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Tuning of a Neuro-Fuzzy
Controller by Genetic Algorithm

Teo Lian Seng, Marzuki Bin Khalid,Member, IEEE, and Rubiyah Yusof,Member, IEEE

Abstract—Due to their powerful optimization property, genetic
algorithms (GA’s) are currently being investigated for the devel-
opment of adaptive or self-tuning fuzzy logic control systems. This
paper presents a neuro-fuzzy logic controller (NFLC) where all of
its parameters can be tuned simultaneously by GA. The structure
of the controller is based on the radial basis function neural
network (RBF) with Gaussian membership functions. The NFLC
tuned by GA can somewhat eliminate laborious design steps such
as manual tuning of the membership functions and selection of
the fuzzy rules. The GA implementation incorporates dynamic
crossover and mutation probabilistic rates for faster convergence.
A flexible position coding strategy of the NFLC parameters is also
implemented to obtain near optimal solutions. The performance
of the proposed controller is compared with a conventional fuzzy
controller and a PID controller tuned by GA. Simulation results
show that the proposed controller offers encouraging advantages
and has better performance.

Index Terms—Auto-tuning, dynamic crossover, genetic algo-
rithms, neuro-fuzzy, radial basis functions.

I. INTRODUCTION

FUZZY logic control systems, which have the capability of
transforming linguistic information and expert knowledge

into control signals [1], [2], are currently being used in a wide
variety of engineering applications [3]–[7]. The simplicity
of designing these fuzzy logic systems has been the main
advantage of their successful implementation over traditional
approaches such as optimal and adaptive control techniques.
Despite the advantages of the conventional fuzzy logic con-
troller (FLC) over traditional approaches, there remain a
number of drawbacks in the design stages. Even though
rules can be developed for many control applications, they
need to be set up through expert observation of the process.
The complexity in developing these rules increases with the
complexity of the process. FLC’s also consist of a number of
parameters that are needed to be selected and configured in
prior, such as selection of scaling factors, configuration of the
center and width of the membership functions, and selection
of the appropriate fuzzy control rules.

Due to their learning capability, artificial neural networks
are being sought in the development of neuro-fuzzy controllers
or adaptive FLC’s. Berenji [8] developed a FLC that is capable
of learning as well as tuning of its parameters by using neural
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networks trained through a reinforcement learning method.
Jang [9] developed a self-learning FLC based on a neural
network trained by temporal back-propagation. Leeet al. [10]
proposed a self-organizing fuzzified basis function based on
the competitive learning scheme.

A more recent technique in implementing adaptive or self-
tuning FLC’s is by using genetic algorithms (GA’s). Karr
and Gentry [11], [12] applied GA in the tuning of fuzzy
membership functions which was applied to a pH control
process and a cart-pole balancing system. Kimet al. [13] used
a similar method, however, with different shapes of fuzzy
membership functions applied to different processes. Varsek
et al. [14] used GA’s to tune FLC in three phases: learning
of basic control rules, rules compression, and fine tuning.
Hwang and Thomson [15] used GA’s to search for optimal
fuzzy control rules with prior fixed membership functions.
Hu et al. [16] showed how cell-map information can be
incorporated with GA for tuning output variable parameters
of the Takagi–Sugeno type of FLC. While Homaifar and
McCormick [17] optimized a FLC which is applied to a
number of applications, however, the width of the membership
functions and output fuzzy variables are already predefined.

In the above applications, there are just too many parameters
involved in the development of the FLC’s, which if all of
them are encoded, will result in rather long strings, and thus
will increase the complexity of the problem. In some of the
above applications, GA is used in tuning the fuzzy controller
parameters on a stage by stage basis. However, partial or
stage by stage optimization of the FLC parameters and control
rules restrict the searching spaces of GA, thus causing higher
possibility of partial or sub-optimal solutions. As each of
the design stages of the FLC may not be independent, it is
important to consider and optimize them simultaneously.

There have been efforts where tuning of the FLC parameters
are being done simultaneously by GA. Lee and Takagi [18]
proposed a method of determining the parameters of a Tak-
agi–Sugeno type of FLC, which used chromosomes of 2880-bit
length strings. In another development, Shimojimaet al. [19]
used GA to tune a type of RBF based fuzzy model, with only
three fuzzy memberships for each fuzzy variable. However,
the fuzzy system was used to model a mathematical function,
and was not implemented as a controller.

By using a FLC based on the RBF neural networks, which
we labeled as NFLC, this paper proposed a simultaneous
tuning strategy of all of its parameters by GA, without the need
to perform partial or sequential optimization. The RBF neural
network which forms the basis of the NFLC [20]–[22], is used
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as the fuzzy reasoning mechanism. All the Gaussian input
membership functions and the weights of the NFLC are tuned
by the GA. By using this NFLC structure, no fuzzy output
membership functions and fuzzy control rules are needed to be
defined. Instead, the weights are being optimized to determine
the appropriate control action for each of the fuzzy control
conditions.

Unlike in [19], where each fuzzy membership function
consists of three parameters, in this paper, the Gaussian
functions are chosen as they are characterized by only two
parameters, thus, enabling more fuzzy memberships to be
encoded in a specific length of chromosome. In tuning the
NFLC for function learning or modeling purposes, the GA
objective function is rather straight forward, i.e., to minimize
the error between the actual data and fuzzy model output
[19]. However, if the fuzzy system is applied as a controller,
the GA objective function needs to be defined differently.
Several forms of objective functions are formulated in this
paper which are applied to three different control systems. The
proposed NFLC structure takes less parameters as compared
to a conventional FLC [2] or the Takagi–Sugeno type of FLC
[18]. This resulted in a shorter coded string which allows GA
to search more efficiently.

The GA is implemented using dynamic crossover and
mutation probability rates for better exploitation of the op-
timal NFLC parameters [23], [24]. Furthermore, a flexible
position coding strategy for the fuzzy membership functions
is introduced to configure the fuzzy membership partitions
in the corresponding universes of discourse. The proposed
methodology is then applied and tested on three different
plants: an open loop unstable nonminimum phase plant, a
nonlinear plant, and a car parking mechanism. All of the
initial GA populations are randomized, which implies that
minimum heuristic control knowledge is used. The appropriate
NFLC parameters evolved accordingly and are tuned gradually
throughout the GA iterations.

This paper has been organized as follows; first, the imple-
mentation of a simplified fuzzy logic control algorithm based
on the RBF neural network structure, which forms the basis
of the proposed NFLC, is discussed. This is followed by a
brief introduction to GA. The implementation of the proposed
algorithm which involves coding of the controller parameters,
the optimization process and selection of fitness function are
next discussed. The proposed methodology which is applied to
three different systems are detailed in the sections that follow.
The performance of the proposed NFLC is then compared to
a PID controller tuned by GA and also a conventional FLC.

II. DESCRIPTION OF THENEURO-FUZZY CONTROLLER

This section discusses the formulation of the NFLC, which
implements a simplified fuzzy logic control algorithm based
on the radial basis function neural network [10], [20], [25].
The RBF neural network is usually used to approximate a
continuous linear or nonlinear function mapping. Its structural
and computational detail can be referred in [26] and [27].
The structure of the multi-input and multi-output NFLC is
shown as in Fig. 1. The input layer accepts the system state

Fig. 1. The architecture of the NFLC based on the RBF neural network.

feedback ( ) (input vector), and the
fuzzy inferencing is processed at the hidden layer. The strength
of the control action for each of the fuzzy rules is given by the
interconnected weights between the hidden and the output lay-
ers. The output layer implements the normalization operation
to produce the control signals ( ). The
RBF structure can be used to implement the fuzzy control
rules which are written as

IF and and

THEN and and (1)

where is the singleton defined control action for theth
control rule of the th output variable.

In order to further visualize this concept, consider a NFLC
implemented using this structure, which has two input vari-
ables, namely the error () and the change of the error
( ). Each of these variables takes five Gaussian type of
fuzzy membership functions that are labeled as positive big
(PB), positive small (PS), zero (Z), negative small (NS), and
negative big (NB). Each of the membership functions has two
parameters, i.e., the center and width of the Gaussian functions.
The multivariate Gaussian can also be viewed as the product
of a single-variate Gaussian function. It performs a conjunctive
operation in the “premise” part of the fuzzy rules in the hidden
layer. Fig. 2 shows the rule base matrix of the corresponding
fuzzy basis units at the hidden layer of the controller. Each of
the kernel squares represents one control rule condition. Thus,
the number of the hidden nodes for this network is exactly
equal to the number of fuzzy control rules. The output from
these units is the matching degree or inferred result () of the
particular fuzzy control rules.

Basically, fuzzy logic control involves three main stages:
fuzzification, inferencing, and defuzzification. This fuzzy in-
ference mechanism can be further simplified to as only pattern
matching and weights averaging, thereby, eliminating the
procedures of fuzzification and defuzzification [20], [25]. The
first operation deals with the IF part of the fuzzy control rules;
it determines the matching degree of the current input to the
condition of each of the fuzzy control rules. Some examples of
the matching degree computation methods are proposed in [20]
and [25], however, a different approach is used in this paper.
By characterizing the fuzzy input membership functions with
only two parameters ( and ), and using the Gaussian
membership functions, the matching formula can be written
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Fig. 2. The fuzzy basis function at the hidden layer.

Fig. 3. Computation of the output value of the NFLC.

as follows:

for to (2)

where is the total number of fuzzy rules. and
denote the center and the width ofth input variable’s
membership assigned to theth control rules, respectively.
While is the norm operator presented as either Euclidean,
Hamming, Maximum, etc., the matching degree process is
simply an operation that returns the matching level, [0,1]
between the inputs and the rule pattern for theth rule. A
matching degree of “1” means that a full match occurs to that
rule, while a small indicates poor matching between the
input pattern and the particular rule pattern [25].

The weights are then averaged to obtain the control action
of each output variable. Thus for theth controller output,

can be computed by normalizing the weights as follows:

(3)

Fig. 3 shows graphically how such computation is carried
out. It can be viewed as the modified center of gravity
defuzzification strategy. The algorithm, can be understood as
a modification of the maximum membership decision scheme,
where the global center is calculated by the center of gravity
algorithm. The controller output is a crisp value that can
be readily applied to the system. GA is then implemented as
an optimization algorithm to tune all the parameters of this
NFLC, which is discussed in the next section.

III. D ESIGN OF THENEURO-FUZZY CONTROLLER BY GA

A. Genetic Algorithm

Genetic algorithm (GA) is a random search technique that
imitates natural evolution with Darwinian survival of the fittest
approach. GA’s perform on the coding of the parameters and
not on the exact parameters, therefore, it does not depend on
the continuity of the parameter nor the existence of derivatives
of the functions as needed in some conventional optimiza-
tion algorithms. The coding method allows GA’s to handle
multiparameters or multimodel type of optimization problems
easily, which is rather difficult or impossible to be treated by
classical optimization methods.

The population strategy enables GA to search the near opti-
mal solutions from various parts and directions within a search
space simultaneously. Therefore, it can avoid converging to the
local minimum or maximum points better. GA processes each
chromosome independently and make it highly adaptable for
parallel processing. It needs no more than only the relative
fitness of the chromosomes, thus, it is rather suitable to be
applied to systems that are ill-defined. GA’s can also work
well for nondeterministic systems or systems that can only be
partially modeled. GA’s use random choice and probabilistic
decision to guide the search, where the population improves
toward near optimal points from generation to generation.

GA’s consist of three basic operations: reproduction,
crossover, and mutation. Reproduction is the process where
members of the population reproduced according to the
relative fitness of the individuals, where the chromosomes
with higher fitness have higher probabilities of having more
copies in the coming generation. There are a number of
selection schemes available for reproduction, such as “roulette
wheel,” “tournament scheme,” “ranking scheme,” etc. [28],
[29]. Crossover in GA occurs when the selected chromosomes
exchange partially their information of the genes, i.e., part
of the string is interchanged within two selected candidates.
Mutation is the occasionally alteration of states at a particular
string position. Mutation is essentially needed in some cases
where reproduction and crossover alone are unable to offer the
global optimal solution. It serves as an insurance policy which
would recover the loss of a particular piece of information.
Further discussion on GA’s can be obtained in [28] and [29].

B. Tuning of the NFLC Parameters by GA

This section discusses how the proposed NFLC is formu-
lated by using the GA approach, where all the parameters
of the NFLC are initially randomized, then being tuned and
optimized simultaneously by GA.

1) Coding Strategy of the NFLC Parameters:In this pa-
per, the NFLC as shown in Fig. 1 is configured to have two
inputs ( , ) and one output (), which is the controlled
variable. Each of the Gaussian membership functions has a
center ( ) and the width ( ) for the inputs

and , respectively. In the following experiments,
each of the input fuzzy variables is quantified into five
membership functions, therefore, resulting in 20 parameters.
Our initial investigations showed that increasing the number
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Fig. 4. A functional block diagram showing the GA optimization process.

of membership functions does not significantly improve the
experimental results. Furthermore, it increases the complexity
of the GA searching process. On the other hand, reducing
the number of membership functions, however, does have an
effect on the accuracy of the problems. Thus, the membership
functions were chosen judiciously. With these fuzzy input
membership functions, there are 25 fuzzy radial units () at
the hidden layer, where, 25 weights () are needed to connect
the hidden units to the output node, given as ,

, , . Thus, a total of 45
parameters (

) are needed to be tuned by the GA, which is much
less than the parameters of a conventional FLC and also the
Takagi–Sugeno FLC when configured in the same manner.

As GA’s deal with coded parameters, all the NFLC parame-
ters that need to be tuned must be encoded into a finite length
of string. The linear mapping method [28], [29] is used for
this purpose, which can be expressed as follows:

(4)

where is the actual value of theth parameter and is
the integer represented by a-bit string gene. and

are user-defined upper and lower limits of the gene,
respectively. The encoded genes are concatenated to form a
complete chromosome. Each of the parameters is encoded into
8-bit strings, resulted in a complete chromosome of 360 bits.
The coded parameters of the NFLC are arranged as shown
in the following equation to form the chromosome of the
population, as shown in (5) at the bottom of the page.

It can be observed that Gene 1 to Gene 10 is allocated to
the sub-chromosome of the first controller input () with the
centers of membership functions (Gene 1, 3, 5, 7, 9) and the
corresponding membership widths (Gene 2, 4, 6, 8, 10) at the
antecedent position. Gene 11 to Gene 20 are assigned in a
similar way for the second controller input ().

Fig. 5. The dynamic crossover and mutation probability rates.

In this paper, the flexible position coding strategy is applied
to improve the diversity of possible input spaces partition. The
order of the center-width pair genes in the sub-chromosome is
not fixed following the order of the corresponding membership
functions in the universe of discourse. Each time when the
genes are decoded for fitness evaluation, the fuzzy member-
ships are rearranged in an ascending manner in its universe
of discourse based on the center of the membership functions.
The respective weight ( ) is then assigned to the respective
control rule condition of “IF AND )”
as given in (5).

2) Optimization by GA:To describe the GA optimization
process, consider the functional block diagram as shown in
Fig. 4. At the beginning of the process, the initial populations
comprise a set of chromosomes that are scattered all over the
search space. The initial population may be randomly gener-
ated or may be partly supplied by the user. However, in all
our experiments, the population consists of 200 chromosomes
which are all randomized initially. Thus, the use of heuristic
knowledge of the controller is minimized.

The assignment of the fitness in GA serves as a guidance
to lead the search toward the optimal solution. After each of
the chromosomes is evaluated and associated with a fitness,

gene

chromosome sub-chromosome of sub-chromosome of sub-chromosome of weights

parameter (5)
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(a) (b)

(c)

Fig. 6. Results of tuning of the NFLC by GA for the unstable nonminimum phase plant: (a) membership functions for error, (b) membership functions
for rate of change of error, and (c) the weights representing the control actions.

Fig. 7. Response of the open-loop unstable nonminimum phase plant using
the GA tuned NFLC.

the current population undergoes the reproduction process
to create the next generation of population. The “roulette
wheel” selection scheme is used to determine the members
of the new generation population [28]. After the new group of
population is built, the mating pool is formed and the crossover
is carried out. This is then followed by the mutation operation.
Generally, after these three operations, the overall fitness of the
population improves. Each of the population generated then
goes through a series of evaluation, reproduction, crossover
and mutation, and the procedure is repeated until the termi-
nation condition is reached. After the evolution process, the
final generation of population consists of highly fit strings that
provide optimal or near optimal solutions.

In the evaluation routine for control purposes, one chro-
mosome is taken and decoded to the actual value of the
parameters. These sets of controller parameters are then used
to control the system where it undergoes a series of track-
ing response of multistep reference setpoints. The use of a
multistep reference signal is to excite the different states of

Fig. 8. Response of the open-loop unstable nonminimum phase plant using
the GA tuned PID controller.

the system, to enable the evaluation to cover a wider system
operating range. Based on the various states of the control
system, the performance of the controller is calculated by
using a predefined cost function. GA is then used to tune the
controller parameters to minimize the cost function.

3) Initialization of the GA Parameters:Dynamic crossover
and mutation probability rates are used in the GA operation,
as they provide faster convergence when compared to constant
probability rates [23]. Fig. 5 shows the crossover and mutation
rates that are changed dynamically in the evolution process.
The crossover rate is set high at the beginning of the generation
and decreases exponentially during the generations. At the
beginning of the GA iterations, the randomized initial GA
population is diverse, i.e., pieces of good solution are scattered
throughout the search space. As the crossover operator can put
together the small pieces [29], it is set to be relatively high at
the beginning of the iteration. Over the iterations, these pieces
would then be assembled, i.e., the population converged to
smaller sections in the search space. Mutation is the operation
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(a) (b)

(c)

Fig. 9. Results of tuning of the NFLC by GA for the nonlinear plant: (a) membership functions for error, (b) membership functions for rate of change
of error, and (c) the weights representing the control actions.

(a) (b)

(c) (d)

Fig. 10. Manually tuned conventional FLC for the nonlinear plant: (a) membership functions for input variable error, (b) membership functions for input
variable rate of change of error, (c) output membership functions for control signal, and (d) the FAM of the configured fuzzy control rules.

used to further exploit the improved solution in the established
region of the current best solution. This accounts for the
increment of binary mutation as the iterations proceeded. Note
that, in early generations as the members of the population are
very distinct, mutation is not really needed, and kept almost to
zero. This technique is applied as it helps the convergence of
the GA without much loss of solution optimality as reported
in [23] and [24], such that the consistency of obtaining the
final solution is always maintained.

The proposed tuning of the NFLC involved 200 chromo-
somes which are all initially randomized. The Gray–Code
transformation method is applied as it can enhance the GA
searching engine [29]. Apart from that, the elitist strategy is
employed to the selection scheme, which means the fittest
chromosome has one copy directly in the new generation.
In addition, a generation gap of 0.9 is used during the

reproduction operation which means 90% of the members in
the new population are determined by the selection scheme
employed, and the remaining 10% is selected uniformly from
the previous generation. This strategy helps to prevent prema-
ture convergence of the population. A two-point crossover is
applied in exchanging the gene information.

The proposed NFLC tuned by GA is tested on three dif-
ferent plants: a nonminimum and open loop unstable plant,
a nonlinear plant, and a car parking mechanism. Each of
the experiments used different GA objective functions or
performance indices. The performance index () is related
to fitness ( ) using the following relationship:

(6)

where is the fitness for the parameter set,is the perfor-
mance index, and is the constant that affects the performance
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Fig. 11. Response of the nonlinear system using the NFLC tuned by GA.

Fig. 12. Response of the nonlinear system using the conventional FLC.

curve. is a nonnegative constant and appropriately chosen so
that will not be too small, i.e., becomes insignificant due to
the large value of . The experiments are simulated on a 133
MHz Pentium IBM-compatible personal computer with 16 MB
of RAM. The GA software is mainly based on the GENESIS
Version 5.0 package with some improved features as described.
It runs under Borland C++ Version 3.1 environment. By using
these facilities, each of the experiments takes roughly three
hours for the GA process to converge.

IV. SIMULATION RESULTS

A. Application to an Unstable Plant

In this application, consider a nonminimum phase plant
having an open loop unstable pole with the following transfer
function:

(7)

The transfer function is discretized with a sampling period
of 0.01 s. The discrete transfer function resulted in having two
nonminimum zeros and one unstable pole.

Fig. 13. The car parking mechanism and its system dynamics.

The choice of the fitness function or performance index is
dependent on the type of response that are desired for the
particular plant. Since the central objective of the control
system is to minimize the error between the actual plant
response and the set-point, the performance index,is chosen
as follows:

(8)

where is the system’s error at theth sampling instant.
The error is taken as the difference between the setpoint or
reference signal and the actual system response.

All of the parameters of the controller were normalized in
the range of 1 to 1, and the controller output is limited
within 5 to 5 V. At the beginning of the GA iterations,
the overall fitness is improved drastically from one generation
to another. Fig. 6(a) shows the membership functions of the
input fuzzy variables tuned by the GA after convergence. The
weights tuned by the GA are given in the table in Fig. 6(b).
It performed well as shown in Fig. 7.

The performance of the NFLC is compared to a positional-
type PID controller. As the plant is rather complex, initially,
the Ziegler–Nichols tuning method [30] is used, and this is
followed by manual fine-tuning. However, it is still difficult
to obtain satisfactory performance. In order to improve the
performance, GA is used to tuned the PID controller, which is
performed under the same control environment as applied in
the GA tuning of NFLC. Furthermore, the performance index
in (8) is also used in tuning the PID controller. The three
discrete PID parameters, proportional gain, integration gain

, and derivative gain given by GA are 1.2, 0.0013,
and 4.1, respectively, in which its response is shown as in
Fig. 8. Comparing both of these results, even though the same
performance index is used for both cases, it can be observed
that the NFLC has shorter settling time and lower overshoot
when compared to the GA tuned PID controller.

B. Application to a Nonlinear Plant

Due to their nonlinear properties, fuzzy controllers are
known to be capable of regulating nonlinear processes, how-
ever, it is rather difficult to construct and tune the fuzzy
membership functions and rules for such purpose even by
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(a) (b)

(c)

Fig. 14. Results of tuning of the NFLC by GA for the parking mechanism: (a) membership functions forx-axis error, (b) membership functions for
car angle, and (c) the weights representing the steering anger to be control.

using expert knowledge. In this experiment, the NFLC is
configured to control a nonlinear plant which is given by the
following discrete-time plant dynamics:

(9)

The nonlinearity and nonminimum phase dynamics of the
plant make control rather difficult and challenging. The effect
of the nonlinear behavior of the plant is less if the magnitude of
the reference signal is small, however, in our experiments, the
reference signal is set to a large value (near to a magnitude
of 25), which significantly increases the nonlinearity of the
plant. The control signal of the system is limited between5
to 5 V.

In this experiment, the performance index is chosen
differently from the previous experiments which is given as
follows:

(10)

where is the number of oscillations encountered during the
tracking process. This is due to the fact that upon initial
investigation, the response of this nonlinear plant is rather
oscillatory. This situation occurred at the beginning of the
GA iterations where the NFLC was still badly tuned. It can be
observed that by adding such a term in the performance index,
the parameters of the controller were tuned in such a way to
suppress these oscillations, where gradually a smoother output
response was achieved through the GA generations.

After convergence of the GA, the parameters of the NFLC
membership functions and the corresponding weights are
shown in Fig. 9(a) and (b), respectively. Fig. 10(a)–(c) shows
the normalized memberships and fuzzy control rules of the
conventional FLC in controlling the same plant. Figs. 11 and
12 show the tracking ability by the NFLC and the conventional
FLC, respectively. It can be observed that the NFLC performed

well in controlling the system for a wide range of setpoints.
Experiments to control the same system using a classical PID
controller appeared futile. Note that the conventional FLC used
the MIN–MAX inference mechanism and center of gravity
defuzzification strategy [2], [3].

Comparing these two controllers, the conventional FLC
gives better transient response, i.e., faster rise time and lower
overshoot, at the lower range of setpoint as indicated in
Fig. 12. However, when the setpoint changed to a higher value,
where the nonlinear characteristic of the plant became more
significant, the response of conventional FLC deteriorated and
became oscillatory. The oscillation of the system response can
be reduced by retuning the input and output scaling factors.
However, when the sensitivity of the controller is reduced,
the system transient response was quite badly affected. On the
other hand, the NFLC resulted in moderate transient responses
within the operating points. It can be observed that the GA
tuned the NFLC in such a way to compensate between the fast
transient response and the nonlinear oscillatory effects over
a wider range of operating points based on the performance
index defined.

C. Application to an Automatic Car Parking Mechanism

The next application describes an experiment to automate
a car parking mechanism using the proposed methodology,
where the controller is used to decide the steering angle of
the car in the parking process. A car model in Cartesian
coordinates is shown in Fig. 13. The car parking dynamics
which consist of nonlinear characteristics [31] can be described
in Fig. 13, where the car length, m; the constant
velocity of the car, m/s; and sampling period, s.
The Cartesian parking space is defined as
m; car angle , with ; steering angle , with

; with for forward movement
and for backward movement. The parking trials are
performed in a normalized parking space.
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(a) (b)

(c) (d)

Fig. 15. Parking trajectories of the car using the NFLC tuned by GA: (a) for cases when initial car body angle in between�� � �0 � 0, (b) for cases when
initial car angle in between0 � �0 � �, (c) for cases of fixed initial car angle of�0 = �=4, and (d) from initial states (x0 = �0:8; y0 = 2:0; �0 = �=2)
to target position (xt = 0:0; yt = 0) with parking angle (�0 = �=2; �0 = �=2; �0 = �=2), respectively.

The position of the car on the plane is indicated by an ()
coordinate system. The goal of the experiment is to park the
car at a specified parking lot ( ) with desired car angle .
The NFLC is configured to accept two inputs, i.e., the error of

-position, , and the car angle,, and to produce the steering
angle, , as the controller output. Each of the fuzzy input
variables, and , has five fuzzy membership functions in
their respective universes of discourse. The centers and widths
of all the fuzzy membership functions are determined by GA.

In these experiments, enough clearance between the car and
the target parking lot is assumed, thus, the constraint of the
-position coordinate can be ignored.
In the GA evaluation routine, a set of controller parameters

is evaluated by starting the car from several initial positions,
( ) with the initial car angle, . In this experiment, each
set of the parameters went through 12 parking trials from 12 set
of initial states of the car. Each of the parking trials took 300
sampling instants. The performance index of the evaluation
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criteria was formulated as

(11)

where is the error of -position and is the error of
car angle at the th sampling instant, is the total number
of iterations for the th trial ( ), and is the total
number of tests carried out ( ). Throughout the GA
iterative learning process, the target parking lot ( ) was
set at (0, 0) with target backward parking angle ofequals

. In all of these experiments, only backing up of the car,
i.e., backward movements, is allowed.

Fig. 14 shows the Gaussian fuzzy input membership func-
tions for the error of -position ( ), the car angle (), and the
weights between the fuzzy basis units (fuzzy rules) at hidden
layer and the output layer tuned by GA. Fig. 15 shows some
parking capabilities of the NFLC optimized by GA. In all
the parking trials, the car parked precisely into the designated
parking lot. The results of this proposed NFLC in parking the
same car are more superior than that shown in [31].

V. CONCLUSION

This paper has presented a neuro-fuzzy controller based
on the Gaussian type RBF neural network, where all of its
parameters can be simultaneously tuned by GA. By appropriate
coding of the NFLC parameters, it can achieve self-tuning
properties from an initial random state. By employing dynamic
crossover and mutation probability rates, the tuning process
by GA was further improved. The proposed NFLC tuned by
GA has also been tested on three different systems, i.e., an
unstable and nonminimum phase plant, a nonlinear plant, and
in a automated car parking mechanism. In the experiments,
the control performance has been compared to a GA tuned
PID controller and also the conventional FLC. It was observed
that the applied NFLC performed relatively better than the
other two controllers. Compared to the conventional FLC,
the NFLC can somewhat eliminate laborious design steps
such as manual tuning of the scaling factors and membership
functions, and also selection of the fuzzy rules. Though it
can be argued that in the proposed NFLC, before GA can be
used to optimize its parameters, initial encoding and settings
are required, such procedures are somewhat relatively simpler
and more systematic than heuristic. In addition, this paper also
shows the flexibility of the proposed methodology in applying
the different types of performance indices for various types
of control systems. Each of the performance indices used was
rather straightforward and simple, yet resulted in satisfactory
system response. An on-line learning algorithm utilizing the
GA approach and a general regression neural network which
learns the plant characteristic is currently being developed to
provide an on-line self-tuning of the NFLC.
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