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Abstract: - This paper proposes a novel adaptive genetic algorithm (AGA) for the multi-objective optimization 

design of a fractional PID controller and applies it to the control of an active magnetic bearing (AMB) system. 

Different from PID controllers with three constants, the fractional PID controller’s parameters are composed of 

proportional constant, integral constant, derivative constant, derivative order and integral order. The fractional 

PID controller is more flexible and gives the possibility of adjusting more carefully the closed-loop system 

characteristics. However, its design becomes more complex than that of conventional integer order PID 

controller. An adaptive genetic algorithm is proposed to design the fractional PID controller. The five 

parameters of the fractional PID controller are selected as parameters to be determined. The dynamic model of 

an AMB system for axial motion is also presented. The simulation results of this AMB system show that a 

fractional PID controller designed via the proposed AGA has good performance. 
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1 Introduction 
The active magnetic bearing (AMB) systems with 

controlled-permanent magnet electromagnets have 

been reported elsewhere. It supports a rotating body 

without direct contact and will be used widely for 

various purposes due to its significant feature. It 

offers a number of practical advantages over 

conventional bearings such as higher speeds, lower 

rotating losses, elimination of the lubrication system 

and lubricant contamination of the process, operation 

at temperature extremes and in vacuum, and longer 

life [1-3]. However, AMB applications often require 

the solution of very interesting and formidable 

control problems because of the inherent instability 

and the nonlinear relationship between the lift force 

and the air gap distance [4, 5]. The controller is one 

of key techniques of AMB system, and its 

performance affects directly whether magnetic 

bearing can work stably and unfailingly or not. Large 

numbers of control strategies have been studied 

inside and outside, e.g., acceleration feedforward 

control [6], sliding control [7], switching control [8], 

LQ control [9], and nonlinear control [10].  

In the past decades, conventional PID controllers 

are widely applied in industry process control. This 

is mainly because PID controllers have simple 

control structures, and are simple to maintain [11, 

12]. However, a conventional PID controller may 

have poor control performance for nonlinear and/or 

complex systems. Since the PID gains are fixed, the 

main disadvantage is that they usually lack in 

flexibility and capability. Recently, many researchers 

revealed that factional order differential equations 

could model various materials more adequately than 

integer order ones. Especially, controllers consisting 

of factional order derivatives and integrals could 

achieve better performance and robustness results 

than those obtained with conventional (integer order) 

controllers [13-15]. Expanding derivatives and 

integrals to fractional orders can control system’s 

response directly and continuously. This great 

capability makes it possible to design more robust 

control system. A fractional PID controller has five 

design parameters. Unfortunately, it is quit difficult 

to optimize the parameter settings of fractional PID 

controllers because AMB systems have serious non-
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linearities and strong couplings. There is a need for 

effective and efficient global optimal approach to 

optimize the parameter settings of robot fractional 

PID controllers automatically. 

Genetic algorithms (GA) have received much 

interest in recent years [16-18]. The basic operating 

principles of GA are based on the principles of 

natural evolution. GA requires little knowledge of 

the problem itself and need not require that the 

search space is differentiable or continuous. 

Therefore, it can solve nonlinear multi-objective 

optimization problems. The basic form of GA is 

simple genetic algorithm (SGA). SGA searches 

global optimum solution possibly, but premature 

convergence and random roam can easily take place 

[16, 19]. On this issue, more efforts should be made 

especially for industrial control applications. 

In this paper, we propose a novel multi-objective 

optimization method for the parameter tuning of 

fractional PID controller based on adaptive genetic 

algorithm (AGA) to solve the control problem of an 

AMB system. By using adaptive crossover and 

mutation operators, the global searching ability and 

the convergence speed of the genetic algorithm are 

significantly improved. With the incorporating of 

both the transient performance index of dynamic 

response and control input into the fitness function 

and properly weighting these terms, the overall 

performance of the fractional PID controller is 

optimized to satisfaction. The performance of the 

optimized fractional PID based on proposed AGA is 

also shown superior to the one base on SGA. 

 

 

2 Analysis of System Dynamic Model 
Fig. 1 shows the schematic of the controlled AMB 

system. It consists of a levitated object (rotor) and a 

pair of opposing E-shaped controlled-PM 

electromagnets with coil winding. An attraction force 

acts between each pair of hybrid magnet and 

extremity of the rotor. The attractive force each 

electromagnet exerts on the levitated object is 

proportional to the square of the current in each coil 

and is inversely dependent on the square of the gap. 

The entire system becomes only one degree of 

freedom of one axis, namely the axial position. 

Assuming a minimum distance to the length of the 

axis, the two attraction forces assure the restriction of 

radial motions of the axis in a stable way. The rotor 

position in axial direction is controlled by a closed 

loop control system, which is composed of a non-

contact type gap sensor, a fractional PID controller 

and an electromagnetic actuator (power amplifier). 

This control is necessary since it is impossible to 

reach the equilibrium only by permanent magnets. 

To model the AMB system, few simplifications 

are assumed: (a) the rotor maintains symmetry 

around the rotating axis, (b) deviation around the 

normal operating point is small, and (c) the magnetic 

axial attraction force and the electromagnetic force 

are linearized around the operation point. The rotor 

with mass m is suspended. Two attraction forces F1 

and F2 are produced by the hybrid magnets. The 

applied voltage E from power amplifier to the coil 

will generate a current i which is necessary only 

when the system is subjected to an external 

disturbance w. Equations governing the dynamics of 

the system are 

 

 

Fig. 1  The schematic of the controlled AMB system. 
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Where y is the distance from gap sensor to bottom of 

rotor. R and N are the resistance and number of turns 

of the coil. 1φ  and 2φ  are the flux of the top and 

bottom air gap, respectively. Under small disturbance, 

the above equation becomes 
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If the weight of rotor is equal to the sum of these 

two attraction forces, the rotor will rotate on specific 

gap. According to (2), the disturbance equation at 

specific gap is calculated as follows  
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We denote 21 φφφ +=  and 21 FFF += . The 

system is linearized at the operation point (y=yo, i=0) 

and described as follows 
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The partial derivatives are calculated from the 

experimental characteristics at the normal 

equilibrium operating point. It can be seen from the 

characteristic roots that the system is unstable. This 

system has to be stabilized by a controller with 

appropriate controller parameters tuning. 

 

 

3 Fractional Order PID Controllers 
Fractional controllers are characterized by 

differential equations that have an integral and/or a 

derivative of fractional-order in the control algorithm. 

These operators are defined by irrational continuous 

transfer functions, in the Laplace domain, or infinite 

dimensional discrete transfer functions, in the Z 

domain. We often encounter evaluation problems in 

the simulations. Therefore, when analyzing fractional 

systems, we usually adopt continuous or discrete 

integer-order approximations of fractional-order 

operators. 

The mathematical definition of a fractional 

derivative and integral has been the subject of several 

different approaches [20, 21]. One commonly used 

definition is given by the Riemann-Liouville 

expression (α>0 and n−1<α<n): 
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where f(t) is the applied function and Γ(x) is the 

Gamma function of x. Another widely used 

definition is given by the Grünwald-Letnikov 

approach (α∈ R): 
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where h is the time increment and [x] means the 

integer part of x. The “memory” effect of these 

operators is demonstrated by (9) and (10), where the 

convolution integral in (9) and the infinite series in 

(10). These definitions reveal the unlimited memory 

of these kinds of operators, ideal for modeling 

hereditary and memory properties in many physical 

systems and materials. 

The most usual way of making use, both in 

simulations and hardware implementations, of 

transfer functions involving fractional powers of s is 

to approximate them with usual (integer order) 

transfer functions with a similar behavior. So as to 

perfectly mimic a fractional transfer function, an 

integer transfer function would have to include an 

infinite number of poles and zeroes. Nevertheless, it 

is possible to obtain reasonable approximations with 

a finite number of zeroes and poles. One of the best-

known approximations is proposed by Manabe and 

Oustaloup, which is called Crone approximation. 

This approximation uses a recursive distribution of N 

poles and N zeros leading to a transfer function as 

follows [22]: 
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The approximation is valid in the frequency 

range ];[ hl ωω . Gain k is adjusted so that both sides 

of (11) shall have unit gain at 1 rad/s. The number of 

poles and zeroes N is chosen beforehand, and the 

good performance of the approximation strongly 

depends thereon. Frequencies of poles and zeroes in 

(14) are given by 
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The case v<0 may be dealt with inverting (11). But if 

1>v , these approximations become unsatisfactory 

[22]. For that reason, it is usual to split fractional 

powers of s as 

 

ββ +== nvsss
nv ,  (20)

 

where Zn∈ and ]1;0[∈β . In this manner only the 

latter term has to be approximated. 

The generalized PID controller Gc(s) has a 

transfer function of the form: 

 

β
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where α and β are the orders of the fractional 

integrator and differentiator, respectively. As shown 

in Fig. 2, the fractional order PI
αDβ

 controller 

generalizes the conventional integer order PID 

controller and expands it from point to plane. The 

constants KP, KI , and KD are correspondingly the 

proportional constant, the integral constant and the 

derivative constant. Clearly, taking (α, β) = {(1, 1), 

(1, 0), (0, 1), (0, 0)} we get the classical {PID, PI, 

PD, P} controllers, respectively. The PI
αDβ

 controller 

is more flexible and gives the possibility of adjusting 

more carefully the closed-loop system characteristics. 
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Fig. 2  PID controllers with fractional order (a) 

traditional PID controllers (b) fractional PID 

controllers. 

 

 

4 AGA-Based Optimal Fractional 

PID Controller Design 
As a mathematical means for optimization, GA can 

naturally be applied to the optimal-tuning of 

fractional PID controllers. The design of fractional 

PID controller could be treated as a multi-objective 

optimization problem, which is to compromise the 

rapidity, stability and accuracy of system control. It 

is difficult for the general adjustment of fractional 

PID parameters to satisfy the overall the performance 

at the same time. Therefore, this paper describes the 

application of GA to the fine-tuning of the 

parameters for fractional PID controllers. The novel 

multi-objective optimization method for parameter 

tuning of fractional PID controller based on adaptive 

genetic algorithm is proposed, which consists of the 

following five steps: 

Step 1: Representation of Parameters   

For most applications of genetic algorithms to 

optimization problems, the real coding technique is 

used to represent a solution to a given problem [23]. 

In real coding implementation, each chromosome is 

encoded as a vector of real numbers, of the same 

lengths as the solution vector. According to control 

objectives, five parameters KP, KI, KD, α, and β of a 

fractional PID controller are required to be designed 

in this research. In this way, the k chromosome of i 

generation could be represented 

as ],,,,[
i
k

i
k

i
k

i
k

i
k

i
k xxxxxX 54321= . Each 

chromosome i
kX  is corresponding to five tuned 

parameters of the fractional PID controller, i.e. 

1kP xK = , 2kI xK = , 3kD xK = , 4kx=α , 

and 5kx=β , where 521 ,,,,maxmin L=≤≤ jxxx jkjj , 

minjx  and maxjx  are the upper and lower limits of 

the jth gene value respectively. 

Step 2: Design of Fitness Function   

To evaluate the controller performance and get the 

satisfied transient dynamic, the fitness function 

includes not only the four main transient 

performance indices, overshoot, rise time, settling 

time and cumulative error, but also the quadratic 

term of control input to avoid that the control energy 

became too big. The fitness function is designed as 
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where e(t) is the system error, u(t) is the controller 

input, rt  is the rise time, σ is the maximal overshoot, 

st  is the settling time with 5% error band, 

54321 ωωωωω ,,,,  are weighting coefficients. For a 

practical fractional PID design issue, one could 

adjust all the weighting coefficients in the fitness 

function based on the specific requests such as 

rapidity, accuracy and stability of the system. For 

example if a system with little overshoot value is 

required, 4ω  would be increased appropriately; if a 

system with fast dynamic responses is required, then 

3ω would be increased appropriately. This research 

has picked the weighting coefficients 

5210.2 ,,,, K== iiω  to cover all the performance 

indices completely. 

Step 3: Selection 

In proportional selection procedure, the selection 

probability of a chromosome is proportional to its 

fitness. This simple scheme exhibits some undesired 

properties. To maintain a reasonable differential 

between relative fitness ratings of chromosomes and 

to prevent a too-rapid takeover by some super 

chromosomes, the exponential ranking fitness 

assignment is selected in fitness calculations of 
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reproduction operator, because its simplicity and 

robustness [23, 24]. The idea is straightforward: Sort 

the population from the best to the worst and assign 

the selection probability of each chromosome 

according to the ranking but not its raw fitness. 

Normalized geometric select is a ranking selection 

function based on the normalized geometric 

distribution, which is utilized in this research. 

Step 4: Crossover 

Crossover used here is single-point method. Setting 

two randomly selected chromosomes at i generation 

as ],,,,[
i
k

i
k

i
k

i
k

i
k

i
k xxxxxX 54321=  and 

],,,,[ i
l

i
l

i
l

i
l

i
l

i
l xxxxxX 54321= , the genetic values at 

the crossover point of these two chromosomes 

are i
kjx  and i

ljx  respectively. Two new chromosomes 

would be created after the crossover operation. The 

genetic values before and after crossover point 

remain the same, while the genetic value of the 

crossover point is 

 

i
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where cr  is the randomly generated constant 

between 0 and 1. Crossover operation is the major 

technique to generate new individual in genetic 

algorithm, and the crossover rate would generally 

pick the larger value. However if the crossover rate is 

picked too large, it might damage the good pattern of 

the population; if the value is too small, then the 

speed to generate the new individual is too slow. 

Furthermore, the less diversity of the population is 

the major cause for the instability and premature of 

GA [19, 25]. One should take measures before the 

diversity of population is getting poor. Therefore this 

paper puts forward the adaptive method which took 

the diversity of the population as the controlled 

variable and also adjusted the individual crossover 

rate based on the fitness value of itself. The adaptive 

crossover rate of an individual is defined as 
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maxf  is the maximal fitness value of the present 

population. avgf  is the average fitness value of the 

present population. cf  is the larger fitness value of 

the two individual who would intersect; ck , 1cp  and 

2cp  are the crossover coefficients, 21 cc pp >  and 

they are the constants between 0 and 1, c the 

crossover amplitude coefficient. 

Step 5: Mutation 

Mutation used here is non-uniform method. Set the 

mutation operation individual 

as ],,,,[
i
k

i
k

i
k

i
k

i
k

i
k xxxxxX 54321= , after the mutation 

operation, the genetic value of the individual which 

is not mutated remains the same, while the gene i
k j

x
′

 

on the mutated one is 
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where mr  is a random number between 0 and 1. 

)( yi ,δ  represents a random number within the range 

of [0, y], which is varying with evaluation generation. 

The expression of )( yi ,δ  is 
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where r is a random number between 0 and 1. i is the 

present evolution generation. G is the set maximal 

evolution generation. b is the coefficient that 

determines the dependency of stochastic disturbance 

on evolution generation i, which is generally 

determined by the experience, one would pick b=2 in 
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this research. Mutation rate has an important effect 

on the parametric optimization. If it is too large, the 

optimization procedure would not converge; if it is 

too small, then the GA might lead to prematurity. In 

the same way, the variation of diversity of the 

population is also the major cause for prematurity of 

GA [19, 25]. One should take measures before the 

diversity of population is getting poor. Therefore this 

paper puts forward the adaptive method which took 

the diversity of the population as the controlled 

variable and also adjusted the individual mutation 

rate based on the fitness value of itself. The adaptive 

mutation rate of an individual is defined as  

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

<+
−

≥+
−=

−−

avgmm
avgavg

m

avgm

ff
m

m
avgavg

m

m

ffp
fff

k

ffep
fff

k

p

avgm
m

1
max

)(

1
max

/)(

/)(

τ

(27)

 

where 
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mf  is the fitness value of the individual that would 

undergo mutation operation. mk , 1mp  and 2mp  are 

the mutation coefficients. 1mp  and 2mp  are the 

constants between 0 and 1, and 21 mm pp > . m is the 

mutation amplitude coefficient. 

 

 

5 Simulations and Discussion 
To demonstrate the feasibility of the proposed 

approach to dynamic systems, the AMB system 

shown in Fig. 1 is used for illustration. Both the 

fractional PID and the conventional PID controllers 

are designed based on the proposed AGA. The 

overall flowchart of fractional PID controllers tuning 

using adaptive genetic algorithm for active magnetic 

bearing system is depicted in Fig. 3. After 20 

generations of genetic operation, the searched 

optimal parameters are shown in Table 1. The 

Simulink module frame of the derived AMB system 

model in (9) with the fractional PID controller is 

depicted in Fig. 4 for simulation. In the simulation,  

βα ,,,, DIP KKK

.genmaxii >

βα ,,,, DIP KKK

 

Fig. 3  The overall flowchart of fractional PID 

controllers tuning using AGA for an AMB system. 

 

 

the goal is to use the proposed approach to tune the 

fractional PID gains in (21) such that the output 

response of the AMB system can be driven within 

the user’s specification. The step responses of rotor 

position from the gap sensor in the AMB system 

using the optimized fractional PID controller and the 

optimized conventional PID controller are shown in 

Fig. 5. It shows that the fractional PID controller has 

remarkably reduced the overshoot and settling time 

compared with the optimized conventional PID 

controller. The fractional PID controller has achieved 

good performances in both transient and steady state 

periods. The fractional PID controller has more 

flexibility and capability than the conventional ones. 

To illustrate how the proposed AGA works well 

than that of the SGA, the variation of the best and 

mean fitness values for both cases is plotted in Fig. 6. 

The population size and the generation size are all 20. 

On comparing the two plots, we observe that the 

mean fitness of the population increases gradually 

for the proposed AGA while it increases rapidly for 

the best SGA. A careful observation of Fig. 6 reveals 

that, in the first 7 generations the mean fitness for the 

SGA increases rapidly, remains rather flat until the 

last generation. The relatively flat zone occurs the 

SGA has yet located and gotten stuck at a locally 
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optimal solution with a fitness of 0.528. In contrast 

with the SGA, the best solution of the proposed AGA 

in each population is being propagated to the 

subsequent generation with a final fitness of 1.272. 

The best fitness is increasing with time. The higher 

fitness value of the proposed AGA indicates that the 

population has remained scattered in the solution 

space and has not gotten stuck at any local optimum. 

Such a simple but general approach, having ability 

for global optimization and with good robustness, is 

effective to overcome some weakness of 

conventional approaches and to be more acceptable 

for industrial practices. 

 

Table 1 The optimal parameters of the fractional PID 

controller and the conventional PID controller based 

on the proposed AGA. 

Parameters 

Controller 

KP KI KD α β 

Conventional PID 3.0956 1.2634 0.0651 1 1 

Fractional PID 5.2193 3.8287 0.0909 0.7270 0.9921

 

Fig. 4  Simulink module frame of the derived AMB 

system. 
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Fig. 5  The step responses of the rotor position from 

the gap sensor in the AMB system using the 

optimized fractional PID controller and the 

optimized conventional PID controller. 
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Fig. 6  Comparison of the best and mean fitness 

values at each generation during optimization 

process (a) the SGA (b) the proposed AGA. 

 

 

6   Conclusions 
This paper has proposed an improved adaptive 

genetic algorithm for the multi-objective 

optimization design of a fractional PID controller 

and applies it to the control of an AMB system. The 

proposed algorithm has better performance of 

convergence speed and better stability in the global 

optimum result. Another merit of the proposed 

method is the way to define the fitness function 

based on the concept of multi-objective optimization. 

This method allows the systematic design of all 

major parameters of a fractional PID controller and 

then enhances the flexibility and capability of the 

PID controller. The simulation results of this AMB 
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system show that a fractional PID controller 

designed via the proposed AGA has good 

performance. 
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