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Abstract. System-on-a-chip platform manufacturers are increasingly adding configurable features that
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1. Introduction

System-on-a-chip (SOC) platforms are becoming popular as a means of reducing time-to-
market. A platform is a pre-designed computing system, typically consisting of a micro-
processor, memory hierarchy, coprocessors, peripherals, and possibly field-programmable
logic. An IP (Intellectual Property) platform comes in the form of a hardware description
language. An IC (Integrated Circuit) platform comes in the form of a chip. An IC platform
can be oriented towards prototyping, or can be oriented towards implementation in a final
product. In this paper, we focus on product-oriented IC platforms with configurable
parameters.

Product-oriented IC platforms become cheaper as they are produced in higher volumes.
Thus, platform manufacturers seek to make a platform as general and hence widely applic-
able as possible, without allowing that generality to increase platform size too much to off-
set the volume cost savings. One increasingly common method for making a product
widely applicable is to make its voltage source scalable [4], [7], [9], [14], [15]. A platform user
(i.e., an embedded system designer) can then set the voltage level higher for fast perfor-
mance, or lower for reduced power, depending on the end application’s static or dynamic
requirements.

* This work was supported by an NSF CAREER award (CCR-9876006) and TriMedia Technologies Inc.
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Another method for making a platform widely applicable is to include an N-way set-
associative cache whose ways can optionally be individually shut down. Such shut down
can reduce power per access by reducing power-costly tag comparisons and eliminating
the power necessary to drive a way’s bit-lines and word-lines, at the potential expense of
reduced performance due to more misses. If this reduction is greater than the increase
caused by more cache misses and hence power-costly accesses to the next level of memory,
then overall power is reduced. When power was not an issue, shutting down ways was not
considered since it could only hurt performance. Motorola’s recent version of an MCORE
processor IC has a configurable 4-way set-associative unified cache [12], in which each way
can be disabled, or used for instructions, data, or both. They show that the best configura-
tion depends heavily on the particular running task. Albonesi [1] proposes a 4-way data
cache with ways that can be disabled even during task runtime. They achieve 40% cache
energy savings at a cost of only 2% performance for several examples. Other types of cache
configurability have also been proposed [2], [17]. Furthermore, various cache power-
reduction methods could easily be adapted for use in a configurable cache. For example,
pseudo-set-associative cache [11] reduces access power at the expense of some perfor-
mance loss, by initially searching for a match in the first way of a cache, and only searching
the remaining ways if the first way misses. Introducing such a search strategy as a config-
urable feature to a cache is straightforward.

Both voltage scaling and configurable caches have been shown to provide excellent flex-
ibility for trading off powerand performance. The next logical step is for a platform to have
both a scalable voltage and a configurable cache. The problem then arises of
tuning—configuring of voltage and cache parameters to a particular software task and to
particular power and performance requirements. In the case of a platform executing a
single task, a single configuration may be established during system initialization. In the
case of multiple tasks in a real-time system, each task may cause a reconfiguration of the
platform.

In this paper, we describe an example platform having configurable voltage and cache,
and we show the extensive power and performance tradeoffs possible through tuning of
such a platform. We discuss methods for a platform developer to support tuning of the plat-
form. We describe methods for tuning such a platform to a task under different optimiza-
tion criteria, such as minimizing energy, and minimizing energy-delay.

2. Evaluating Configurable Architectural Features
2.1. Architecture

The platform we modeled is shown in Figure 1. It consists of a MIPS microprocessor core,
a unified instruction/data cache, an on-chip memory, and a DC-to-DC converter. The
microprocessor configures the DC-to-DC converter by setting a register, to scale the input
supply voltage from 3.8 Vdown to 1.0 V, in increments of 0.1 V; the clock frequency is re-
duced accordingly for lower voltages. The cache is unified and 8-way set-associative, and
can be configured by the microprocessor to use 1, 2, 4, or 8 of its ways. We used a 16-byte
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Figure 1. Target architecture.

line size and 64 rows. In [12], the 4-way cache could have each way configured to be
disabled, used for instruction-only, for data-only, or for both instruction and data. For sim-
plicity in this work, our cache’s ways could only be disabled or used for both instruction
and data, but the methods can be applied to cache’s with greater or lesser configurability.

2.2. Evaluation Environment

A platform developer must have some way to evaluate the power and performance impacts
of a platform’s various configurable features, in order to ensure that including such fea-
tures is beneficial. Furthermore, that method of evaluation may become part of a tuning
environment provided to a platform user. One method of evaluation is to measure power
and performance of an application executing on a physical instance of a configurable plat-
form. This method is generally preferred when available, due to the speed and accuracy of
evaluation. When not possible, due to the unavailability of the platform, or the difficulty or
danger of executing the platform in a real environment, then simulation based methods
may be preferred.

We utilized a simulation-based method for this work. Our evaluation environment,
called Platune, includes an executable model of the target architecture depicted
in Figure 1. The simulation model is augmented with power models to allow for measur-
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ing the average power consumption of the chip while running a task. Platune can be
broken down into two components, namely, the simulator module and power analyzer
module. A lengthier description of those components can be found in [8], while a brief
summary is given here.

Platune is a tightly coupled collection of event driven cycle accurate simulation models
of its various components, namely, processor, cache, memory, and busses. The processor
simulator maintains detailed statistics on its internal activity, e.g., fetches, stalls, instruc-
tion execution frequency, register file access, floating-point activity, etc. Such statistics are
used in a post simulation analysis to compute power and performance metrics. The level of
detail of the processor simulator can be compared to the most detailed simulator that is
part of the collection of simulators making up SimpleScalar [5]. The cache simulator of
Platune is a fully parameterized element that operates on a stream of memory references
that is output from the processor. In addition to the standard cache metrics, such as num-
ber of misses (e.g., all those generated by Dinero cache simulator [6]), the Platune cache
simulator maintains additional activity statistics, including the number of tag compari-
sons, the word-line activity and bit-line activity, etc., that are later used for power computa-
tion. Like the cache simulator, the bus simulator in Platune also operates on a stream of
data and memory references that are generated by the processor, cache and memory mod-
ules, and accumulates bus wire bit toggle statistics that are later used for power
computation.

The second component of Platune, the power model and analyzers, operate on the sta-
tistics that are gathered during simulation, as described earlier. For the processor, an in-
struction based power modeling is applied that is based on models developed in [16] and
[3]. For caches, first a structured (physical) model is deduced based on the cache parameter
settings and technology feature size. This allows estimation of bit-line, word-line, compara-
tor, storage transistors, and address decoding logic capacitive loads. Then, switching activ-
ity from the simulation phase is applied to obtain average power consumption of the cache.
Similarly, for each bus segment, a rough layout is inferred that is based on the chip technol-
ogy, chip area, bus widths, and relative size of the various cores, in order to obtain the aver-
age bus capacitance. Then, switching activity from the simulation phase is applied to
obtain average power consumption of various buses.

The entire Platune environment is integrated into a single GUI application. The envi-
ronment bundles in a public-domain C compiler as well as a small runtime kernel for use
by the tasks that are being executed on the platform. Overall accuracy of Platune was ex-
perimentally shown to be 5% to 15% of gate-level measurements [§].

We assume the evaluation environment provides a procedure EvaluatePlatformConfig(V,
A), which can be used by our algorithms. The procedure executes a given task on our ex-
ample platform using the voltage ' and associativity 4 values passed as parameters, and
returns the summary of the evaluation in a data structure Eval, which includes the time,
power, energy, and voltage and associativity settings. The procedure may fire off simula-
tion tools, like those in Platune, SimpleScalar, hardware description language simulators,
or other simulation approaches. It may call higher-level estimators, such as described in
[13]. It may even run the task on real hardware if available. The techniques in the rest of
the paper can be used with any of these evaluation approaches.
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Figure 2. Power vs. time for the g3fax example. The configurable associativity yields additional Pareto points.

2.3.  Power/Performance Tradeoffs and Pareto Points

We now demonstrate the power and performance ranges that are possible through the con-
figurable platform described above. We used three benchmark tasks from the PowerStone
benchmark suite [12]. g3fax is a group three fax decoder (single level image decompres-
sion), jpeg is a 24-bit JPEG image decompression standard, and v42 performs modem en-
coding/decoding. g3fax is roughly 652 lines of C code, jpeg 620 lines, and v42 743 lines.

For each benchmark, we evaluated power and performance for 29 voltage levels ranging
from 1.0 to 3.8 in 0.1 V increments, and all 4 cache way configurations, for a total of 116
configurations. We executed 1,127,387, 4,594,120, and 2,441,985 instructions for the g3fax,
Jjpeg, and v42 examples, respectively, requiring 512, 2088 and 1110 seconds for each config-
uration on Platune.

We plot the data for the g3fax example in Figure 2. The plot uses different symbols for 1,
2,4, and 8-way associativity—note that, for a given associativity, the upper-left points cor-
respond to the higher voltage levels. The maximum values of the axes are limited to im-
prove viewing of the interesting points; thus, not all points appear.

The configurability of the platform provides a tremendous range of power and perfor-
mance, mostly due to the voltage scaling. Table 1 summarizes the power (in Watts) and time
(in seconds) ranges for each example.

The most important feature from the plot to note is that, while voltage certainly has a
larger impact on power and performance, the configurable cache improves the granularity
of possible tradeoffs by providing additional Pareto points. A Pareto point is one for which
no other point has both better power and time. In other words, Pareto points form the
lower-left curve of the plot, and represent the design points of interest. For example, ob-
serve the indicated points in Figure 2. The points for a 4-way cache, shown as triangles, are
connected by a dashed line. Notice that a 2-way cache’s points, shown as squares, represent
several additional Pareto points. Likewise, a 1-way cache’s points, shown as diamonds, rep-
resent even more Pareto points. Thus, if we had a fixed 4-way cache, we would not have
been able to achieve the intermediate points achieved by a 2-way and 1-way cache. Similar
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Table 1. Power and Performance Ranges for the Examples

Example Metric Max Min Ratio
g3fax power 0.2868 0.000195 1471
time 119 0.01625 73
jpeg power 0.3089 0.000206 1500
time 5.834 0.07124 82
v42 power 0.2904 0.000164 1771
time 497 0.03862 129

Table 2. Configurable Cache Increases the Pareto Points and Hence the Power/Performance

Tradeoff Granularity
Example With Fixed 4-way Cache With Configurable Cache
g3fax 29 67
jpeg 29 57
v42 29 50

observations can be made in other regions of the data. We observed similar plots for the
other two examples.

That configurable cache leads to additional Pareto points is not an obvious situation—it
could have occurred that alternative cache configurations may not have yielded interesting
points. For example, notice that an 8-way cache (shown as x’s in the figure) does not provide
any Pareto points in this example.

Table 2 compares the total number of Pareto points obtained for each example with a
configurable cache, to the number obtainable using a fixed 4-way associative cache. The
importance of these additional Pareto points will become quite clear in subsequent sec-
tions. One import feature of Pareto points is that a minimum energy solution, for any given
time constraint, will always be a Pareto point.

To summarize, a platform with both configurable voltage and cache provides for more
tradeoffs between power and performance.

3. Developing a Tuning Environment

Presently, tuning a platform’s configurable features is left to the platform user. Because the
potential configuration space may be very large, platform developers may provide auto-
mated support for tuning. The key to such support is to find the best configuration for a
particular application without evaluating all possible configurations.

To do this, a platform developer may exhaustively evaluate a number of benchmarks,
and find trends in the generated data that can be used to develop algorithms that efficiently
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Figure 3. Time, power and energy data for the three examples.

explore the configuration space for typical tuning criteria desired by a user. We consider
the typical tuning criteria of minimizing energy given some performance constraint, and
of optimizing energy x delay (a.k.a., energy—delay) given a performance constraint, while
commenting on other tuning criteria.

3.1. Optimizing Energy Given Timing Constraints

3.1.1. Problem Overview

A common goal is to minimize the energy required to perform a repetitive task. Energy
minimization can maximize battery lifetime.

Figure 3 provides exhaustive energy data for all three examples. The x-axis represents
the voltage level, and different symbols represent different associativity. The figure also
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Table 3. Close-up Look at Time, Power and Energy Data for the Lowest Voltage for Our Three Examples

Example Metric 1-way 2-way 4-way 8-way
g3fax time 119 1.02 09643 0.962
power 0.0001954 0.0002264 0.0002674 0.0003355
energy 0.0002326 0.000231 0.0002579 0.0003227
jpeg time 5834 4.275 4219 4218
power 0.0002059 0.0002581 0.0002938 0.0003613
v42 time 497 3.141 2435 2.287
power 0,0001637 0.00002077 0.000265 0.0003396
energy 0.0008138 0.0006522 0.0006452 0.0007766

shows power and time data. We can see that, for our platform, minimum energy comes
from setting the voltage as low as possible, and then picking the associativity that best
matches the task. For the minimum voltage of 1.0 Vin each example, we get the time, power
and energy values shown in Table 3.

This data shows that 2-way associativity is best for g3fax and jpeg, while 4-way is best
for v42.

However, note that the lowest energy configuration may exhibit very poor performance.
For example, the jpeg example would require 4.275 seconds to decode an image at 1.0
V—too long for most applications. In fact, we had to omit the 1.0 V points from the time
plots in Figure 3, as they were literally off the chart.

For reasons obvious from these examples, we consider instead the problem of minimizing
energy while also meeting a performance constraint. We assume the constraintis givenasa
maximum time for the task to execute once.

3.1.2. Approximate Overview

Let us begin by developing an approximate algorithm that works well on the generated
data, and will form part of an exact algorithm. Looking at the energy plots, we see that
lower voltage will usually give us lower energy, independent of associativity. This is not al-
ways true—notice that there is some overlap of energy values for adjacent voltage levels.
However, minimizing voltage should suffice in our approximate algorithm. For a given
voltage, we would then want to find the associativity that yields minimum energy for
that voltage.

Note from the time plots that 8-way associative cache always yields the best time at a
given voltage. This is logical; shutting down ways can only increase the number of misses
and thus lengthen time. Thus, our algorithm can begin by finding the minimum feasible
voltage—namely, that voltage at which an 8-way cache satisfies the time constraint. No
lower voltage could possibly satisfy the time constraint. Given the lowest feasible voltage,
the algorithm can try 1, 2 and 4-way caches, in addition to the already-tried 8-way cache, at
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Eval TuneEnergyApprox( )

// Find lowest feasible voltage that can satisfy
// the timing constraint, usingbinary search.
Eval eval_init, eval_best, eval;

float V_low;

eval_init =BinarySearchVoltRange (1.0, 3.8, 8, T);
V_low=-eval_init.V;

// Find lowest energy associativity at thisvoltage
// that still satisfies the timing constraint
eval_best =eval_init;
for each associativity A in (4, 2, 1) loop
eval = EvaluatePlatformConfig(V_low, A);
if (eval.time > T)
exit loop; // smaller assoc. would be slower
if (eval.energy < eval_best.energy)
eval _best =eval;
end loop;

// eval_best is the lowest energy configuration that
// satisfies the timing constraint at the lowest

// feasible voltage

return(eval_best) ;

Figure 4. Approximate algorithm for minimizing energy while satisfying a performance constraint.

that voltage too, to see which associativity gives minimum energy at that voltage while still
meeting the timing constraint. That voltage and associativity would be the best configura-
tion found by the algorithm.

We want to find the lowest feasible voltage in an efficient manner. We could begin with
the lowest voltage, evaluate performance, and then increase voltage by the smallest possi-
ble voltage step and re-evaluate, until we find the first voltage that satisfies the constraint.
Conversely, we could begin with the highest voltage and work down until we fail to meet the
constraint. Either approach has a time complexity linear with respect to the number of
possible voltage steps. In case the number of possible steps is large (such as 128 [4]), this
approach may take too long. However, observe that task runtime strictly decreases as we
increase voltage. Thus, we can view the problem of finding the lowest feasible voltage as a
problem of searching for an item in an ordered list. A fast search method for such a problem
is binary search. Thus, we can step through the voltage levels using a binary search ap-
proach. We start at the middle voltage level (and an 8-way cache) and evaluate—if this con-
figuration meets the timing constraint, we perform binary search on the range of lower
remaining voltages. If it doesn’t, we perform binary search the higher remaining voltages.

Our approximate algorithm, TuneEnergyApprox, is shown in Figure 4. It uses the
EvaluatePlatformConfig routine described in Section 2.2. The algorithm begins by calling
a subroutine BinarySearchVoltRange, which takes as parameters the lowest and highest
voltage settings to examine, the cache associativity, and the time constraint 7. It steps
through voltage settings in a binary search manner, as described above, and makes calls
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to EvaluatePlatformConfig for each setting, returning the evaluation with the lowest feasi-
ble voltage, which is stored in a variable V' _ow. Then, the algorithm enters a loop that eval-
uates associativities lower than §, starting with 4, then 2, then 1, at the voltage V' _low. If a
lower associativity fails to meet the timing constraint, the loop terminates, since even lower
associativities would also fail. At the end of the loop, eval_bestwill be the evaluation having
the lowest energy encountered, and so it is returned by the algorithm.

The algorithm has a worst-case time complexity of log, (Vn) + An,where Vn is the num-
ber of possible voltage settings, and An is the number of possible associativities. For our
platform, ¥z is 29 and A4n is 4, so the worst-case number of evaluations is 5 + 4 = 9. This
can be compared with an exhaustive search of all configurations, having time complexity
of 29 x 4 = 116.

As an example, consider the time plot for g3fax, and suppose we are given a time con-
straint of 0.6 seconds (shown as a dashed line in Figure 3). We see that a voltage setting of
2.2 V,with any of the cache configurations, would satisfy this time constraint, whereas 1.8 V
would be too slow. Given that we have selected a voltage of 2.2 V, we want to pick the asso-
ciativity that gives the best energy. Looking closely at the energy data reveals that 2-way
associativity yields less energy at any voltage level. Thus, we could select a configuration
of 2.2 Vand 2-way associativity.

Note that 2-way associativity provides neither the best time nor the best power at 2.2 V.
Best time will usually be obtained by activating the entire cache, in this case, by using 8-
ways. Best power, in cases where cache power dominates overall power, will be obtained by
shutting down most of the cache, in this case, by using 1-way. Thus, after determining what
voltage level will satisfy timing, we must then look directly at energy.

As another example, consider the time plot for v42, and a time constraint of 0.2 seconds
(shown as a dashed line in Figure 3). A voltage of 1.8 V with 8-way associativity yields a
time of 0.16 seconds, thus satisfying the time constraint. Reducing associativity to 4-way
yields a time of 0.18 seconds, still satisfying the constraint. However, reducing associativity
to 2-way yields a time of 0.23 seconds, which exceeds the constraint. Thus, our algorithm
compares energy values for 4-way and 8-way associativies at 1.8V, and seeing that 4-way is
better, returns a configuration of 1.8 Vand 4-way associativity.

3.1.3. Exact Algorithm

The above algorithm is approximate, because it does not consider configurations using
higher voltage than the minimum feasible voltage. However, for a particular example, a
time-satisfying configuration could exist that uses a higher voltage and a different cache
configuration but has lower energy than the best time-satisfying configuration at a lower
voltage level. This situation can be seen in the energy plots of Figure 3. At the right side of
the g3fax and jpeg plots, for example, we see that 2-way associativity at one voltage level has
lower energy than 8-way associativity at the next lower voltage level. Assume for the mo-
ment that our cache were only configurable as 2 or 8 way, and consider the g3fax time plot
in Figure 3. Though it is hard to see from the plot, at 3.0 V, 2-way has a time of 0.0253 sec-
onds, while 8-way has a time of 0.02385 seconds. Now, suppose the time constraint was
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Eval TuneEnergyExact ()

// Find approximate solution
Eval eval_best, eval;
eval_best = TuneEnergyApprox( );

// Create too-slow list of all associativities less

// than eval_best.A

LIST tooslowlist, newlist;

for (int A= (eval_best.A)/2; A>=1; A=A/2) loop
tooslowlist.Append(eval_best.A);

end loop;

// Look for higher-voltage assocs. with lower energy
float V=eval_best.V;
while (((V=NextHigherVoltage(V)) !=NONE) and
(ltooslowlist.IsEmpty( ))) loop
// Find new assocs. that satisfy time constraint
for each A in tooslowlist loop
eval = EvaluatePlatformConfig(Vv, A);
if (eval.energy > eval_best.energy)
tooslowlist.Remove(A); // already worse
else if (eval.time <=eval_best.T)
newlist.Append(A);
tooslowlist.Remove(A); // gets one chance
else // eval.time > eval_best.T
exit loop; // smaller assocs. can’t satisfy
end loop;

// Check if new assocs. reduce energy
for each A innewlist loop
if (eval.energy < eval best.energy)
eval best = eval;
end loop;
end loop;

return(eval_best) ;

Figure 5. Exact algorithm for minimizing energy while satisfying a performance constraint.

0.024 seconds. The lowest feasible voltage would be 3.0 V, and the best cache configuration
at this voltage would be 8-way, so our algorithm would find this point, having energy
0.002905 J. However, note from the g3fax energy plot that a configuration of 3.4 Vand 2-
way cache actually exhibits lower energy—0.002671 J. Our approximate algorithm would
not detect this point, since it would never check voltages higher than 3.0 V.

We provide an exact algorithm in Figure 5. The algorithm begins by calling the approx-
imate algorithm to find the lowest feasible voltage and the smallest time-satisfying associa-
tivity at that voltage. We refer to the smaller associativities at this voltage level that exceed
the time constraint as the foo-slow list. The algorithm then improves on the approximate
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algorithm—as long as there are higher voltages to examine and the too-slow list is not
empty, the algorithm iterates as follows.

The algorithm increases the voltage to the next higher level, and then calls
EvaluatePlatformConfig with each associativity, highest to lowest, moving to the next step
when an associativity doesn’t meet the timing constraint. If the evaluated energy for this
associativity is greater than the lowest so far, this associativity is removed from the too-
slow list and not considered further—its energy will only get worse at higher voltages, ac-
cording to the trends in Figure 3. Otherwise, if the evaluated time now meets the time
constraint, this associativity is removed from the too-slow list and is added to a new list.
The algorithm then checks the energy for the associativities in the new list, and updates the
best configuration seen so far.

In summary, the idea is to increase to the next higher voltage and catch any smaller as-
sociativities that didn’t satisfy timing at the lower voltage, but do satisfy timing at this high-
er voltage and happen to have lower energy than the best configuration seen so far.

The approximate part of the algorithm again has worst-case time complexity of
log,(Vn) + An.The subsequent iterations in the worst-case may step through Vn voltages
in the exact algorithm’s while loop. The two for loops in that while loop have an amortized
iteration count of O(1) (each item in the too-slow list will be removed only once and then
checked for energy only once). So the complexity of the exact algorithm is
log,(Vn) + An + Vn. However, we rarely expect to see this worst case, since we don’t ex-
pect to have to increase voltage by much before other associativities have higher energy
than the best seen so far, thus causing the too-short list to empty quickly.

Further improvements to the algorithm involve increasing the voltage during the itera-
tive step in larger chunks, backtracking when necessary—one can approach binary search
in this direction too, thus reducing the Vn term closer to log, (¥n).

Recall that we consider only a basic form of configurable cache. Other caches may be
more highly configurable. For example, there may be more ways (e.g., a 32-way cache), and
any number of ways could be shut down rather than just powers of two (e.g., 7 ways may be
active). Ways could be configurable for instructions, data or both. Lookup could be config-
urable as set-associative or pseudo-set-associative. Both our approximate and exact algo-
rithms can be extended for more-configurable caches. The key is to sort the configurations
by their time impact, and to replace occurrences of lists of associativities in our algorithms
by the more general idea of lists of cache configurations. If certain configurations can’t be
sorted relative to one another, they must be treated as a set within the list. Furthermore, if
energy is not strictly increasing at higher voltages for a given configuration, then we would
simply remove the line with the comment “already worse” in the exact algorithm.

3.2. Optimizing for Energy x Time

As mentioned earlier, optimizing for energy only may result in unacceptably slow perfor-
mance. One way to solve this is to provide a time constraint. However, if a hard time con-
straint does not exist, an alternative that has been proposed by other authors is to optimize
the product of energy and time [10]. Optimizing this product seeks to balance the
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Figure 6. Energy x time for the g3fax example.

minimization of energy with the minimization of time, not letting one grow
unacceptably large.

We provide energy x time data in Figure 6 for g3fax. Notice that there is a clear mini-
mum point at 2.2 V. All three examples exhibited a similar curve with a clear minimum,
though at different voltage levels. Furthermore, note that the ordering of associativities is
the same at each voltage level—this was also consistent across examples. Given these
trends, we can develop a straightforward exact algorithm, similar to the approximate algo-
rithm in Figure 4. To find the voltage corresponding to the minimum energy x time, we
perform a modified binary search of the voltage. The modification to binary search is as
follows. Given a voltage range, we find the two middle voltages of the range and evaluate
them. If the slope of the line connecting the resulting energy x time points is positive, then
we must be to the right of the minimum, and thus we consider only the remaining voltage
range less than the middle voltages. If the slope is negative, we must be to the left, and thus
we consider the remaining range greater than the middle voltages. After finding the vol-
tage corresponding to minimum energy x time, we evaluate all possible associativities at
this voltage, and choose the one with minimum energy x time. This algorithm is exact, and
has worst-case time complexity log, (Vn) + 4n.

3.3. Optimizing for Other Situations

There are several other tuning scenarios that can be solved using slight variations to the
above algorithms.

A platform user might, for example, have a time constraint, but want to minimize energy
rather than power. This can be solved using a similar approximate algorithm or exact algo-
rithm as proposed for minimizing energy, substituting power evaluations for
energy evaluations.
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A platform user might instead have a power constraint, and wish to minimize time.
Again, we can use similar techniques. We can use an approximate algorithm that performs
binary search on the voltage range to find the maximum feasible voltage that satisfies the
power constraint, and then pick the best associativity. We can extend this into an exact al-
gorithm by iterating for lower voltages, examining the remaining set of associativities at
each stage.

Several other possible variations to the techniques exist for other optimization goals.

The specific algorithms may differ for different platforms—the key point is that the
platform developer can analyze extensive data to generate fast tuning algorithms, which
may or may not look similar to those presented above. In some cases, exact algorithms
may be too time consuming, so approximate algorithms might be all that is possible.

3.4. Dependency on Input Data

The platform developer should take care to ensure that the power and performance are not
heavily dependent on the input data being utilized by a particular task. If there is such
dependency, the developer should take additional steps to characterize that data (e.g.,
based for example on the density of 1’s in the data), and to adjust tuning accordingly based
on the datasets.

We investigated the dependency on input data for the three benchmarks. We ran each
benchmark using three data sets: one representing actual data (fax data, image data, and
modem data for g3fax, jpeg and v42, respectively), and two being random data. Results are
shown in Figure 7, for 40 different voltage and associativity configurations. The results
show some dependence on input data, but overall trends being rather independent of
the data.

4. Using a Tuning Environment

In this section, we highlight experiments of a user utilizing a tuning environment to mini-
mize energy given a time constraint. We use the same three examples as earlier. We ran the
approximate and exact algorithms on the g3fax, jpeg, and v42 examples, for two different
time constraints (7con) of 0.08 and 0.3 seconds. These constraints were selected to repre-
sent one tight and one loose constraint across all three examples. Table 4 summarizes re-
sults. The number of evaluations (#) performed by our approximate algorithm averaged
just over 7, and just over 9 for our exact algorithm. Thus, for this platform, the exact algo-
rithm can usually be run without requiring excessive time.

The resulting best voltage (') and associativity (4), and corresponding energy (£, in
Joules) are shown for approximate and exact. The percentage difference in energy (E%) is
the same for the two algorithms except for one case. The exact solutions were identical to
the optimal solutions found during the exhaustive search experiments described in
Section 3. The results show that the tuning environment can find the optimal configuration
using less than 10 evaluations, much less than the 116 required for an exhaustive search.
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Table 4. Results of Minimizing Energy While Meeting a Performance Constraint, for Two Different Timing
Constraints, Using the Approximate and Exact Algorithms

Approximate Exact
Ex. Tcon # v A E(mJ) # v A E E%
g3fax 0.08 8 18 2 0.0007 10 18 2 0.0007 0%
0.30 8 12 4 0.0004 10 12 4 0.0004 0%
jpeg 0.08 7 36 2 0.0143 9 36 2 0.0143 0%
0.30 7 19 2 0.0040 9 19 2 0.0040 0%
v42 0.08 6 25 8 0.0044 9 26 4 0.0044 12%
0.30 7 L5 4 0.0015 9 L5 4 0.0015 0%
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Table 5. Data Showing that no Single Cache Configuration is Best for All Three Examples

Example Teon Al A2 A4 A8
g3fax 0.08 11% 0% 10% 28%
030 1% 0% 10% 50%
jpeg 0.08 fail 0% 1% 28%
030 25% 0% 16% 28%
v42 0.08 fail 21% 0% 10%
030 55% 22% 0% 17%
Average fail 7% 8% 27%

A platform user mapping one task to a platform need only run tuning once for that task,
given the particular performance constraint and optimization criteria (e.g., energy, energy
* delay). A user mapping multiple tasks to the same platform may statically allocate per-
formance constraints to each task and then tune each task individually as above for the
given optimization criteria, resulting in a static task schedule and a configuration for each
task. Such runtime reconfiguration must take into account the reconfiguration time, which
should be provided by the platform developer. This time will likely be dominated by the
voltage scaling and clock scaling; the cache configuration takes about the time needed just
to write to the configuration registers.

A platform user should be aware that different versions of the same task can yield very
different performance and power results. The user may want to consider first examining
different task versions before tuning a platform to the selected task. Furthermore, the user
may wish to iterative tune the task to the platform and the platform to the task.

We also conducted experiments to demonstrate the usefulness of having a configurable
cache in addition to configurable voltage, coupled with a tuning environment. A user with-
out a tuning environment may not find the best configuration. In Table 5, we show the en-
ergy that would have been wasted if we had scalable voltage, but we only used a fixed cache
of associativity 1,2, 4 or 8 (41, A2, A4 and 48, respectively), compared to an 8-way cache
whose ways are shut down optimally. In other words, the 11% in the first row of column 41
indicates that the optimal configuration for g3fax with a time constraint of 0.08 seconds
utilized 11% less energy than a 1-way cache. We can see by the 0% in the next column that a
2-way cache was the optimal for that example. Had we merely left all 8-ways on, the aver-
age energy wasted would have been 27%, and as much as 50% in one instance.

An observation that we can make from this data is that no one cache configuration is
best for all the examples. The largest, 8-way, cache is not the most energy efficient for any of
the examples. The smallest, 1-way, cache is also not energy efficient (due to numerous
misses), and even fails to meet the timing constraint in two of the six cases. The 2-way cache
is best for two of the examples, but the 4-way is best for the third example. For other bench-
marks, the 8-way or 1-way caches might be best. Thus, we can see the importance of includ-
ing configurable cache in platforms with configurable voltage, and the importance of a
platform user performing the tuning step properly.
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5. Conclusions

Adding configurability to platforms allows a user to tune a platform to a task’s runtime
profile and to power and performance constraints, making such platforms more widely-
applicable and hence lowering their costs due to volume production savings. Voltage scal-
ing and configurable caches represent two increasingly popular forms of platform config-
urability. We showed that combining these two features extends the meaningful
configuration space considerably. We described methods to adapt a platform to particular
tasks and introduced tuning algorithms for several common situations. Future work in-
cludes considering more highly-configurable caches as well as additional configurable
parameters, and possibly even dynamic determination of reconfiguration values by a
real-time kernel.
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