [5].

Multiple imputation can provide valid inference given

any of the above mechanisms, although standard soft-

ware implementations impute assumingMAR (MCAR) by

default.

If the imputation model is specified correctly, Rubin’s

rules lead to consistent parameter estimation and confi-

dence intervals that fully incorporate uncertainty due to

missing data [6]. For imputing a covariate it is advisable

to include in the imputation model (i) variables thought

to predict missingness, (ii) variables associated with the

variable being imputed, and (iii) the outcome variable of

the analysis model [3,7].

One of the biggest challenges for users of MI is specify-

ing the imputationmodel correctly. This is not always easy

to do, even for seemingly simple analyses: for instance

when the analysis model contains nonlinear functions of

incomplete covariates [8].

Predictive mean matching (PMM) [9] and local residual

draws (LRD) [10] are methods for drawing imputations

that relax some of the assumptions of parametric imputa-

tion. In doing so theymay improve robustness of inference

with missing data to misspecification of the imputation

model. These methods are outlined briefly below and

described further in the Methods section.

For an incomplete variable x, an imputation model is

fitted with parameters α and covariates z. Parametric

imputation proceeds by drawing α from its posterior dis-

tribution, before drawing missing values of x from the

posterior predictive distribution conditional on the draw

α
∗. The draws of the imputation model parameters make

parametric imputation ‘proper’ [6] andmay be taken para-

metrically or by the approximate Bayesian bootstrap [11].

PMM and LRD differ from parametric imputation as

follows. Let h index observations with x observed and j

index observations with x missing. For all h, the linear

predictor α
obs

zh is calculated, and for all j, the linear pre-

dictor α
miszj is calculated (αobs and α

mis will be defined in

theMethods section). Observed values close to the linear-

predicted value are selected as the donor pool. Often,

but not always, the donor pool is fixed as containing k

candidate donors. One of these is selected at random

to ‘donate’. PMM imputes the donor’s xh. LRD adds the

donor’s residual to the recipient’s linear predictor.

In the remainder of this article, we give technical details

of these methods reviewing their development and the

various forms available, along with the rationale for their

use. Two simulation studies on PMM and LRD are then

described and reported: in the first, the imputation model

is correct; in the second, the imputation model is mis-

specified. We illustrate various approaches to imputing a

missing covariate for a cohort study in ovarian cancer. We

finish with a discussion and some conclusions.

This article describes the rationale for PMM and LRD,

and their development and evaluation in previous work.

They are evaluated further in some simple and then more

challenging settings. Our focus is on incomplete continu-

ous covariates, though in principle both methods may be

used to impute ordinal or categorical covariates. We aim

to clarify some choices about how PMM and LRD should

be implemented and when they should be used.

Methods
The development of predictive meanmatching and local

residual draws

In this section, we provide a technical description of

PMM and LRD, review the development of the various

flavours available – of which there are several – and clarify

some details. Table 1 summarises software implementa-

tions of PMM and LRD, as of February 2014, and provides

some details on options for changing the default values, if

available.

Both PMM and LRD begin by calculating a predictive

distance δhj, which can be thought of as a measure of

match quality. For all j the k observations minimising |δhj|

are identified where

δhj = α
mis

zj − α
obs

zh, (1)

and one of these is selected at random. For PMM [9] the

imputed value x∗
j is taken as xh. For LRD [19] the imputed

value x∗
j is

x∗
j = α

mis
zj + xh − α

obs
zh. (2)

Defining thematching distance

Little initially introduced PMM, suggesting the calculation

of δhj such that α
mis = α

obs = α̂ [9]. In the same article, it

was noted that this did not allow for uncertainty about α:

in parametric imputation a draw α
∗ is taken before imput-

ing x∗
j conditional on α

∗. The use of α
mis = α

∗ was noted

as a remedy. A thirdmetric was introduced by Heitjan and

Little where α
mis = α

obs = α
∗ [20].

We refer to these distance measures as follows:

Type 0 matching δhj = α̂zj − α̂zh (3)

Type 1 matching δhj = α
∗
zj − α̂zh (4)

Type 2 matching δhj = α
∗
zj − α

∗
zh (5)

The designation is mnemonic according to the number

of * symbols appearing on the right hand side, and types 1

and 2 correspond to the designation used by the ice com-

mand in Stata [21] and the aregimpute function of the

R package Hmisc [22]. Note that with a single incomplete

variable δhj type 0 and type 2 are the same.
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Table 1 Summary of existing software implementations of PMM and LRD

Software Method Command/instructions Match Option to Default Option to specify k* Source of information

types specify value

available match type† of k*

R PMM mice.impute.pmm

(mice package)
1 – 5 – v2.18 documentation [12]

R PMM aregimpute (hmisc package) 1, 2 pmmtype = # nh kclosest = # v3.13-0 documentation [22]

R PMM bbpmm (Baboon package) ? – ? – v0.1-6 documentation [13]

R PMM mi.pmm (mi package) ? – ? – v0.09-18.03 documentation [14]

SAS PMM regpmm (statement within
proc mi)

2 – ? K = # SAS website [15]

SAS PMM midas [31] ? – nh N/A donor selected from all h
with probability proportional to
a function of |δhj|

Reference [31]

Solas PMM Analyze → Multiple Imputation →
Predictive Mean Matching method. . .

0 – 10 Select ‘Use # closest cases’
option in ‘Donor pool’ tab.

Solas website [16]

SPSS PMM Analyze → Multiple Imputation →
Impute Missing Data Values. Under
the ‘Method’ tab select ‘Custom’, and
under the menu for ‘Model type
for scale variables’ select ‘Predictive
Mean Matching (PMM)’.

? – 1 – SPSS website [17]

Stata PMM mi impute pmm 2 – 1 knn(#) Help file for mi impute pmm [18]

Stata PMM ice, match 1, 2 matchtype(#) 10 matchpool(#) Help file for ice

Stata LRD ice, match uvisopts(lrd) 1, 2 matchtype(#) 10 matchpool(#) Help file for ice

*Type 0 matches linear predictors for observed and missing values; type 1 uses a draw of parameters for missing values before matching; type 2 uses a draw of parameters for both observed and missing.
†k is the size of the donor pool.
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It is often difficult to determine the type of matching

being used in previous work. Type 0 matching was used

by David et al. [10] and Little [9], and was compared to

type 2 by Schenker and Taylor [19]. Type 1 matching was

described by Little [9], and White, Royston andWood [3].

Type 2 matching has been used comparatively more (see

for example [19,20,23-29]).

Defining the donor pool

There are three broad approaches to defining the donor

pool. The first is to use a fixed number of donors k; the

second is to define some δmax so that any h for whom

|δhj| < δmax are in the donor pool for j. This is sometimes

termed ‘caliper matching’. A third approach uses k = nh,

the number of observations for which x is observed, but is

more likely to select those with small dhj [30,31]; see the

next section.

David et al. imputed income, initially using global resid-

ual draws [10], setting k to the number of observations

with x observed. However, the results were unsatisfactory

to the authors and so δmax = $2, 000 was instead used.

The notion of selecting from a pool of potential donors

was apparently not present in the work of Little [9], who

matched to the nearest donor only. Heitjan and Little

introduced a pool of k = 5 potential donors [20]; sub-

sequent to that article authors have largely used fixed

k > 1.

Schenker and Taylor noted the problem with defining

δmax, that it is possible for a recipient to have no donors

with α
obs

zh lying within α
mis

zj ± δmax. They suggested an

adaptive method for choosing k, which involved defining

δmax, but if k = 0 or 1 to set k = 2.

Sampling from the donor pool

The most common method is to randomly sample an

observation from the donor pool, for example [2,19,20,24],

however somemore sophisticatedmethods have also been

proposed.

Moriarity and Scheuren suggested the use of ‘con-

strained’ matching [32], where each h can only donate xh
once. Note that this is only feasible with less that half

of values missing. An alternative, ‘slightly constrained’

matching, penalises any h that has already donated by

reducing the probability of subsequent donation. Durrant

and Skinner used a slightly constrainedmatching in a sim-

ulation study, and found it to be less biased than using a

fixed value of k [33].

Siddique and Belin proposed a version of PMM that

allows any h to donate [30], but with the probability of

imputing xh for individual j proportional to a function

of |δhj|. A ‘closeness’ parameter was introduced which

could be altered to augment the probability of selecting

the closest donors. This was later published as a SAS

macro [31].

Notes on LRD

LRD has received far less attention than PMM. This is

possibly because of the attraction that, by always bor-

rowing observed values, PMM always imputes observable

values, while LRD may not. Conversely, LRD does have

the ability to impute values outside the range of observed

data, and so may deal better with values that are missing

in tails of a distribution.

For LRD there is a second metric to consider, unnoticed

in the literature. We note the following imputation types,

named correspondingly to match types:

Type 0 imputation x∗
j = α̂zj + (xh − α̂zh)

Type 1 imputation x∗
j = α

∗
zj + (xh − α̂zh)

Type 2 imputation x∗
j = α

∗
zj + (xh − α

∗
zh).

With parametric imputation, x∗
j are drawn from a distri-

bution centred at α
∗zj. Of the above imputation metrics,

only type 1 achieves this, while types 0 and 2 draw from a

distribution centred at α̂zj. Schenker and Taylor [19], and

Barnes et al. [28] are unclear as to the imputation type

used in their work.

Rationale for PMM and LRD

Use of PMM and LRD is typically motivated by the notion

that they provide a degree of robustness when the impu-

tation model is misspecified, for example if the normality

assumption is in question, residuals are heteroscedastic,

or associations are non linear.

Figure 1 demonstrates how PMM and LRD may guard

against these problems in 150 simulated observations, of

which 50 are missing x, which is imputed once. The top

panels show a dataset with skewed residuals, the middle

panels show a dataset exhibiting heteroscedasticity, and

the bottom panels show a quadratic relationship. Miss-

ing values are MCAR and imputed once by parametric

draws (left panels), PMM (centre panels, type 1 matching

with k = 3) and LRD (right panels, type 1 matching with

k = 3).

Because the data are MCAR, the missing values are a

random sample of the observed values; imputed values

should thus bear a close resemblance to the observed.

With non-normal residuals, parametric imputation does a

poor job of preserving the bivariate distribution of y and x,

while PMM and LRD do a better job. In themiddle panels,

parametric imputation again imputes one or two values

that do not match the distribution of the observed data

well, while PMM borrows from the individual with the

lowest observed value of x five times. Themost stark illus-

tration of the difference between methods is given in the

lower panels, where parametric imputation seems to do

a very poor job of preserving the association in observed

data but PMM and LRD do well by contrast.
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Figure 1 Bivariate plots are of x vs. z values in a single imputed dataset. Observed x in purple circles; imputed in blue crosses. Left to right:

normal errors parametric imputation, PMM and LRD (type 1 matching with k = 3). Top to bottom: Non-normal residuals, heteroscedasticity and

non-linearity. These scenarios represent problems for a linear normal errors imputation model.

Some settings where PMMand LRDmay fail

While PMM and LRD are generally advocated as methods

to improve the imputation model, there are also potential

weaknesses.

The price to pay for the additional flexibility supplied

by PMM and LRD is that x∗
j are not formally draws from

the posterior predictive distribution of the imputation

model; there is thus no guarantee that Rubin’s rules will be

appropriate for inference.

The main specific concerns about PMM are around

donor sparseness: when there are few donors with a pre-

dictive mean close to the predictive mean of a missing

observation. It is clear that when |δhj| is large, matches

are of poor quality and so imputed values may be inap-

propriate. This may occur are when there are few obser-

vations with x observed, and under departures from

MCAR.

A second pitfall for PMM arises when δhj has the same

sign for all h in the donor pool for j, which will intro-

duce a bias in the imputed values, with consequences for

estimation. Again, LRD does not necessarily suffer this

bias provided the direction and magnitude of residuals are

appropriate.

Simulation studies

Two simulation studies are reported below. The first

compares various forms of PMM and LRD in a setting

ideally suited to parametric imputation. The second com-

pares them in a setting where parametric imputation is

likely to fail. Both studies aim to evaluate type 1 versus

type 2 matching, and to comment on appropriate choices

of k.

Simulation design: correctly specified imputationmodel

In the first study, we simulate 500 observations on two

variables y and x where x ∼ N(0, 1) and y|x is normal

in the complete data. The analysis model of interest is a

linear regression

yi ∼ N(β0 + βxi, 100).
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Three different strengths of y–x association are simu-

lated: β = 0, β = 3.33 and β = 10, corresponding to R2

values of 0, 0.99 and 0.5 respectively.

Throughout, y is complete and x is incomplete. Three

missingness mechanisms are invoked: MCAR, and two

different MAR mechanisms. Let π denote the probabil-

ity that x is missing. Under MCAR, π = 0.25. The MAR

mechanisms are simulated via the linear logistic model

logit(π) = γ0+γ1yi, such that observations with large val-

ues of y are more likely to have values of x missing. Let R

be a binary variable indicating whether x is not missing or

missing. Values of γ0 and γ1 were chosen such that 25%

of observations are missing and comparison of R with y

returns an area under the ROC curve of 0.65 (‘weak’MAR)

and 0.75 (‘strong’ MAR).

The imputation model is

xh ∼ N(α0 + α1yh, σ
2), (6)

which is correctly specified. M = 10 imputations [6] are

used for each of the following methods:

• Parametric imputation using posterior draws.

• PMMwith type 1 and type 2 matching and, for each

match type, k = 1, 3, 5 and 10.

• LRD with type 1 and type 2 matching (type 1
imputation throughout), for each match type

k = 1, 3, 5, 10 and 20 (20 comes from the expectation
that LRD will suffer less than PMMwith larger donor

pools).

The imputed datasets are analysed and estimates com-

bined using Rubin’s rules. All imputations were produced

using the ice command in Stata [21]. The various MI

methods are compared to analysis of the complete data, a

gold standard, and analysis of the complete cases, which

any imputation method must improve upon to be worth-

while.

The whole simulation process is repeated 1,000 times.

Bias, coverage of confidence intervals, and a measure of

(in-)efficiency, the standard deviation of β over 1,000

replications (henceforth the ‘empirical standard error’),

are summarised. Stata version 13 was used for all simula-

tions [34].

Simulation design: misspecified imputationmodel

The simulation results described above evaluate PMM

and LRD in a setting where we have a gold-standard impu-

tation method. The simulation design described in this

section relates to a setting where the ideal imputation

method is unclear: the presence of x and x2 in the analy-

sis model means it is difficult to find a compatible model

for imputing x|y [35]. Here, PMM and LRD are expected

to perform better than parametric imputation.

A very similar setup to the previous section is used. The

key difference is that true model for the data is x ∼ N(1, 1)

and y ∼ N(βx2, 102). Three values of R2 used are again 0,

0.1 and 0.5. This gives a j-shaped relationship between y

and x.

The analysis model is a normal errors linear regression,

yi ∼ N(β0 + β1xi + βx2i , σ
2).

The intercept and linear term are estimated even though

their true values are zero. The imputation model is (6),

as in the previous section. Note that no full probabil-

ity model exists that accommodates both the imputation

model and the analysis model [36]; this is the definition

of an incompatible imputation model. Missing data are

induced in the way described above. Figure 2 shows y and

x in six typical simulated datasets representing the two

non-zero strengths of association and three missingness

mechanisms.

Ovarian cancer example

To demonstrate PMM and LRD in practice, we provide a

simple analysis of a real partially observed dataset. Clark

and Altman developed a prognostic model for time to

death in 1,189 individuals with epithelial ovarian cancer

[37], of whom 842 died. Ten of the covariates consid-

ered for this model were incomplete, and complete cases

analysis included just 518 patients. Using this dataset, we

compare some of the approaches of our simulations.

One of the covariates considered by Clarke and Altman

was albumin in g/dL, and was missing in 392 patients. In

this dataset albumin has mean 38, standard deviation 5.3,

and moderate skew of –0.52. Our analysis model is a Cox

model with age in years (which is complete), albumin and

albumin-squared as covariates [38].

The approaches compared are as follows:

1. Complete cases. Analyse the subset of 797 patients
with observed albumin.

2. Parametric imputation where albumin is imputed

from a normal errors linear model.

3. PMMwith type 2 matching and k = 1.

4. PMMwith type 1 matching and k = 10.

5. LRD with type 2 matching and k = 1.

6. LRD with type 1 matching and k = 20.

The choice of settings for PMM and LRD is to

reflect some of the extremes explored in our simulations.

All imputation models include as covariates age, death

(yes/no) and the Nelson–Aalen estimate of the cumula-

tive hazard function [39]. For each imputation method

M = 100 imputations were used to keep the impact

of Monte Carlo error small. After imputation, albumin2

was passively imputed by squaring the imputed value of
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Figure 2 y vs. x in typical simulated datasets with amisspecified imputation model, across various simulation settings.

albumin [3]. The Cox model was fitted in each imputed

dataset and estimates combined according to Rubin’s

rules [5].

Results
Simulation results: Correctly specified imputationmodel

Results are presented in Figures 3, 4 and 5. The plots all

follow a similar design. The left panel gives results for

β = 0, the middle panel for β = 3.3 and the right for

β = 10. The different methods are labelled on the vertical

axis. Results for MCAR are in purple, ‘weak’ MAR in blue

and ‘strong’MAR in orange. Point estimates are presented

along with Monte Carlo 95% confidence intervals.

Results for bias are given in Figure 3. Complete cases

is unbiased under MCAR and with β = 0, but becomes

increasingly biased under the MAR mechanisms. Para-

metric imputation is unbiased in all scenarios as would

be expected, because the imputation model is correctly

specified. LRD appears to be unbiased throughout. PMM

suffers a small downwards bias for k = 10 under strong

MAR. However, the magnitude of this bias is miniscule,

and it is still a vast improvement on complete cases anal-

ysis. The type of matching does not appear to have any

influence on bias.

Coverage results are given in Figure 4. Again, para-

metric imputation performs well. PMM and LRD both

tend towards under-coverage. This is worse with type 2

matching than type 1, though increasing k alleviates prob-

lems for both types. For type 2 matching, coverage is

worse with smaller β .

The empirical standard errors of methods are given in

Figure 5. Complete data analysis has the lowest standard

errors, while complete cases and parametric imputation

also tend to be low. PMM and LRD have the largest stan-

dard errors with β = 0 and MAR. There is a strong effect

of k on empirical SE, with larger values of k never inferior

to smaller values.

Taking these results together, it appears that the largest

values of k used are optimal. There is no implication

for bias with LRD, and for PMM the bias is minis-

cule. Coverage is always improved through larger values

of k, as is efficiency. Type 1 matching provides bet-

ter coverage than type 2 for both PMM and LRD. In

scenarios where type 1 and 2 matching have compara-

ble coverage, efficiency is also similar, although slightly

lower for type 1 matching. The results for comparable

forms of PMM and LRD are indistinguishable. These

results can be interpreted in terms of the probability

of repeated donation: if a donor is selected for many

individuals within an imputation, this will lead to inef-

ficiency; if a donor is repeatedly used by the same

individuals across imputations this will lead to ineffi-

ciency and underestimation of the between-imputation

variance.
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Figure 3 Bias under a correctly specified imputation model, according to method.

Figure 4 Coverage of 95% confidence intervals under a correctly specified imputation model, according tomethod.
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Figure 5 Empirical standard error of methods under a correctly specified imputation model, according to method.

Results: Misspecified imputationmodel

Results are presented in Figures 6, 7 and 8, with the design

of plots following those presented in the previous section.

Parametric imputation now suffers a large bias for non-

null associations, in the worst scenarios being more than

half of the true value for β . With β = 0 and MAR, PMM

and LRD have a very slight downwards bias for small k

with type 1 matching. This is not present with type 2

matching. With β > 0 PMM and LRD always alleviate the

bias seen with parametric imputation. With the ‘modest’

strength of association, β = 3.3, both methods have least

bias with k = 1; as k increases there is a modest down-

wards bias under strongMAR only. In the extreme case of

β = 10 PMM and LRD introduce a very serious degree of

bias, particularly under MAR: PMM is biased away from

zero and LRD towards it. To understand this bias, consider

the imputed values for Figure 2. For PMM there will be a

vertical spike of imputed values at the tails of the x distri-

bution, while for LRD the imputed value in both tails will

lie parallel to the slope of the (linear) imputation model,

attenuating the degree of curvature in imputed values.

Formany of the settings considered, the bias of complete

cases analysis is smaller than for any of the imputation

methods. For β = 10 this initially appears surprising,

but occurs because the strong association between y and

x comes close to the assumption required for complete

cases analysis to be valid, that the probability of xi being

missing is conditionally independent of yi given xi [40].

The coverage of imputation methods is also often poor

(Figure 7). Parametric imputation gives coverage greater

than 95% when β = 0 and much lower – close to 0%

in one scenario – with β > 0. With β = 0, PMM and

LRD give slight over-coverage with type 1matching, while

type 2 matching gives under-coverage. For both types of

matching, coverage rates increase slightly as k increases,

as seen previously with a correctly specified imputation

model. With a non-zero association between y and x and

MAR, coverage can become extremely poor for all forms

of PMM and LRD. For strong MAR, increasing k appears

to slightly alleviate problems, while for weak MAR it adds

to them. With β = 3.3 coverage for PMM and LRD are

very similar, but with β = 10 PMM tends to give bet-

ter coverage. Again, although PMM and LRD can improve

upon parametric imputation the majority of the time,

problems are not ‘solved’, and in the majority of settings

considered complete cases analysis has better coverage.

Comparison of empirical standard errors is largely

unhelpful in this context because some methods have

large degrees of bias. However, it is worth noting from

Figure 8 that PMM and LRD are less efficient than com-

plete cases for all settings considered here.

Ovarian cancer example: results

Table 2 displays the log hazard ratio (HR) and 95% con-

fidence intervals for albumin and albumin2, according

to method. Albumin is coded in units of 100 g/dL and
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Figure 6 Bias under a misspecified imputationmodel, according to method.

Figure 7 Coverage of 95% confidence intervals under amisspecified imputation model, according to method.



Morris et al. BMCMedical ResearchMethodology 2014, 14:75 Page 11 of 13

http://www.biomedcentral.com/1471-2288/14/75

Figure 8 Empirical standard error of methods under a misspecified imputation model, according tomethod.

centred at its mean. The log hazard ratios and confidence

intervals for albumin are very similar for all methods. For

albumin2, the log HR is smallest for complete cases and

parametric imputation, and largest for type 1 matching

with large k (for both PMM and LRD). Note that if the

inclusion of the squared term depended on its significance

at the 5% level, analysis using complete cases or after para-

metric MI would lead to its exclusion, which is not the

case for PMM and LRD.

Despite confidence intervals being of similar length for

larger and smaller values of k, the simulation results in

Figures 4 and 7 tell us that the coverage properties are

rather different, and we should favour those using the

larger values of k.

Table 2 Comparison of coefficients for albumin and

albumin-squared in the ovarian cancer data

Albumin (95% CI) Albumin2 (95% CI)

Complete cases –10.06 (–12.01, –8.12) –0.18 (–0.40, 0.05)

Parametric –10.41 (–12.45, –8.38) –0.20 (–0.42, 0.02)

PMM, type 2, k = 1 –10.54 (–12.57, –8.51) –0.25 (–0.49, –0.01)

PMM, type 1, k = 10 –10.74 (–12.80, –8.68) –0.28 (–0.52, –0.04)

LRD, type 2, k = 1 –10.54 (–12.57, –8.51) –0.25 (–0.49, –0.01)

LRD, type 1, k = 20 –10.77 (–12.75, –8.78) –0.29 (–0.53, –0.05)

Albumin is coded in units of 100 g/dL and mean-centred.

Discussion
We have aimed to assess the performance of imputation

by PMM and LRD in settings where they should perform

well, and where they may perform badly. The simulation

studies presented have shown that these methods can be

adequate when the imputation model is correctly speci-

fied, and are an improvement over parametric imputation

when the imputation model is misspecified. Nonetheless,

with a misspecified imputation model, a strong associ-

ation between the incomplete covariate and outcome,

and data missing at random, performance can become

extremely poor.

The simulation studies described and reported above

involved a single incomplete covariate and a single contin-

uous outcome. In this setting, type 2 matching is equiv-

alent to type 0, failing to acknowledge uncertainty about

the parameter of the imputationmodel. They demonstrate

that the performance of PMM and LRD can be acceptable

when the imputation model is specified correctly. When

the imputation model is misspecified, they are usually an

improvement over parametric imputation but can be poor

nonetheless.

The design of the second simulation study was intended

to provide a tough test for both methods, particularly the

specific MAR mechanism used. If the mechanism had

worked in the opposite direction and the sign γ1 had been

negative, missing values would have occurred at lower
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values of y, which is one standard deviation from themean

of x.

In using PMM or LRD it is generally preferable to use

type 1 matching rather than type 2 (or 0). Larger values

of k also tend to be better in terms of coverage and effi-

ciency. For the scenarios investigated, the largest values

of k investigated were 10 (PMM) and 20 (LRD). How-

ever in much larger datasets with tens of thousands of

observed data points, much larger values of k might be

considered.

PMM has a cosmetic advantage over LRD that it always

imputes observable values meaning it is attractive for

imputing non-continuous variables. Table 1 shows that at

the time of writing, this is impossible in the majority of

software implementations. Only aregimpute in R and

ice in Stata have type 1 matching and allow the user

to specify k. Further, ice is the only existing software

implementation of LRD.

The main problems with PMM are related to donor

sparsity – with few donors in the vicinity of an incomplete

case, the imputed values may lead to bias. This also applies

to LRDwhen the imputationmodel is misspecified. Donor

sparsity is expected when there is a large proportion of

missing data, under MAR, and in the tails of distributions.

PMM also suffers from bias when δhj has the same sign for

all donors in the pool.

In general, the recent work by Bartlett et al. [35] may

be more fruitful for multiple imputation of incomplete

covariates where the analysis model contains nonlinear

functions of these.We also note the recent method of Vink

and van Buuren as an alternative approach to imputing

squares [41].

Conclusions
We conclude that PMM and LRD may have a role

for imputing covariates when the imputation model is

thought to be slightly misspecified, but researchers should

focus attention on specifying the imputation model cor-

rectly, for example using the recent method described in

[35], rather than expecting PMM or LRD to do the hard

work.
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