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 
Abstract—This paper presents a robust probabilistic 

controller tuning method to improve the damping of critical 

system modes through the modulation of active power injected by 

a voltage source converter based multi-terminal high voltage 

direct current (VSC-MTDC) grid. This methodology first 

establishes the probabilistic locations of the critical modes based 

on the known variation in power system operating conditions. 

Following this, the modal linear quadratic Gaussian (MLQG) 

controller structure is tuned for a set of probabilistic values of 

critical eigenvalues. The controller’s performance following small 
disturbances in the network for wide ranging operating 

conditions is compared with the conventionally tuned MLQG 

controller designed for the nominal system operating point. The 

Probabilistic Collocation Method is shown to facilitate robust 

probabilistic tuning without the need for large numbers of full 

system linearizations. The test system used incorporates a large 

wind farm with variable power output connected to the meshed 

AC network through the VSC-MTDC grid. 

 
Index Terms—electromechanical modes, modal LQG control, 

multi-terminal VSC-HVDC, offshore wind, robustness, power 

oscillation damping, probabilistic collocation method. 

I.  INTRODUCTION 

UTURE power transmission networks will operate closer 

to stability limits with points of power injection subject to 

rapid change as renewable sources of generation proliferate. 

With increasing power demands and already strained AC 

transmission lines, high voltage direct current (HVDC) links 

are likely to see ever increasing penetration. Voltage Source 

Converter (VSC) based HVDC systems are becoming 

increasingly competitive (both financially and in terms of 

power losses) and provide many benefits over classic Line 

Commutated Converter (LCC) based HVDC systems. One 

such benefit is the ready extension to multi-terminal (MTDC) 

configuration. 

A VSC-MTDC grid would allow DC interconnections 

between multiple connection points in any number of 

asynchronous AC power networks. A meshed VSC-MTDC 

system such as this would allow easy connection of distant 

offshore wind farms with existing AC systems whilst also 
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providing a means of increased energy trading between the 

interconnected system operators. There is also increasing 

discussion about a pan-European MTDC ‘supergrid’ which 
would allow vast interconnection between the various areas of 

the European AC system [1]. Such a system would allow not 

only improved energy trading and integration of renewable 

energy sources, but also the potential for enhancement of 

system stability. 

Although no VSC-MTDC systems currently exist, there are 

great expectations surrounding their future development [2], 

and there has been some research interest in the field. This 

includes work on protection requirements [3], DC voltage 

control strategies [4], and the stability concerns surrounding 

the integration of MTDC grids [5]. Despite this interest in 

VSC-MTDC grids, there is little work investigating the 

enhancement of system stability using the fast controllable 

converter technology. Modulation of the active power 

injection into the AC grid can be utilized to damp troublesome 

persistent post-disturbance power system oscillations.  

Previous investigations have demonstrated the effective-

ness of using HVDC active power modulation for power 

oscillation damping (POD) purposes [6, 7], though only with 

point to point HVDC links. The controller utilized within this 

study is wide area measurement system (WAMS) based and 

takes signals from across the entire AC system to effectively 

stabilize the network. The controller takes a Modal Linear 

Quadratic Gaussian (MLQG) structure which has been 

demonstrated to be effective for POD through HVDC systems 

[6, 7]. This design allows targeted action of specified system 

modes (in this study, low frequency electromechanical 

oscillations) whilst leaving the remainder unaffected, making 

it particularly suitable as a supplementary system controller. It 

should be noted that the robust tuning methodology presented 

could be applied to any controller design which uses a 

linearized power system model (e.g., H  designs) and is not 

dependent upon the MLQG controller used within this study. 

Through the use of probabilistic studies, the most likely 

open loop modal positions can be determined. Formation of 

the controller design process using modal canonical forms of 

the power system state space model allows manipulation of 

the power system representation so these probabilistic modes 

can be used during the design process. 

Furthermore, the use of the Probabilistic Collocation 

Method (PCM) allows efficient identification of the 
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probabilistic values of the critical system eigenvalues without 

the need for vast quantities of full system linearizations. As 

such, the probabilistic tuning process can be readily completed 

and improved controller robustness is achieved. 

The work presented in this paper establishes that the use of 

a probabilistic system representation during WAMS-based 

POD controller design will result in final controllers which are 

more robust to operational uncertainties. The suitability of the 

PCM to efficiently produce this probabilistic representation in 

large power systems is also presented for the first time. The 

proposed methodologies are not limited by controller type and 

structure, nor by the uncertainties considered, and as such they 

are widely applicable to power system stability studies.   

II.  PROBABILISTIC CONTROLLER TUNING METHODOLOGY 

The locations of electromechanical modes vary as the 

power system operating point changes. Although a controller 

may be designed for the nominal operating point of a network, 

real operating conditions will be defined by factors including 

load variation, renewable generation availability and energy 

market fluctuations. It therefore makes more sense to use 

probabilistic mode locations (rather than the mode locations at 

the nominal operating point) when designing a damping 

controller. This will ensure that the controller action is 

targeted at the most likely frequencies associated with the 

modes to be damped. 

A. Determining Probabilistic Mode Locations 

Due to the nonlinearities of power systems, the most 

probable modal locations do not necessarily correspond to the 

most probable operating conditions. The probability 

distributions for the open loop locations of the 

electromechanical modes must be determined using the Monte 

Carlo approach and many system linearizations. Alternatively, 

more efficient computational techniques can be used, such as 

Latin hypercube or low discrepancy sequence based sampling, 

or the Probabilistic Collocation Method as will be later 

demonstrated within this paper. 

Any distribution can be utilized to generate the operating 

conditions for a power network (including conditional 

distributions or historical information). In this study, generator 

power output and load demand are assumed to be normally 

distributed, wind speed follows a Weibull distribution, and 

VSC-MTDC converter station power injection follows a 

uniform distribution. Operating conditions are selected by 

drawing operating points from the specified distributions. 

Only feasible operating conditions (with converged load flows 

and stable open loop modes) are considered. At this stage, 

optimal power flow (OPF) was not considered, however the 

concept presented is still valid and could be implemented with 

OPF if desired. 

Once the probability distributions for each electro-

mechanical mode have been established, probabilistic modes 

can be defined as the most probable values for the electro-

mechanical modes of interest. The peak values from the 

probability distributions for both the real and imaginary parts 

of the modes are selected. The use of these probabilistic 

modes during the controller design, rather than the nominal 

modes, leads to a controller which is more robust to the 

changing operating conditions of the power system. 

B. Probabilistic System Representation 

The linearized state space power system model described 

by (1) and (2) can be rewritten in the modal canonical form of 

(3) and (4). 

 x Ax Bu  (1) 

y Cx  (2) 

M M
 z A z B u  (3) 

M
y C z  (4) 

Where the modal variables z directly correspond to the 

system modes 
i
  (where 1i n  and the power system is 

represented by an n
th

 order model). The modal variables z are 

mapped to the standard state variables x as z Mx where M 

is the modal transform matrix. M is obtained using Real Schur 

Decomposition and relates to the matrix of right eigenvectors 

  as 1 M . The modal state matrices are defined as 
1

M

A MAM , 
M
B MB , and 

1

M

C CM . 

The modal transition matrix 
M

A  is diagonal with the 

structure (5). 
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where 1 rn
   are the purely real eigenvalues; 

r
n  is the 

number of real eigenvalues; the 2x2 block diagonals 
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c c

n n

n n
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  
       

 correspond to the complex pairs of 

eigenvalues 
i i i

j   ; and 
c

n  is the number of complex 

eigenvalue pairs. 

With the system represented in a diagonal form, the mode 

locations for the nominal system can be modified to represent 

the probabilistic modes which have already been determined. 

Values in 
M

A  are altered for the critical electromechanical 

modes of interest (to create 
prob

M
A ) and the control design can 

be completed on a probabilistic system representation.  

III.  THE PROBABILISTIC COLLOCATION METHOD 

The probabilistic collocation method (PCM) can be used to 

approximate the statistical distribution of a system output 

based upon a set of known uncertainties. This is completed by 

using a much smaller number of system simulations than is 

required for traditional Monte Carlo (MC) approaches. Other 

methods for efficient sampling of the search space include the 

use of low discrepancy sequences,  sequences and Latin 

hypercube techniques [8-10]. However these techniques 

evenly sample the whole search space, whereas the PCM 

specifically focuses upon those regions most likely to occur. 

Methods such as two point estimates can also provide accurate 

results with very few full samples [11], however they are 
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constrained by their presumption that the output of interest 

will follow a predetermined distribution (typically Normal). 

This is not necessarily the case with practical non-linear power 

systems, and is not a constraint on the PCM approach. 

More fully explained in [12], the approximated response Ŷ  

is modeled as a polynomial function of the uncertain 

parameter set  ,  as shown in (6). 

 Ŷ g   (6) 

The PCM function can be used as a computationally 

inexpensive substitute for running a full linearization of the 

power system during standard MC based uncertainty studies. 

Central to the PCM is the selection of the representative 

polynomial function, and the specification of the points at 

which full linearization is required (to gather the data and 

build the model).  

A. PCM polynomial model function 

The model function  g   is formed as a sum of products 

of orthogonal polynomials which represent the known 

probability distributions of the uncertain system parameters, 

weighted by a set of coefficients K. These orthogonal 

polynomials can take a standard form (such as the Hermite 

polynomials used to represent normally distributed 

parameters) or can be derived for any distribution using 

recursive methods [13]. 

B. Full linearization operating point selection 

PCM model functions can be of varying order, dependent 

upon the order of the polynomials that are used in the sum of 

products. As higher order models, or a greater number of 

uncertainties, are considered the possible number of 

combinations of orthogonal polynomials increases. This 

requires the calculation of an increased number of coefficients.  

Full system linearizations are run at specified operating 

points to provide the data from which the set of coefficients K 

can be deduced. These collocation points are selected by 

taking inspiration from the Gaussian quadrature technique of 

estimating integrals [13]. The roots of higher order 

polynomials are chosen as the points at which to perform full 

linearizations and collocation points with the greatest 

probability of occurring are selected. The accuracy of the 

PCM model is concentrated in the regions defined by the pdfs 

as most likely to occur. For large systems this requires 

calculating all possible permutations of operating conditions 

and ordering by their probability of occurrence. These are then 

iterated through (performing load flow to ensure convergence) 

in order to determine which operating conditions are selected; 

such that the matrix inversion required to calculate K is 

possible. 

IV.  TEST SYSTEM 

The proposed methodology for improving damping 

controller robustness has been tested on a modified version of 

the New England Test System and New York Power System 

(NETS NYPS), shown in Fig. 1. This test network is 

commonly used for studies into power oscillations and 

displays multiple inter-area modes. System analysis and 

simulations are all performed within the MATLAB/Simulink 

environment making use of modified MATPOWER [14] 

functions to perform initial load flows. 

A. AC System Details 

Two AC inter-area ties have been removed and a meshed 

VSC-MTDC grid has been installed between the NYPS, G14 

and G16 areas. Generators G1-8 are under slow DC excitation 

(IEEE-DC1A) only, whilst G9 is equipped with a fast acting 

static exciter (IEEE-ST1A) and a Power System Stabilizer 

(PSS). The remaining generators (G10-16) are under constant 

manual excitation. All generators are represented by full sixth 

order models. Loads are modeled as constant impedance. Full 

system details, generator and exciter parameters are given in 

[15] with PSS settings for G9 taken from [16]. 

B. VSC-MTDC System Details 

The included six-converter VSC-MTDC network 

represents a possible interconnection between multiple areas 

of an AC network. Locations for MTDC nodes 1-5 have been 

selected as the same buses which previously fed AC inter-area 

ties. Each converter station is modeled as an injection of active 

and reactive power [17]. When interested in electromechanical 

 
Fig. 1.  Modified NETS NYPS test network, including multi-terminal VSC-HVDC grid and large offshore wind farm.   
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oscillations with typical frequencies of 0.2-2 Hz, the very fast 

dynamics associated with the semiconductor device switching 

operations can be neglected [17]. Converter station controllers 

are included as described in [7] and DC lines are modeled as 

presented in [18]. 

There is some work surrounding the use of voltage-droop 

characteristics with MTDC grids, for example [4], demon-

strating its importance during transient events or outage 

scenarios. As the studies performed here are concerned with 

post-disturbance modulation of active power flow in order to 

damp AC system oscillations, the simpler use of a slack DC 

bus is used (the slack converter VSC-1 regulating voltage).  

Note that further work is currently being carried out into 

the application of MTDC-based POD control incorporating the 

voltage-droop characteristics that would be seen in practical 

installations. Possible implementations include the direct 

overlay of the POD scheme with the droop characteristic, and 

a switch in control mode following the identification of AC 

oscillations in need of supplementary damping.  

Nominal values of active power injection for VSC-HVDC 

converters 2-5 are set based upon previous AC tie line power 

flows. Active power flow injection at VSC-6 is determined by 

the output of the connected wind farm. Reactive power 

injection at the MTDC nodes 1-5 is regulated at zero. At VSC-

6, reactive power is supplied by the converter as required to 

support the wind farm. At each MTDC node regulating power 

flow excluding the wind farm (i.e. VSC converters 2-5) there 

exists a supplementary input signal ref
P which can be used to 

modulate the active power reference set points for stabilizing 

purposes. Modulation is limited to 10% of rated capacity, with 

all MTDC line parameters and converter controller settings are 

provided in the Appendix.  

C. Wind Farm System Details 

In addition to the VSC-MTDC grid, a further modification 

has been made to the network with the inclusion of a large 

wind farm. This 300 MW farm is connected to the AC 

network through the VSC-MTDC grid (as is shown in Fig. 1). 

For the purpose of the studies performed, it has been 

assumed that power output from the wind farm is constant at 

for each investigated operating point. VSC-6, to which the 

wind farm in connected, operates with frequency-voltage 

control. It assumed that the converter is able to maintain a 

constant AC voltage such that all power produced by the wind 

farm is transferred to the VSC-MTDC system. This 

assumption holds provided the MTDC system voltage does 

not deviate considerably. With the focus on the post 

disturbance stabilization of the main AC system and controller 

robustness to variable operating conditions (and not the fast 

transient performance of the VSC-MTDC grid), this is an 

acceptable simplification. 

D. POD Controller Design 

Small signal analysis of the full test system as described (at 

the nominal operating point) reveals four electromechanical 

modes with low frequency and poor damping factors 

 5%  [16], detailed in Table 1. All other electro-

mechanical modes are adequately damped and require no 

further control action. The ref
P  inputs to the VSC-MTDC 

grid are to be used to attempt to improve the system stability 

via a supplementary POD controller. 

The probabilistic controller tuning approach proposed here 

can be used with any WAMS controller design based upon a 

linearized model representation of the power system. Within 

this study, a WAMS based controller is designed using the 

Modal Linear Quadratic Gaussian structure (detailed in [7, 

19]). This controller structure allows targeted action on 

specified modes, leaving those which are already adequately 

damped unaffected. All four low frequency modes are 

targeted. Following a modal observability study of the entire 

network, optimal controller inputs are selected as active power 

flows through the lines highlighted in Fig. 1. Controller 

outputs are the ref
P  signals to MTDC nodes 2-5. 

TABLE 1 

LOW FREQUENCY ELECTROMECHANICAL MODE DETAILS FOR TEST SYSTEM 

 Eigenvalue (pu) Damping Factor (%) Frequency (Hz) 

 j     2 2       2   

Mode 1 −0.071 ± j1.588 4.47 0.253 

Mode 2 −0.127 ± j2.744 4.61 0.427 

Mode 3 −0.167 ± j3.917 4.27 0.623 

Mode 4 −0.237 ± j4.900 4.81 0.780 

Signal delays of 375 ms are assumed for system 

measurements (modeled as 2
nd

 order Padé approximations 

during system linearization). Controller output signals are 

assumed to have negligibly small delays (i.e. hard-wired fiber 

connections laid to all MTDC converter stations). It is 

sometimes necessary to reduce the order of the plant model 

when using LQG controller designs to avoid ill conditioning 

when solving high order matrix Riccati equations. As this 

problem was not experienced, controller design was carried 

out using the full linearized system model. 

The nominal controller was designed using fine tuning of 

weighting functions to first achieve equal target damping 

factors of 20% to Modes 1-4. Weights were then reduced 

uniformly to limit the gain of the largest singular value of the 

transfer function of the Linear Quadratic Regulator (LQR) to 

6dB to improve robust stability properties [20]. The final 

controller order was then reduced to lower the online compu-

tational burden (from 235
th

 to 32
nd

 order). The bound on final 

controller order was set to limit low frequency mode damping 

factor degradation to no more than 5%. Final nominal closed 

loop damping factors for Modes 1-4 were 12.3%, 13.1%, 

11.3% and 11.8% respectively. 

 
Fig. 2.  Example transient performance of nominal controller at the 

nominal operating point following a three-phase self-clearing 100 ms fault 

within the NYPS area of the test network. 
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As can be seen from the transient plot of Fig. 2, these are 

sufficient to stabilize the network oscillations quickly 

following disturbances. Similar results could be achieved 

using alternative controller designs. 

V.  APPLICATION OF PROBABILISTIC CONTROLLER TUNING 

The details relating to the application of the probabilistic 

tuning methodology on the outlined test system are presented.  

A. Variation in System Operating Conditions 

Generators are modeled as having non-varying voltage and 

normally distributed active power output. System loads are 

modeled with constant power factor and normally distributed 

active power demand. The given nominal set point is assumed 

to represent 80% of maximum loading, with full loading 

signifying a 3   increase from the mean values  .  

VSC-MTDC power injection values are set as uniformly 

distributed around the nominal values. Nodes 2-5 have 

nominal values of power injection into the AC grid of -600, 

400, 350, and 500 MW respectively. The uniform distribution 

is limited to ±100 MW at each node. 

The generation capacity of the wind farm is determined by 

the wind speed v. For these studies, wind speed is a random 

variable following a Weibull distribution, as described by (7). 

     1

0,

0 0.

kk
vk v e v

f v

v


 

   
 

 (7) 

Where k is the shape parameter and   is the scale 

parameter (commonly signified by   but called   here to 

avoid confusion). In this study, values for these parameters 

were sourced from [21] with 2.2k   and 11.1  , implying 

a mean wind speed of 9.83v  ms
-1

. The wind farm consists 

of 150 Vestas V-80 2 MW turbines [22]. The total power 

produced is calculated by randomly selecting a wind speed, 

feeding this value into the power curve for the V-80 turbine, 

and then finally scaling the individual turbine output to the 

capacity of the whole wind farm, neglecting wake effects. 

Probabilistic studies are performed using 5000 system 

linearizations and a standard MC approach, drawing operating 

parameters from the distributions outlined. 

B. Identification of Electromechanical Modes 

The robustness of the designed supplementary POD 

controllers was assessed through small disturbance analysis. 

This required the use of classification tools to ensure accurate 

identification of the critical system modes. A Naïve Bayes 

classifier [23] was used to identify the necessary modes based 

upon their damping, frequency and system state modal  

participation factors.  

VI.  RESULTS OF PROBABILISTIC CONTROLLER TUNING 

A. Performance of Nominal Controller 

The nominal controller (designed as described in Section 

IV.D for the power system operating at the nominal operating 

point) was tested to assess the closed loop robustness to 

varying operating conditions. Fig. 3 shows the closed loop 

locations of the four low frequency modes with the nominal 

controller installed.  

Modes 1 and 4 maintain damping factors greater than 5% 

for all operating conditions. This is also true for the vast 

majority of operating conditions for Mode 3, which sees the 

damping factor drop below 5% in just 30 of the 5000 

simulations; i.e.  5% 0.6%P    . Mode 2, however, does 

not have such satisfactory performance with  5%P     

27.1%. Although modes 1, 3, and 4 may be considered 

suitably damped, Mode 2 is not, and the probabilistic tuning 

method may improve the controller performance. 

 
Fig. 3. Closed loop low frequency mode locations with nominal controller. 

Dashed lines show damping factors of 0%, 5% and 15%. 

B. Nominal Open Loop Modes 

By assessing the position of the nominal open loop low 

frequency modes, we can begin to judge whether the use of 

probabilistic tuning will have an impact on the controller’s 
robustness. Fig. 4 displays the spread of open loop mode 

positions seen due to the variation in operating conditions. 

 
Fig. 4. Open loop low frequency mode locations, including the nominal 

and probabilistic values. 

 

Also shown in Fig. 4 are the nominal open loop mode 

positions and the probabilistic mode locations based on the 

modal spread observed. It can be seen that the nominal mode 

locations are not always representative of the probabilistic 

locations. It is clear that the greatest disparity between the two 

is for Mode 2 (which displays the poorest closed loop 

performance). Use of the probabilistic values should improve 

the controller’s robust performance with respect to the 

damping of Mode 2. This is performed in the sequel to 

demonstrate the benefits of this probabilistic system 

representation. 

This critical mode spread is dependent on the variation in 

operating conditions, and variation between the probabilistic 

and nominal mode locations could be much greater than 

shown in Fig. 4. This disparity is also clearly dependent on the 

designation of the nominal operating point. 
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C. Performance of the Probabilistic Controller 

The process of designing the controller was completed once 

more using the probabilistic values for Mode 2:  2Mode

prob
 

0.121 2.96j  (obtained as described in Section II.A). Again, 

the target damping was set at 20% per mode, the LQR singular 

value gain limited to 6dB, and the final controller reduced to 

32
nd

 order. This probabilistic controller was then reassessed 

against the full range of defined operating conditions.  

Fig. 5 presents a box and whisker plot of the damping 

factors with the nominal controller and the probabilistic 

controller installed. The boxes represent the 25
th

 and 75
th
 

percentiles; the bar within the box shows the median; the 

whiskers show the minimum and maximum values; and the 

notches on the whiskers display the 2.5
th

 and 97.5
th

 percentiles 

(i.e. 95% of the data is contained within these notches). 

It can be seen that through using the probabilistic mode 

locations, the robustness of the controller has been improved. 

The damping factor for Mode 3 is largely unchanged, and that 

of Mode 4 is slightly reduced but still always greater than 

10%. Mode 1 also experiences slightly reduced damping but 

 5%P    is still equal to zero. These slight changes are due 

to variations in the weighting factors used during controller 

synthesis. The main area of interest is Mode 2, which has 

improved considerably such that  5% 12.3%P    . This 

improvement is due to the use of the probabilistic mode 

location for Mode 2.  

 
Fig. 5.  Damping factors for the low frequency modes with the nominal 

and probabilistic controllers installed. 
 

It should be noted that achieving  5% 0P    for each 

mode is not the direct aim of this study (although it would be 

desirable for optimal system performance with respect to 

oscillation damping). Rather, the benefits of using a 

probabilistic approach to controller tuning are illustrated. The 

simple use of the probabilistic modal location for a poorly 

damped Mode 2, ascertained through simulation of the known 

variation in operating conditions, results in a more robust 

damping controller. 

VII.  APPLYING THE PROBABILISTIC COLLOCATION METHOD 

It can be seen that use of the probabilistic location for 

Mode 2 resulted in a more robust controller performance with 

respect to the damping of that mode. The PCM can be used in 

order to determine these probabilistic parameters without the 

need for thousands of full system linearizations (which could 

take a prohibitively long time to perform).  

The variable network parameters identified in Section V.A 

constitute a set of 55 uncertainties  (15 generators, 35 loads, 

4 VSC-MTDC nodes, and 1 wind generation unit). The 

number of coefficients c (and therefore the required number of 

full system linearizations) required to produce a PCM model 

of order o for a system with m uncertain parameters is based 

on the binomial coefficients, and given by (8). This increases 

rapidly with increasing m, therefore it is beneficial to 

minimize the number of modeled uncertainties. 

m o
c

m

 
  
 

 (8) 

A. Reduction in uncertainties using eigenvalue sensitivity 

The sensitivity of the eigenvalue of interest 
i
  (in this case 

Mode 2) to each uncertain parameter j
 

 
is established 

using the rank index 
i j

r  as shown in (9). This rank is derived 

from one suggested in [12], though not implemented, for use 

when applying the PCM to large power systems. 

j

i j

j

i

j

r






 





 (9) 

Where 
j  and 

j  are respectively the mean and 

standard deviation of the uncertain parameter j
 .  

Ranks were calculated for the complete set of 55 uncertain 

parameters for Mode 2. These rank values can be used directly 

to assess which parameters should be included in the reduced 

set of uncertainties. Quick analysis was performed to identify 

the parameters with an 
i j

r  
value greater than double the next 

highest rank value. Such a sharp decline in 
i j

r  
value 

between two parameters suggests a significant reduction in 

parameter importance. Such an interval occurs only between 

parameters 1–2, 10–11, 52–53, and 54–55. As more than one 

parameter will likely be needed, and modeling 52 or more is 

impractical with the PCM, the results indicate that the top ten 

ranked parameters provide a suitable approximation.  

The set of reduced parameters is as follows:  ,red
wind 

41L ,  42L ,  15G ,  VSC-4,  VSC-3,  14G ,  18L ,  16G ,  50L   

(presented in ranked order). The remaining parameters are 

modeled as constant at their nominal operating points during 

production of the PCM model. 

B. Discontinuities in wind farm power 

The power curve for a Vestas V-80 turbine [22] displays 

discontinuities which must be taken into consideration when 

using the PCM. The wind speed was the top ranked 

uncertainty and is certainly required as a PCM model input. 

The wind farm was considered as operating in three distinct 

regions: (i) at wind speeds when no power is produced ( 4v 
ms

-1
, or 25v  ms

-1
), (ii) at wind speeds when power output is 

curtailed at the maximum wind farm capacity of 300 MW       
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(18 25v   ms
-1

), and (iii) at wind speeds when power output 

is variable ( 4 18v   ms
-1

). For each of these operational 

regions, a separate PCM model was produced. The correct 

model was then selected during the later MC runs of the PCM 

function based upon the randomly selected wind speed. 

C. PCM-based Probabilistic Modal Estimation 

The PCM was used to estimate the damping σ and 

frequency ω of Mode 2. This was completed using the reduced 

uncertain parameter set red
 

established previously. The 

PCM-based probabilistic modal location (from the produced 

distributions for σ and ω) was determined as 
2Mode

PCM
 

0.122 2.89j  .  

Shown in Fig. 6 are the probabilistic values for σ and ω of 

Mode 2 as determined when modeling increasing numbers of 

uncertain parameters (according to their established rank). 

This has been produced to demonstrate the validity of using 

the top ten ranked parameters; once ten uncertain parameters 

are used there is little further variation in the probabilistic 

modal values. As only the most probable values are required 

for the modal tuning (the peaks of the produced distributions), 

accuracy can be sacrificed at the tails of the distributions and 

second order PCM models are sufficient. If the previously 

calculated 
i j

r  
values do not directly suggest a suitable 

number of uncertain parameters to include in red  then it is 

possible to create models of increasing order until little 

variation in the probabilistic mode values is seen. This will 

require more computational time, on the other hand  producing 

low order models with small numbers of parameters requires 

significantly fewer full linearizations and significant  savings 

are still seen compared with the traditional MC-based 

approach. 

 
Fig. 6.  PCM-based probabilistic Mode 2 values with varying numbers of 

modeled uncertain parameters. 
 

By assessing the PCM-based probabilistic values for Mode 

2 it can be seen that mode location is closer to that of the MC-

based probabilistic location than the nominal location is. It can 

be seen that there is still some discrepancy between the 

frequency values, due to the approximations of the PCM 

approach. 

D. Performance of the PCM-based Probabilistic Controller 

The damping control was synthesized once more, using the 

PCM-based probabilistic location of Mode 2 as a demon-

stration of the proposed methodology. As before, the target 

damping was set at 20% per mode, singular value gain was 

limited to 6dB and the final controller was reduced to 32
nd

 

order. The PCM-based probabilistic controller was assessed 

against the full range of system conditions. 

 
Fig. 7.  Damping factors for the low frequency modes with the MC-based 

and PCM-based probabilistic controllers installed. 
 

A comparison of the damping factors seen for the low 

frequency modes with the MC-based and PCM-based 

probabilistic controllers installed is presented in Fig. 7. It is 

clear that the two controllers perform very similarly, with only 

slight reduction in the damping of Mode 2. Analysis reveals 

that  5% 16.1%P     which is slightly increased from 

12.3% seen with the MC-based probabilistic controller. 

However, this is still a large improvement over the standard 

nominal controller. The risk of poor damping for all low 

frequency modes with all designed controllers is summarized 

in Table 2. 
TABLE 2 

RISK OF POOR DAMPING FOR LOW FREQUENCY MODES 

Controller 
Risk of Poor Damping,  P ζ < 5%  

Mode 1 Mode 2 Mode 3 Mode 4 

Nominal 0% 27.1% 0.60% 0% 

MC-based Probabilistic 0% 12.3% 1.08% 0% 

PCM-based Probabilistic 0% 16.1% 0.96% 0% 

Both probabilistic controller lead to a marked reduction in 

the risk of poor damping for Mode 2 compared with the 

nominal controller. Also, they do cause a significant change in 

the damping of the other modes, specifically Mode 3 for 

which  5%P    remains roughly equal to 1%. 

The system response to a three phase fault within the NYPS 

region of the network cleared with the removal of an AC 

transmission line is illustrated in Fig. 8. It can be seen that the 

MC and PCM-based probabilistic controllers perform almost 

identically and stabilize the system much faster than when no 

POD modulation is used. 

 

Fig. 8.  Real power response of AC Tie 1 to a three phase fault within the 

NYPS region cleared by removing the faulted AC transmission line. 
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E. Computational savings using the PCM 

It has been clearly demonstrated that simply using a 

probabilistic representation of the system (particularly for 

Modes displaying poor closed loop damping) can result in 

improved controller robustness. However, the necessity to 

perform a large number of full system linearizations may 

prove prohibitive for large systems. The PCM method has 

been exploited to significantly reduce the number of full 

linearizations required.  

Parameter ranking via eigenvalue sensitivity requires 1m  

linearizations for a network with m uncertain parameters (a 

change to each parameter value in turn, and the nominal case 

for comparison). The number of full simulations required 

when building each of the three PCM models required for this 

network (based upon the wind turbine operational region) is 

given by (9). The total time taken to produce the probabilistic 

values for Mode 2 using the PCM is detailed in Table 3. All 

times quoted are based upon simulations performed on a PC 

with 2.66 GHz quad core CPU and 4 GB RAM.   

TABLE 3 

PROCESS TIMES FOR THE PROBABILISTIC COLLOCATION METHOD 

Process Time Taken (s) 

Eigenvalue sensitivity analysis  

(56 full linearizations) 
190.3 

Identification of operating conditions 

for PCM model 
46.2 

Full system linearization  

(176 full linearizations) 
604.2 

5000 MC runs with model function 1.0 

Total 841.7 

The total time taken (841.7 s, roughly 14 minutes) is just 

4.8% of the time taken to perform the full MC-based method 

where 5000 linearizations take roughly 17,660 s (almost 5 

hours). The PCM can therefore allow quick assessment of the 

probabilistic modal locations with minimal loss of accuracy to 

enable more robust damping controller design. 

Details for the different controllers are presented in Table 

4. The nominal controller, designed using just one given 

operating condition, requires the least computational effort but 

clearly results in the worst system performance. The additional 

time and effort required in order to improve the final closed 

loop controller performance is clearly evident. When such 

controllers are required, assessment must be made as to 

whether the increased design effort can be afforded. 

TABLE 4 

DETAILS FOR VARYING CONTROLLER DESIGNS 

Controller Time Taken (s) Mode 2  P ζ < 5%  

Nominal 3.1 27.1% 

PCM-based Probabilistic 841.7 16.1% 

MC-based Probabilistic 17,660 12.3% 

It has been previously shown in [24] that the PCM is an 

effective tool for the rapid assessment of modal distributions. 

The combination of fast controller design coupled with 

efficient testing may facilitate the evaluation of a much greater 

number of controllers of varying design for a large variety of 

system conditions or contingency situations than would be 

possible using standard numerical approaches. This in turn, 

would lead to the selection of the most robust controllers and 

would ensure good practical performance. 

VIII.  CONCLUSIONS 

This paper presented a novel probabilistic WAMS-based 

POD controller tuning method which can be applied to mixed 

AC/DC networks with a large number of uncertainties. The   

proposed methodology can be used to improve the robustness 

of a POD controller with respect to operational uncertainty 

when compared with a similar controller designed at the 

nominal operating point. 

The Probabilistic Collocation Method has been used as an 

efficient tool to capture the probabilistic values of critical 

system eigenvalues which were then used to design POD 

controller. This resulted in over 95% computational time 

savings compared to a traditional Monte Carlo approach. The 

efficiency of the proposed technique has been demonstrated 

using a test network representative of future power systems – 

a multi-area test network incorporating a six-node VSC-

MTDC grid with connected stochastic wind generation.  

The approaches and methodologies illustrated within this 

paper are not limited by the controller structure, controller 

synthesis technique, nor the uncertainties considered. They 

could be implemented with any WAMS-based POD controller 

design which is based on a linearized power system model and 

with any number and type of considered uncertainties. As 

such, the proposed techniques are widely applicable.  

Investigations using other controller designs nevertheless, 

would be useful in order to establish the extent to which the 

observed improvement in system performance is dependent on 

the controller structure. Potential candidates for study include 

H∞ designs which are optimized for controller robustness [15] 

and Model Predictive Control which can incorporate the 

practical operating limits of the converters [25]. 

The proposed probabilistic system representation 

established within this paper provides an efficient means of 

designing damping controllers which demonstrate greater 

robustness in uncertain power systems than if conventional 

deterministic approaches were used. It should be pointed out 

however, that this methodology cannot guarantee strict 

controller performance in all possible cases. Conventional, 

deterministic controller design procedures should be followed 

as required in order to guarantee a particular system response 

for particular operating conditions which are of concern.  

APPENDIX: VSC-MTDC GRID & CONTROLLER DATA 

All data provided is based upon a 100 MW HVDC base 

(with 500base

DC
V  kV). 

VSC-MTDC Converter Capacitance (nodes 1-5) [pu]: 

 0.275, 0.1875, 0.1625, 0.2625, 0.1375, 0.0750
MTDC

C 
VSC-MTDC Controller Parameters: 

20Vdc

P
K  , 200Vdc

I
K  , 50P

I
K  , 20Q

I
K   
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VSC-MTDC Line Data: 

Line From To R [pu] L [pu] 

1 1 2 0.01 42.0 10  

2 1 4 0.007 41.4 10  

3 1 5 0.005 41.0 10  

4 2 3 0.005 41.0 10  

5 3 4 0.008 41.6 10  

6 4 5 0.006 41.2 10  

7 3 6 0.001 41.2 10  

Converter stations cause active power flow losses of 1%. 
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