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Abstract. Do cortical neurons operate as integrators or as coincidence detectors? Despite the importance of this
question, no definite answer has been given yet, because each of these two views can find its own experimental
support. Here we investigated this question using models of morphologically-reconstructed neocortical pyramidal
neurons under in vivo like conditions. In agreement with experiments we find that the cell is capable of operating
in a continuum between coincidence detection and temporal integration, depending on the characteristics of the
synaptic inputs. Moreover, the presence of synaptic background activity at a level comparable to intracellular
measurements in vivo can modulate the operating mode of the cell, and act as a switch between temporal integration
and coincidence detection. These results suggest that background activity can be viewed as an important determinant
of the integrative mode of pyramidal neurons. Thus, background activity not only sharpens cortical responses but
it can also be used to tune an entire network between integration and coincidence detection modes.
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1. Introduction

The question of whether individual neurons encode and
process information by using precise spike timings,
thus, working as coincidence detectors, or spike rates,
thus, working as temporal integrators, has been highly
debated (e.g. Shadlen and Newsome, 1994, 1995, 1998;
Softky, 1995; Softky and Koch, 1993; for conceptual
issues see e.g. Koch and Laurent, 1999; Lábos, 2000;
Panzeri et al., 1999, 2001a; Segundo, 2000; for a recent
review see deCharms and Zador, 2000). It has been ar-
gued that the irregular firing activity of cortical neurons
(experimental studies: e.g. Holt et al., 1996; Noda and
Adey, 1970; Shinomoto et al., 1999; Smith and Smith,
1965; Softky and Koch, 1993; Stevens and Zador,
1998; for modeling studies see Troyer and Miller, 1997;
Tsodyks and Sejnowski, 1995; Usher et al., 1994; van

Vreeswijk and Sompolinsky, 1996) is inconsistent with
the temporal integration of synaptic inputs, and that co-
incidence detection (experimental support: e.g. Gray,
1994; König et al., 1995 for cat visual cortex, Vaadia
et al., 1995 for monkey frontal cortex; modeling stud-
ies: e.g. Abeles, 1982; Bernander et al., 1991; Murthy
and Fetz, 1994; Softky and Koch, 1993; conceptual is-
sues: e.g. König et al., 1996; Theunissen and Miller,
1995) is the preferred operating mode of cortical neu-
rons. The latter emphasizes the importance of the exact
timing of spikes (for experimental support: e.g. Engel
et al., 1992; McClurkin et al., 1991 for visual cortex;
Reinagel and Reid, 2000 for cat LGN; Bell et al., 1997;
Han et al., 2000 for mormyrid electric fish; Panzeri and
Schultz, 2001 for rat somatosensory cortex; Bi and Poo,
1998 for cultured neurons; Bair and Koch, 1996 for cor-
tical area MT neurons in monkey; Prut et al., 1998 for
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behaving monkey), whereas other studies (e.g. Tovée
et al., 1993 for visual cortex; Barlow, 1994; Bugmann
et al., 1997; Shadlen and Newsome, 1994, 1998 for
modeling studies) draw attention to the temporal inte-
gration of synaptic inputs and, thus, on the importance
of spike rates as the relevant coding scheme.

A series of experimental (e.g. see Krüger and Becker,
1991) and theoretical (e.g. Kretzberg et al., 2001) stud-
ies have proposed the view that cortical neurons could
operate according to both of these modes, or even
in a continuum between temporal integration and co-
incidence detection (e.g. Kisley and Gerstein, 1999;
Maršálek et al., 1997 for integrate-and-fire neuron
models). Here, the temporal characteristics of the input
was found to be the factor determining the operating
mode of the cell. When inputs are broadly distributed in
time, neurons tend to respond to the average firing rate
of afferent inputs. The same neurons can also respond
precisely to a large number of synchronous synaptic
events, therefore acting as coincidence detectors.

In between these two extremes, cortical neurons are
capable of detecting an “average correlation” within a
large number of random input sources (Rudolph and
Destexhe, 2001a). In this type of response, the cell
changes its firing rate following a change in the tempo-
ral structure of its inputs, while the afferent firing rates
do not change. This response accounts for experimen-
tal situations where the only relation between single-
cell discharge and behavior was the level of correlation
between simultaneously recorded cells, while the fir-
ing rate of individual cells was not affected (deCharms
and Merzenich, 1996; Riehle et al., 1997; Vaadia et al.,
1995).

An enhancement of the ability to discriminate be-
tween synchronized or temporally dispersed stimuli
was also evidenced in more detailed biophysical mod-
els with spatially extended dendritic structures and in
the presence of intense synaptic noise caused by an
ongoing activity in the neuronal network (Bernander
et al., 1991; Maršálek et al., 1997). As for integrate-
and-fire models, cells were capable of responding re-
liably in a broad spectrum of temporal characteristics
of synaptic inputs. Interestingly, background activity
allowed to tune the cellular response (Bernander et al.,
1991). Moreover, it was reported that neurons effec-
tively sharpen temporally dispersed synaptic inputs
while dispersing synchronized signals, a finding which
will have decisive consequences on the network level
(see e.g. Diesmann et al., 1999; Shadlen and Newsome,
1998).

However, these modeling studies were performed by
using either simplified models (integrate-and-fire neu-
rons) or passive dendritic structures. This leaves the
question how far conclusions about the operating mode
of cortical neurons hold for the more general case of
active dendrites yet unanswered. Recently, the impact
of active properties on dendritic integration received
a lot of attention. It was shown that in the presence
of active membrane conductances qualitatively new
mechanisms emerge which alter the spatiotemporal in-
tegration of synaptic inputs (for a review see Häusser
et al., 2000). In this paper, we investigate the spec-
trum of operating modes using compartmental models
of neocortical pyramidal neurons with active dendrites.
Moreover, we address the question to which extend the
operating mode can be controlled by other physiolog-
ical signals, such as the intense synaptic background
activity present in vivo.

2. Methods

Simulations were performed using a morphologically-
reconstructed neocortical pyramidal layer VI neuron of
a cat parietal cortex (Fig. 1A) obtained from a previ-
ous study (Contreras et al., 1997). The dendritic sur-
face was corrected for spines under the assumption that
about 45% of the dendritic membrane area are repre-
sented by spines (DeFelipe and Fariñas, 1992). Passive
model parameters were adjusted to intracellular record-
ings obtained after application of TTX and synap-
tic blockers (Destexhe and Paré, 1999) and kept con-
stant over all simulations. An intracellular resistivity
of Ra = 250 � cm, membrane resistivity of Rm = 22
k � cm2 (Rm = 50� cm2 in the axon), and capa-
citance of Cm = 1 µF cm−2 (Cm = 0.04 µF cm−2 in
the axon) were used, where Cm was increased and Rm

decreased (Holmes, 1986) by a factor of 1.45 to account
for dendritic spines.

Voltage-dependent conductances were inserted in
the soma, dendrites and the axon to simulate active
currents (sodium current INa, delayed-rectifier potas-
sium current IKd and voltage-dependent potassium cur-
rent IM). All currents were described by Hodgkin-
Huxley type models (Hodgkin and Huxley, 1952)
with constant peak conductance densities of ḡNa =
52.3 mS cm−2 in dendrites (ḡNa = 36.1 mS cm−2 in
the soma, ḡNa = 361 mS cm−2 in the axon), ḡKd =
10.1 mS cm−2 in dendrites (ḡKd = 7 mS cm−2 in the
soma, ḡKd = 70 mS cm−2 in the axon), and ḡM =
0.51 mS cm−2 in dendrites (ḡM = 0.35 mS cm−2 in
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Figure 1. Simulation protocol. A: Morphologically-reconstructed neocortical pyramidal layer VI neuron of a cat used in the modeling studies.
The shaded area indicates the proximal region (radius ≤ 40 µm). Inside that region there were no excitatory synapses, whereas inhibitory
synapses were spread over the whole dendritic tree. B: Scheme of the simulation protocol. Individual Gaussian events (top panel) were ob-
tained by distributing N synaptic inputs randomly in time according to a Gaussian distribution of standard deviation σin (light grey curve,
bottom panel). The cellular response was recorded for repeated stimulation with NGauss individual Gaussian events (middle panel), yield-
ing a Gaussian shaped PSTH of width σout and a mean shifted by the latency tlat against the mean of the input events (dark grey curve,
bottom panel). C: Representative examples of Gaussian input events (light grey) and corresponding cumulated responses (dark grey) for
quiescent conditions, and under (correlated and uncorrelated) in vivo-like activity. Characteristics of Gaussian input events: (a) N = 220,

σin = 1 ms; (b) N = 220, σin = 4 ms; (c) N = 130, σin = 1 ms; (d) N = 130, σin = 4 ms. The relative probability ρ is defined as ρ =
(number of spikes in time interval T )/(Nresp × T ) (see Methods).

the soma, no IM in the axon). The kinetics of the
currents were taken from a model of hippocampal
pyramidal cells (Traub and Miles, 1991), adjusted to
match voltage-clamp data of cortical pyramidal cells
(Huguenard et al., 1988). For a review about active
dendrites and dendritic integration, see e.g. Johnston
et al. (1996) and Magee (2000).

Synaptic currents were incorporated using two-
state kinetic models of glutamate α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) and
γ -aminobutyric acid type-A (GABAA) receptor types
(Destexhe et al., 1998) with quantal conductances
of gGABA = 869.4 pS (distal region, gGABA = 600 pS
for proximal region, see Fig. 1A), and gAMPA =
1738.8 pS. No metabotropic receptors were included.

The densities of synapses in different regions of the
layer VI cell under consideration were estimated from
morphological studies in neocortical pyramidal cells
(DeFelipe and Fariñas, 1992; Larkman, 1991; White,
1989), leading to a total of 16563 glutamatergic and
3376 GABAergic synapses. To perform the simula-
tions in a time-efficient manner, an accelerating al-
gorithm (Lytton, 1996) was used to handle synaptic
conductances.

Simulations were performed by repeated synaptic
stimulation with individual Gaussian events (Fig. 1B,
top panel). The latter were obtained by distributing N
excitatory synaptic inputs randomly across the synap-
tic tree, and randomly in time according to a Gaussian
distribution of standard deviation σin (Fig. 1B, bottom
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panel, light grey curve). The value of σin quantifies the
level of simultaneity or dispersion in time of the synap-
tic inputs (see also Diesmann et al., 1996; Kisley and
Gerstein, 1999; Maršálek et al., 1997), with a more tem-
porally dispersed signal for larger σin, and a sharper sig-
nal (characterizing synchronous synaptic activity) for
smaller σin. To examine the model neuron’s spectrum
of operating modes, the shape of the Gaussian input
events was altered by changing the parameter values in
a range 100 ≤ N ≤ 250 with a stepsize �N = 10, and
0 ms ≤ σin ≤ 5 ms with a stepsize �σin = 0.2 ms.

For each parameter set, the cellular response was
recorded for repeated stimulation with NGauss = 1200
individual Gaussian events (Fig. 1B, middle panel; sim-
ulation time of 60,000 ms for each parameter set, pe-
riod of 50 ms between centers of subsequent Gaussian
events, time resolution 0.1 ms). Resulting peri-stimulus
time histograms (PSTHs) were normalized using the
total number of stimulus evoked spikes Nresp, yielding
the relative probability distribution

ρ = number of spikes in time interval T

Nresp × T
,

and fitted with a Gaussian function (Fig. 1B, bottom
panel, dark grey curve), characterized by a mean, which
was shifted by the mean latency tlat relative to the mean
of the input events, and width σout. The latter can be
viewed as a measure of the temporal dispersion of
the cellular response, and compares to “precision” in
Mainen and Sejnowski (1995). Examples of individual
events are shown in Fig. 1C. The relation between input
and output synchrony was quantified by the ratio

ξ = σin

σout
,

and the reliability of a cellular response to Gaussian
events by the ratio

R = Nresp

NGauss
.

Synaptic background activity was simulated by in-
hibitory and excitatory synapses which were driven by
a Poisson process with average rates of νinh = 5.5 Hz
for GABAA synapses and νexc = 1.0 Hz for AMPA
synapses, as estimated previously based on recent data
from intracellular recordings of pyramidal neurons be-
fore and after application of TTX (Destexhe and Paré,
1999; Paré et al., 1998). In some cases, a correlation
among synaptic background events was introduced,

resembling statistical properties evidenced in cortical
networks activity in vivo (Vaadia et al., 1995; Zohary
et al., 1994). To this end, independent random release
events were redistributed among all synapses to in-
crease the probability of co-release, but every terminal
still released according to a Poisson process (see details
in Destexhe and Paré, 1999; Rudolph and Destexhe,
2001b). The correlation used for parts of the simula-
tions corresponds to a Pearson’s correlation coefficient
of about 0.1, consistent with the weak correlation found
between pairs of neurons in monkey cerebral cortex
(Vaadia et al., 1995; Zohary et al., 1994).

All simulations were performed using the NEURON
simulation environment (Hines and Carnevale, 1997),
running on DELL computers (Dell Computer Corpo-
ration, Round Rock TX, USA) under the LINUX op-
erating system.

3. Results

We investigated the operating mode of neocorti-
cal pyramidal neurons by using morphologically-
reconstructed biophysical models in which a set of
input synapses was spatially distributed in dendrites.
These input synapses were activated according to a
Gaussian-distributed pattern whose temporal disper-
sion was controlled by its standard deviation σin (see
Methods). This distributed synaptic stimulus was ap-
plied either in isolation (quiescent state), or in the pres-
ence of synaptic background activity. In all cases, the
cellular response was quantified using PSTHs obtained
by cumulating output spikes for repeated stimulations.
The temporal dispersion of the output spikes generally
followed a Gaussian distribution (Fig. 1C, dark grey),
which was quantified by its amplitude (the total num-
ber of output spike events Nresp), its width (σout) and
a mean latency with respect to the input distribution
(tlat; see Fig. 1B). The reliability R was defined as the
ratio between the number of output spikes and the num-
ber of applied Gaussian events (see Methods), and the
sharpening of responses was evaluated from the ratio
between the standard deviations of input and output
distributions ξ .

In quiescent conditions, the cell showed a reliable
response (R = 1) to Gaussian events of nearly all
widths (Fig. 2A1; see Segundo et al., 1966; Kisley and
Gerstein, 1999), suggesting that the cell is capable of
acting as both a coincidence detector (for small σin) or
a temporal integrator (for large σin). The minimal num-
ber of synaptic inputs N required to evoke a response
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Figure 2. Cellular response as function of input parameters. A: Reliability R with which the Gaussian events drive the postsynaptic response.
In the quiescent case (A1) the cell is capable of responding reliable to events of nearly all widths, whereas the region with R = 1 decreased
in the presence of uncorrelated (A2) and correlated (A3) background activity. Moreover, under quiescent conditions, the dependence of R on
the strength of the Gaussian signal N becomes weaker (smaller slope of iso-reliability lines). B: The mean latency tlat as a function of Gaussian
stimuli characteristics in the quiescent case (B1) and under uncorrelated (B2) and correlated (B3) in vivo-like conditions. C: Relation between
tlat and the output jitter. In the quiescent case (C1) there is a nearly linear relation, allowing to determine the time of the occurence of the input
events by measuring the jitter of the output, whereas no corresponding relation can be evidenced under in vivo-like conditions (C2 uncorrelated,
C3 correlated).

(as indicated by the boundary of the R = 1 region
in Fig. 2A1) was lower for more synchronized input
events (smaller σin). In agreement with other studies
(Abeles, 1982; Aertsen et al., 1996; Bernander et al.,
1991; König et al., 1996; Softky, 1995), this result indi-
cates that coincidence detection is the more “efficient”
operating mode. However, the flat boundary for R = 1
also shows that, in quiescent conditions, temporal in-
tegration needs only a small increase in the strength N
of the temporally dispersed synaptic input in order to
be effective.

This picture changed quantitatively in the presence
of synaptic background activity. Here, coincidence
detection was still the most efficient operating mode,
but the higher slope of the boundary for R = 1 (see
Fig. 2A2 and A3) indicates that an effective temporal
integration can be obtained only for a marked increase
in the strength of the temporally dispersed input
signal (see also Bernander et al., 1991). For fixed
N , the cell was less capable of responding reliably

to Gaussian events of higher widths compared to
quiescent conditions, and for correlated background
activity (see Methods) a reliability of R = 1 was only
obtained for very strong input signals (large N ) with a
very narrow temporal distribution (σin < 1 ms). This
overall increase in the strength of the synaptic input
necessary to evoke a response as well as the reduction
in reliability for stronger input events (small σin, larger
N ; compare Fig. 2A1 and A2) must be viewed as a
direct result of the smaller input resistance (or increase
in the effective membrane conductance shunting the
dendrites) caused by the intense synaptic background
activity impinging on the cell. On the other hand, the
spontaneous discharge activity shifted the parameter
region with no or only low reliable responses (R < 0.5)
towards lower input strength N . The latter effect,
which can be interpreted as “enhanced responsiveness”
(see e.g. Hô and Destexhe, 2000), was pronounced
for correlated background activity (compare Fig. 2A2
and A3). Interestingly, both effects together yield a
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weaker dependence of the reliability on the strength
of the Gaussian events in the presence of background
activity (as indicated by the broader “band” between
R = 1 and R < 0.25 in Fig. 2A), which indicates a
more “variable” response to discriminate input settings
compared to the quiescent case.

The mean latency of the output with respect to the
center of the input events shows that, in general, lower
σin and large N lead to responses with shorter latencies
(Fig. 2B). In the quiescent case (Fig. 2B1), a minimal
time of about 3 to 4 ms corresponds to the average
time dendritic spikes evoked by strong synaptic inputs
need to propagate along the spatially extended dendritic
tree and impact on the soma (Rudolph and Destexhe,
2001b). Weaker signals or signals with a broader tem-
poral distribution need more time to be integrated, lead-
ing to a corresponding increase in tlat. A clear increase
of tlat with σin (data not shown) suggests that somatic
spikes generated by coincidence detection occur with
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Figure 3. Synchronization of cellular response as function of synaptic input characteristics. A: Output jitter σout as a function of the input
settings. In all three cases σout is lower than σin for most of the parameter range. Moreover, the dependence of σout on N is higher in the quiescent
case (A1), whereas the output jitter becomes nearly independent on N in the presence of correlated background activity (A3; indicated by
higher slope of iso-σout lines). A2 shows the corresponding results for uncorrelated background activity. B: ξ = σin/σout as a function of the
input settings. In all three cases, the input parameter range covers settings for which ξ ∼ 1 (increasing light grey region). This range markedly
increases for the correlated case (B3). B1 and B2 show the results for quiescent and uncorrelated in vivo-like conditions, respectively. C: Relation
between output jitter and the synchrony in the input. In all three cases (C1 quiescent, C2 in vivo-like uncorrelated, C3 in vivo-like correlated)
σout is nearly proportional to σin, but with a slope smaller than one. Only in the correlated case the slope is close to unity, suggesting a neuronal
response which preserves the synchrony in the input signal.

a shorter delay than those caused by temporal inte-
gration (König et al., 1996; Shadlen and Newsome,
1995). However, the presence of background activ-
ity markedly decreased tlat (between 25% for strong
Gaussian events and 50% for weaker Gaussian events,
compare Fig. 2B1 with Fig. 2B2 and B3), especially for
higher σin values, yielding a tlat which was much less
dependent on σin and N and, thus, the operating mode
for correlated background activity. This behavior could
have a significant impact on the temporal resolution of
subsequent Gaussian events.

In the quiescent state, tightly synchronized input dis-
tributions (small σin) caused less jitter in the timing
of output spikes (Fig. 3A1) with a σout considerably
smaller than σin (Fig. 3C1), in agreement with pre-
vious models (Kisley and Gerstein, 1999; Maršálek
et al., 1997). However, σout depends much more on
N than in passive models. It is interesting to note that
σout is highly correlated and nearly proportional to tlat in
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quiescent conditions (Fig. 2C1). This behavior changed
qualitatively in the presence of synaptic background
activity. In addition to the overall decrease of tlat, the
range ofσout increased with the background correlation.
There was no longer a linear relation between tlat and
σout (Fig. 2C2 and C3). The output jitter σout depended
more on σin, whereas the dependence on N became
weaker (higher slope of the σout contours in Fig. 3A2
and A3, compare to Fig. 3A1).

Interestingly, although an increase in the input jit-
ter for fixed N naturally results in stronger dispersion
of the output distribution (see Fig. 3A), a weak re-
lation between σout and the strength of the Gaussian
input event could be evidenced. Here, for fixed σin, an
increase in N led to a decrease in σout for both quies-
cent and active conditions (Fig. 3A, see also Fig. 1C).
This dependency can be explained by the fact that
stronger synaptic inputs lead to a depolarization with
larger amplitude which drives the membrane faster to
firing threshold. This, in turn, results in an effective
decrease of the average latency for increasing N and
fixed input dispersion σin (see Fig. 2B) as well as a
sharpening of the response distribution, i.e. a decrease
in σout.

To directly analyze the impact of the input syn-
chronization on the output jitter of the cell, we in-
vestigated the behavior of the ratio ξ = σin/σout. The
input parameter range for which ξ ≥ 1 was large un-
der quiescent conditions (Fig. 3B1), and only mini-
mally changed in the presence of background activity
(Fig. 3B2 and B3). However, background activity and
correlation markedly lowered ξ , as indicated by the in-
creasing light grey region in Fig. 3B2 and B3). In all
cases σout was roughly proportional to σin with a slope
smaller than one in the quiescent state or in the presence
of uncorrelated background activity (Fig. 3C1 and C2).
Only with correlated background activity the slope in-
creased and was close to one for a broad range of input
settings (Fig. 3C3), suggesting that under these condi-
tions the cell nearly conserves the synchronization of
the input signal. The output jitter for fixed σin stayed
nearly constant in all cases for all N , with σout showing
a much higher variability when synaptic background
activity was present (data not shown). Interestingly,
there was a relation between output jitter and relia-
bility of the response in the presence of background
activity (Fig. 4A2 and A3): a higher jitter in the output,
hence less precision, is accompanied by a decrease in
reliability. No such relation could be evidenced in the
quiescent state (Fig. 4A1).

In order to resolve the ambiguity resulting from the
fact that an output spike can be generated by an arbitrary
number of synaptic inputs distributed narrowly or by
integrating more synaptic events distributed diffusely
in time, we investigated the slope of the membrane
potential Vm preceding a spike (Kisley and Gerstein,
1999). However, only for strong inputs (high N , small
σin) the slope depended on the characteristics of the
input signal (Fig. 4B), with a higher sensitivity to the
degree of synchrony than to N . For higher σin as well
as for additional background activity, this sensitivity
decreased rapidly, and the Vm slope stayed nearly con-
stant at around 6 mV/ms (Fig. 4C). We conclude that,
in contrast to passive models (e.g., Kisley and Gerstein,
1999), here the Vm slope can be used to discriminate
Gaussian input settings only in a narrow range. This re-
sult is not surprising, because the Gaussian input events
do not cause a somatic response directly, but rather are
integrated by a spatially extended active dendritic tree
before impacting the soma. Thus, the spiking response
of the cell is mainly governed by the intracellular ki-
netics, leading to a Vm slope preceding a spike which is
nearly independent of the input. A weak “inverse” cor-
relation between the temporal precision of the output
and the Vm slope was only observed in the quiescent
state (data not shown).

Finally, we investigated the variability of the spik-
ing response of the cell, quantified by the coefficient of
variation CV , defined as the ratio between the standard
deviation of interspike interval and the mean interspike
interval. As expected, during quiescent conditions, the
periodically applied Gaussian events lead to a low CV

(Fig. 5A1), indicating a rather regular response. The in-
crease of the CV for low N and higher σin can be related
to the lower reliability and, thus, failures of response
due to weak inputs in this parameter range. This situa-
tion changed when the cell was subject to uncorrelated
background activity (Fig. 5A2). Here we observed an
increase in the variability for higher σin and N . How-
ever, this increase of the CV is directly related to the
change in the reliability (see Figs. 2A2 and 5A2). In
contrast, in the presence of correlated background ac-
tivity, the CV was larger than zero even for R = 1
(Fig. 5A3 and B). This way, even for a strong peri-
odic input stimulus, the addition of a weak background
activity makes the timing of output spikes more vari-
able, while preserving the synchronization of the input
signal (see above). This result suggests that the fluctu-
ating intracellular activity due to synaptic background
activity present in the in vivo state facilitates a neuronal
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Figure 4. Impact of input parameters on the spike shape. A: Reliability R as a function of the output jitter σout for the quiescent case (A1),
and in the presence of uncorrelated (A2) and correlated (A3) synaptic background activity. Under quiescent conditions there is no clear relation
between both quantities, whereas correlated background activity leads to a response behavior with decreasing reliability for increasing output jitter.
B: Vm slope 2 ms preceding the spike as a function of the input parameters. Only in the quiescent case (B1) for small σin and high N a weak relation
can be observed, which allows to deduce characteristics of the input signal by a measurement of the Vm slope. Under in vivo-like conditions
(B2 uncorrelated case, B3 correlated case) there is no longer a clear dependence. C: Vm slope 2 ms preceding spike as a function of σin. In all
three cases, for weak input signals (higher σin) the Vm slope is constant (C1 quiescent, C2 in vivo-like uncorrelated, C3 in vivo-like correlated).

response which preserves the temporal precision of the
input signal, while at the same time exhibiting a high
interspike interval variability (see also Nowak et al.,
1997a).

4. Discussion

In this paper we have investigated the operating modes
of cortical neurons by using multisynaptic inputs whose
dispersion in time was varied. We report three find-
ings: First, the neuron is able to operate as an integrator
or a coincidence detector depending on the character-
istics of the input signal, namely the degree of syn-
chrony in the multisynaptic input pattern. Second, there
was no discrete boundary between these two operating
modes, suggesting that the cell rather operates in a con-
tinuum between temporal integration and coincidence
detection. Both findings are in agreement with previ-
ous studies (e.g. Aertsen et al., 1996; Diesmann et al.,
1999 for feedforward networks, Kisley and Gerstein,
1999 for leaky integrate-and-fire neurons), but extend

to the more biophysical situation of spatially extended
dendritic structures and conductance-based intracellu-
lar activity. Third, the presence of synaptic background
activity, at a level comparable to measurements in cat
parietal cortex in vivo (Destexhe and Paré, 1999; Paré
et al., 1998), had a decisive impact on the operating
mode of the modeled cell. It led to a better discrim-
ination of the temporal characteristics of synaptic in-
puts (Fig. 2A) and an overall faster response (Fig. 2B)
compared to the quiescent state. Changes in statisti-
cal properties of the synaptic background also allowed
to modulate the temporal characteristics of the output
by changes in the temporal dispersion of the response
for a given input synchrony (Fig. 3). Thus, in order to
understand the operating mode of cortical cells under
in vivo conditions, both the signal and (spontaneous)
background activity must be taken into account as two
components of the overall synaptic input pattern re-
ceived by the cell.

In a previous study (Bernander et al., 1991), the ef-
fect of synaptic background activity on the spatiotem-
poral integration of synaptic inputs in single layer V



Tuning Neocortical Pyramidal Neurons 247

Figure 5. Variability of cellular response. A: The variability of the spiking response CV as a function of input settings. Under quiescent
conditions (A1), only weak events yield a high CV , corresponding to the fact that weak signals mainly fail to evoke responses. For uncorrelated
background activity (A2) the CV increased for high σin due to the fact that weak input signals now interfere with a weak spontaneous firing
activity. Interestingly, for the correlated background activity (A3), even very strong periodic Gaussian input signals yield a higher CV . B: Relation
between reliability R and the coefficient of variation for all three investigated cases. High reliable responses lead to less variability to the periodic
input events. For correlated background activity, even for R = 1 the CV is unequal zero due to the spontaneous firing activity. The grey region
marks the variable range shown by the inset.

pyramidal cells with passive dendrites was investi-
gated. Synaptic background was modeled by thousands
of spatially distributed excitatory and inhibitory synap-
tic inputs activated randomly according to independent
Poisson processes. In contrast to our study, the firing
rate was changed in order to modulate the strength of
the background activity. In accordance with our find-
ings, significant changes in the cellular response to
temporally synchronized or dispersed synaptic inputs
were found. First, the minimal number of excitatory
synapses necessary to trigger a response of the cell
increased in the presence of background activity, espe-
cially for temporally dispersed inputs. This compares to
Fig. 2A1 and A2, where for fixed σin a reliable response
(R ∼ 1) was only obtained for stronger inputs (larger
N ), a direct result of the overall smaller input resistance
under in vivo conditions. Second, for fixed synaptic
background activity and input strength, more synchro-
nized synaptic inputs trigger a cellular response with
higher reliability (see Fig. 2A1 to A3, decrease in R for
increasing σin and fixed N ). This indicates that cortical
cells in vivo act preferably as coincidence detectors, but
that the response to synaptic inputs with specific tem-
poral dispersion can also be tuned by network activity.

Synaptic background activity shapes the spatiotem-
poral integration of synaptic inputs through changes
in the electrophysiological characteristics of the cell.
These changes include a decrease in the membrane time
constant, an enhanced attenuation of EPSPs and a de-
polarized membrane potential bringing the cell closer
to firing threshold. Our study differs from previous
ones (e.g. Bernander et al., 1991) by showing a mod-
ulating effect of synaptic background activity on the
timing of the response by a variation of the statistical
properties of the synaptic background activity for fixed
background frequency and, thus, membrane time con-
stant. This approach is supported by recent experimen-
tal findings which have shown that in the awake state
the cortical network can display rapid changes in the
correlation between the discharge activity of individual
neurons without modulation of their average firing rate
(deCharms and Merzenich, 1996; Riehle et al., 1997;
Vaadia et al., 1995). A detailed investigation of the
interplay between changes in correlation and cellular
response modulation (Riehle et al., 1997) constitutes
an interesting direction for future studies.

Recently it was pointed out (see deCharms and
Zador, 2000 and references therein) that the principled
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question of whether neurons encode information as
integrators (rate-coding) or as coincidence detectors
(temporal-coding) is merely one of time scales in the
addressed problem rather than one of category. Here,
in agreement with studies of passive models (Kisley
and Gerstein, 1999; Maršálek et al., 1997), we sug-
gest another view, namely that the operating mode and,
thus, the coding scheme, is merely one of “information
contents”. Both a temporally sharp signal, caused by
synchronous or correlated synaptic activity, as well as
synaptic signals dispersed in time, caused by a change
in the presynaptic firing rate, can lead to reliable re-
sponses in a continuum between integration, utilizing
more imprecise spike responses, and coincidence de-
tection, utilizing rather precise spike times.

Synaptic background activity was found to modulate
and control the integrative mode of individual cells by
allowing to tune the (temporal) characteristics of their
outputs. As we have shown here, changes in the corre-
lation of the presynaptic activity alter the reliability of
the response as well as the ability of the cell to discrim-
inate between synaptic inputs arriving simultaneously
or dispersed in time (Fig. 2A). Furthermore, the impact
of background activity on the latency of the response
suggests that the time needed for integrating synaptic
inputs and, thus, the “speed” of propagation of infor-
mation across cortical layers is not fixed but can be
tuned by changes in the background activity (Fig. 2B).
The temporal dispersion of the response was found to
depend on the characteristics of background activity
(Fig. 3A), which could provide a mechanism through
which the cell can focus on specific temporal patterns
in its synaptic inputs. Taken together, these results sug-
gests that information contents is not only a property
of the signal itself, but also depends on background
activity, which is widely viewed as noise. Both signal
and background activity should therefore be consid-
ered together when investigating information process-
ing paradigms of neocortical neurons.

In this context, an enhancement in the bandwidth
of information processing capability appears as a nat-
ural consequence. By modulating their firing rate, in-
dividual neurons can resolve in a specific way slow
changes in the synchronous synaptic activity which are
viewed to play a role in binding together the activity
in different cortical regions. By responding to fast and
brief changes in the synchrony of the presynaptic ac-
tivity, single neurons are able to resolve signals which
are viewed to play a role in coding the spatiotemporal
structure of sensory stimuli. In agreement with other

experimental and theoretical studies (Abeles, 1982;
Aertsen et al., 1996; Bernander et al., 1991; König et al.,
1996; Softky, 1995), we found that coincidence detec-
tion appears to be the more “efficient” operating mode
due to the lower number of synaptic inputs required to
evoke a response.

A weak correlation between the degree of synchrony
in the input and the slope of the Vm preceding a
spike was obtained only without background activ-
ity. The argumentation that more synchronous events
will open more synaptic conductances simultaneously
which drive the Vm more rapidly to threshold (Nowak
et al., 1997b) does not hold in the case of spatially dis-
tributed synaptic input patterns. In addition, the active
voltage-dependent conductances impact on the den-
dritic integration of the input signal (see for instance
Schwindt and Crill, 1997; Softky, 1994, 1995; Stuart
et al., 1997), leading only to a weak dependence of
the Vm slope on the input characteristics. An inverse
proportionality of the Vm slope to the variance of the
ISI, as shown analytically (Stein, 1967), could not be
confirmed in the case investigated here.

Finally, the finding of σout < σin (e.g. Maršálek et al.,
1997) may have important consequences at the net-
work level. A first possible interpretation (Maršálek
et al., 1997) is that the relation between input and out-
put jitters will determine the synchronization of dis-
charges across successive layers of interconnected neu-
rons. If σout < σin, the signal becomes temporally more
precise as it proceeds through the layers, but the in-
formation about the input jitter gets lost (see Abeles
et al., 1993; Diesmann et al., 1999; Gerstein et al.,
1989; MacGregor, 1991). This is also accompanied by
a change of operating modes at different levels of the
network. Here, we have shown that the ratio between
σout and σin also depends on the strength and statis-
tics of the background activity. It is close to one in the
presence of correlated background activity, suggesting
that in such states the synchrony of the input signal is
conserved across successive layers of the cortical net-
work. This model therefore predicts that networks can
tune their operating mode by modulating the level of
spontaneous activity, and that the processing of pre-
cisely timed afferent information will be possible only
under specific states of network activity.

We suggest here another possible interpretation,
namely to relate the input and output jitters not to suc-
cessive layers, but to successive cycles of an oscillation
within the same network. The latencies between input
and output distributions are of the order of 3 to 8 ms
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(Fig. 2C), which would correspond to fast oscillations
of 120–300 Hz, such as that found in the hippocampus
(Buzsaki et al., 1992), or slower oscillations if synap-
tic delays are taken into account. According to this
scheme, the successive cycles of the oscillation would
perform successive “iterations” through recurrent ex-
citatory connections. The discharges can become more
and more synchronized from cycle to cycle (σout < σin),
conserve synchrony (σout = σin), or progressively loose
their initial synchrony (σout > σin). The present results
suggest that background activity (which could be gen-
erated either externally or by a subset of neurons
not participating to the oscillation) would completely
determine the time evolution of the synchrony and
therefore the result of this “iteration”. Future network
models are needed to investigate further this type of
dynamics, and possible relations with the physiology
and roles of cortical oscillations (see Gray, 1994).
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