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Introduction 

In the past decades, control theory has gone through major developments. Advanced and intelligent control 
algorithms have been developed. However, the PID-type controller remains the most popular in industry, studies 
even indicate that approximately 90% of all industrial controllers is of the PID-type [19]. Reasons for this are the 
simplicity of this control law and the few tuning parameters. Hundreds of tools, methods and theories are 
available for this purpose. However, finding appropriate parameters for the PID controller is still a difficult task, 
so in practice control engineers still often use trial and error for the tuning process. This literature overview gives 
an impression of a number of the available methods for PID control design, and discusses the (dis)advantages 
and applicability. 



Chapter 1 

Simple plant models 

Although design methods exist that do not use a process model, it is almost inevitable to derive a model or use 
some plant information to achieve satisfying results. Often, in the PID-tuning literature very simple models are 
used. Here, the low-order models most common in the literature are discussed. More sophisticated models can be 
obtained by either first principle modelling, performing FRF measurements, e.g. discussed in [20] or using 
approximate realisation techniques [12], [32]. These methods are not discussed here. 

1 .  Step response models 

The dynamics of a process can also be determined from the response of the process to step inputs. The dynamics 
of a linear system are in principle uniquely given from such a transient response, provided that the system is at 
rest initialiy and the measurement is noise free. in practice, ihese conditions aie not fiilfilled, which limits the 
order of the resulting models. For PID controller tuning, however, simple models are often sufficient. An 
advantage of step response methods is that they are very simple to use, and are intuitively easy to understand. 

1.1.1 Two parameter model 
Ziegler and Nichols [42] recognised that in the process industry, step responses of a large number of processes 
exhibit a step response like that shown in figure 1.1. They called this the process reaction curve, and 
characterised it with two parameters: a and 8. The model of the process is given by a pure integrator and a delay: 

The parameters can be determined graphically, by drawing a line tangent to the point where the slope is 
maximal. The parameter a is determined by the vertical axis intercept of this line, and 8 by the horizontal axis 
intercept. This model has a pure integrator, so it does not catch the steady state value of the process. 



Time [s] 

Figure 1.1: Process reaction curve 

1.1.2 Three parameter model 
A better approximation of the response show in figure 1.1 is obtained by increasing the number of parameters. 
The model [7] 

has three parameters: the static gain K, the time constant 21 and dead time 8. This is the most common model in 
PID tuning literature, and is often called the FOLPD model (First Order Lag Plus Delay). The parameters of the 
model can be determined as shown in figure 1.1. More accurate methods to obtain the model parameters are 
available, for example in Cool [7]. Although the model seems very simple, it is widely used in the process 
industry. Reasons for this are its simplicity and its applicability to many processes. 

1.1.3 Four parameter model 
If the model (1.2) is not accurate enough, a second order model can be used. Cool [7] gives a method to the four 
parameters of the model 

This model is also known as SOLPD (Second Order Lag Plus Delay). The value for TI is calculated as in the 
FOLPD. The values for 8 and T* then are calculated from the relations shown in figure 1.2. The accuracy of the 
fourth parameter T~ is doubtful, so the resulting model should be used with care. 

Figure 1.2: Graphical determination SOLPD 
parameters 



1.1.4 Oscillatory processes 
It should be noted that although the previously discussed models are widely used in practice, they only describe 
overcritically damped processes, which are common in the process industry. For mechanical systems, often the 
step response is undercritically damped, and oscillations occur. Processes with oscillatory step responses as 
shown in figure 1.3 can be approximated by the two-parameter model (1 .I), but this model will not capture the 
oscillations. None of the three- or four-parameter models described above is suitable either. A three-parameter 
model that describes the oscillations is given by the transfer function [9] 

with O < j < i  and 1 0. n" is ihe ~ C i i k  gaiii, so the iiai'ta! frequeiicy, and j the re!ati.ve damping. These 
parameters can be determinec! approximately from the step response as indicated in figure 1.3. First, the period 
of oscillation T, and the decay ratio dare determined. Then, the parameters coo and 5 can be calculated with [2]: 

Time [s] 

Figure 1.3: Step response of an oscillatory process 

1.2 Frequency response measurement 

Some methods do not use a complete model, but are based on knowledge of the response to specific frequencies. 
The idea is that the controller settings can be based on the most critical frequency points for stability. 

1.2.1 Ziegler and Nichols [42] 
The frequency domain method proposed by Ziegler and Nichols [42] is based on experimentally determining the 
point of marginal stability. This point can be found by increasing the proportional gain of the controller, until the 
process becomes marginally stable. The controller gain at this point is called the ultimate gain K,, and the period 
of oscillation is called the ultimate period T,. No explicit model is given, but these two parameters define one 
point in the Nyquist plot. Based on knowledge of this point, controller settings can be calculated. A disadvantage 
of the continuous cycling method is that the system is driven towards instability, which can lead to dangerous 
situations in practice. Further, nothing is known about the course of the Nyquist plot, which may result in a 
stable, but very oscillatory closed loop system. 

1.2.2 Astr~m and ~agglunnd [2] 
An improvement of the Ziegler-Nichols method is given by Astrom and Hagglund [2]. They propose to use a 
relay feedback, as shown in figure 1.4. 



Figure 1.4: Relay feedback 

e 

This nonlinear feedback induces a limit cycle oscillation. The period of this oscillation is T,, and a good estimate 
for the ultimate gain can be calculated from the oscillation amplitude a with: 

The major advantage of using relay feedback is that the system is not driven to instability. Furthermore, 
including hysteresis in the relay and adding integrators offers the possibility to identify different points on the 
Nyquist curve, which gives more information about the course of the Nyquist plot. 

u b Process HP 
d A  Y 

b E >  



Chapter 2 

Tuning methods 

2.1 Controller structure 

In the following, the controller is assumed to have the parallel structure, defined as 

unless stated otherwise. Further, the control setup of figure 2.1 is assumed, with y the process output, n the 
measurement noise, r the reference or setpoint, e the tracking error, d the load disturbance, and u the plant input. 

Figure 2.1: Control configuration 

2.2 Trial and error 

Trial and error is an easy way of tuning a controller, but satisfactory performance is not guaranteed, and it takes 
a lot of time. Often, the response y to a square wave or step r is taken as the indicator of the quality of the 
controller. Overshoot, undershoot and rise time can be taken as performance criteria. An example of such a 
procedure is given in Ellis, [8]. So-called zone-based tuning is used, which means that the low and high 
frequency parts of the controller can be tuned separately, starting with the high frequency part. For a PID- 
controller, this means that first the P-and D-action are tuned and then the I-action. An example of a flowchart 
with steps to follow to tune a PID-controller is given in figure 2.2. 



Zero I- and D-action. Set Kplow. 

4 
Apply square wave reference at about 10% of 
the desired bandwidth. Use large amplitude, 

but avoid saturation. 

L 
Increase resolution 

Or 
Lower T~ 

Raise Kp for approximately 10 % overshoot. + 

T Lower Kp 
Lower TI for 15% overshoot. 

I 

I 

* 
Done 

Reduce noise at source 

Figure 2.2: Flowchart for the tinning procedure of a BID-controller, 
given in Ellis 181. 
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Here, the performance criterion is the overshoot of the step response, which is related to the stability margin of 
the control system. A high stability margin generally leads to low overshoot, and low stability margins to a more 
oscillatory behaviour. This method is easy to use for process operators, since little or no knowledge of the 
controlled process is required. The numerical values in the procedure are rules of thumb, based on experience. 
The disadvantage is that little can be said about the robustness of the system. Further, many iteration steps may 
be needed before the final settings are obtained. 

2.3 Feature based methods 

Many tuning methods are presented in literature that are based on a few features of the process dynamics that are 
easy to obtain experimentally. Typical time-domain features are the parameters of the step response, discussed in 
section 1.1. Typical frequency-domain features are the ultimate gain and period, discussed in section 1.2.1. An 
extensive overview of tuning rules for PI or PID controllers is given in O'Dwyer [26]. 

2.3.1 Ziegler-Nichols step response method (1942) 
In 1942, Ziegler and Nichols presented two classical methods to tune a PID-controller [42]. These methods are 
still widely used, due to their simplicity. In their first method, the controller settings are based on the two 
parameters 8 and a of the process reaction curve of figure 1.1. They based the choice for the controller 
parameters on simulation results for several processes, by adjusting the controller parameters until the response 
showed a decay ratio d of 0.25. A quarter decay corresponds to a relative damping 5=0.21, which they 
considered a good compromise between quick response and adequate stability margins. The proposed Ziegler- 
Nichols settings are shown in table 2-1. 

Controller 
tY Pe 

Table 2-1: Ziegler-Nichols settings for the process reaction curve method 

PID 

I% 

1.2 

a 

TI TD 

2 8 0.5 8 



The advantage of the Ziegler-Nichols method is that the tuning rules are very simple to use. Disadvantages are: 
Further fine tuning is needed. 
Controller settings are aggressive, resulting in large overshoot and oscillatory responses. 
Poor performance for processes with a dominant delay. 
Closed loop very sensitive to parameter variations. 
Parameters of the step response may be hard to determine due to measurement noise. 

2.3.2 Ziegler-Nichols continuous cycling method 
The frequency domain method proposed by Ziegler and Nichols is based on the ultimate gain K,, and the 
ultimzte period T,. The controller settings x e  shown in table 2-2. 

Table 2-2: Ziegler-Nichols settings for the 
continuous cycling method 

A disadvantage of the continuous cycling method is that the system is driven towards instability, which can lead 
to dangerous situations in practice. Further, the resulting closed loop behaviour can be very different, depending 

r -  
Controller type ' Kp 

on the characteristics of the process. 

21 

TJ1.2 
Tu/2 

P 
PI 

PID 

2.3.3 Cohen-Coon (1953) 

TD 

Tu/8 

0.5 Ku 
0.45 Ku 
0.6 Ku 

Cohen and Coon [6] based the controller settings on the three parameters 8, zl and K of the open loop step 
response. The main design criterion is rejection of load disturbances. The method attempts to position closed 
loop poles such that a quarter decay ratio is achieved. Their suggested controller settings are shown in table 2-3. 

Table 2-3: Cohen-Coon settings 

Although one more parameter is used in this method, the results are not much better than with the Ziegler- 

ZD 

8 b ,  - 3 1  
222, +% 

4 2 ,  

llz1 +28 

Controller type 
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PI 

PD 

PID 

- 
Nichols settings, mainly because of the decay ratio being too small, leading to low damped closed-loop systems. 

2.3.4 h r o m  and HIgglund (1985) 
Astrijm and Hiigglund recognised that the Ziegler-Nichols continuous cycling method actually identifies the 
point (-l/Ku, 0) on the Nyquist curve, and moves it to a predefined point. With PID-control, it is possible to 
move a given point on the Nyquist curve to an arbitrary position, see figure 2.3. By increasing the gain, the 
arbitrary point A moves in the direction of G(jw). Changing the I- or D-action moves the point in the orthogonal 
direction. 

Kp 

+ & + e l  

-' 0.9+- 
1 2 [  K 8  

TI 

8[3(k, +%I  

%, +208 

0[322~ +a] 
1 3 ,  +88 



Figure 2.3: Effect of changing the PID parameters shown in the Nyquist plot 

Let o be the frequency that corresponds to A. The frequency response of the controller at o is: 

In the Ziegler-Nichols method, point A is initially the point of marginal stability, located at (-l/K, 0)  with 
frequency %=2flU.  With the settings from table 2-2, it follows that: 

The Ziegler-Nichols method can thus be interpreted as finding controller parameters such that the point where 
the Nyquist curve intersects the negative real axis is moved to -0.6 - 0.28j. This corresponds to a phase advance 
of 25" at mu. The distance a from this point to the critical point is 0.5, which implies that the sensitivity peak 
value Ms is always greater than 2. 
With this interpretation, it is straightforward to generalise the Ziegler-Nichols method, and move an arbitrary 
point A to a predefined position B. A convenient choice for point A is the ultimate point. Point B can be 

determined by a desired gain margin and phase margin, and is written in polar co-ordinates as B = rbei(xwb). 
The controller settings for these points are given in table 2-4. 

Controller type I K, 71 TD 
I I I 

PID 

Table 2-4: h r o m  and HIgglund stability margin based settings for the 
frequency response method 

This method identifies and moves only one point on the Nyquist curve to a desired position. Since the shape of 
the Nyquist curve is unknown, good performance or even stability cannot be guaranteed. This can be improved 
by identifying more points on the Nyquist curve, for example by using the relay based frequency response 
identification. 

2.3.5 Refined Ziegler Nichols (1991) 
Hang et al. [ll] introduce refined Ziegler-Nichols settings, by adding so called setpoint weighting. This is done 
by an extra parameter b in the proportional action of the controller: 



With this parameter, the overshoot can be reduced to acceptable levels, and thus gives good setpoint response. 
This modification actually introduces a feedforward action in the controller, since 

u = K p ( b r -  y )  

= K p ( r -  y ) +  Kp(b-1 ) r  -- 
feedback feedfomard 

Further, they modify the ZN-formulas to account for the normalised dead time, defined as 8/71. 

2.3.6 Mann (2001) 

Mann [22] classifies the FOLPD in three classes: negligible, middle and long normalised dead time W1. Then, 
tuning rules for each case are derived, where a desired level of overshoot can be chosen. The tuning rules are 
rather complex, but are reported to give good results. 

2.4 Analytical methods 

2.4.1 Direct pole placement [20] 
The objective of pole placement is to place the closed loop poles at desired locations. Complete knowledge of 
the transfer function is needed to calculate the appropriate controller settings. Desired closed loop poles are 
specified, and the controller parameters that move the poles to these positions are analytically calculated. The 
number of closed loop poles that can be positioned equals the number of controller parameters, e.g. a PI- 
controller can only position two closed loop poles. For first and second order processes, it is possible to place all 
closed loop poles with a PID controller. When the process is of higher order, this is not possible anymore, and it 
is necessary to make approximations to obtain a f i s t  or second order model. 

2.4.2 Dominant pole design 
With direct pole placement it is attempted to place all closed loop poles. One difficulty with this method is that 
high-order models lead to high-order controllers. Dominant pole design, proposed by Astrom and Hagglund [2], 
is based on placing just a few poles of the closed loop, which are considered dominant for the closed loop 
response. First, it is noted that the behaviour of many closed loop systems is determined by two dominant poles. 
A common configuration of the poles and zeros is shown in figure 2.4, where pl and p2 are the dominant poles. If 
this configuration applies to the controlled system, it is possible to place the dominant poles at desired locations. 
The influence of the other poles and zeros is assumed to be small, which is only valid if their real part is small 
enough. The parameters of the controller are calculated, such that the dominant poles are located at desired pole 
locations, specified by their frequency w, and relative damping 6 as: 

Re 

Figure 2.4: Pole-zero configuration of a simple feedback 
system 

For a PID controller, three closed loop poles can be positioned, so a third pole at -cl,w, is chosen. 

E - 

P' 

p,3 
zl 

- 0 



If the transfer function of the process is known, the parameters of the controller can be computed analytically. 
The controller settings for this method are shown in table 2-5. 

Table 2-5: Controller settings for analytical dominant pole design. A(oo) and B(wo) stand for the real 
and imaginary part of Hp(pl), respectively. 

This method is applicable to higher-order processes, with 5 and wo as the design parameters. Disadvantage is that 
these processes should have the pole-zero configuration of figure 2.4. If this is not the case, a pole far away in 
the left half plane can move towards the right and become a dominating pole, which leads to an unexpected 
response. This is generally prevented by choosing the desired frequency w, not too high. 
Astrom and Hagglund used this method to design controllers for a test batch of processes, representing time 
delay, high order and non-minimum phase behaviour. They optimised the controller settings to achieve a 
minimum sensitivity peak. Then, they plotted normalised controller parameters as a function of the normalised 
process parameters ~ = 0 / ( 0 + ~ ~ )  or K = I / ( K K ~ ) .  By fitting an exponential function through the results, they 
achieved tuning rules valid for processes that fall in the class of test processes. Shen [35] refined these rules by 
optimisation with a genetic algorithm, and Branica [4] developed a least-squares fitting procedure to connect the 
PID parameters to parameters of the FOLPD model. 

2.4.3 Internal Model Control (IMC) 
The IMC procedure [3] uses the process model explicitly in the design of the controller. It is a general design 
method, but results in PID controllers for low order process models. The controller is formulated as: 

where M p  = Hp+Hp-  , and H p + ( s )  includes all non-minimum phase dynamics. H d s )  is a low-pass filter, usually 
chosen as 

A controller of this type cancels the process poles and zeros, and is usually of high order. However, if the order 
of the model is low, the procedure results in a PI or PID controller. For example, if the FOLPD model with a first 
order Pad6 approximation for the time delay is used, the controller becomes: 

which, after some manipulations, gives for the PID parameters 

With this controller, the closed loop becomes 



An advantage of designing PID controllers via IMC is that the parameter ?L represents the trade-off between 
robustness and performance whereas PID has three parameters that do not provide this clear trade-off. IMC can 
give very good setpoint responses, but because of the pole cancellation, the load disturbance response can be 
very sluggish if slow poles are cancelled. Many applications and modifications of the IMC procedure for PID 
design are reported in literature, such as IMC design for unstable and integrating plants and using a MacLaurin 
approximation for the time delay [16], [17]. An interesting modification is done by Skogestad [36], who presents 
simple IMC based tuning rules. 

2.5 Optirnisation based methods 

2.5.1 Minimum optimisation criterion 
Many methods are presented in literature that minimise a certain error criterion [26]. To illustrate these methods, 
the minimum ITAE method is discussed here. ITAE is shorthand for integral of the time weighted absolute error, 
and is defined as: 

The time weighting is used, because the initial error for a step response is always large, and for most setpoint 
following cases it is reasonable to weigh this error less. Assume that the FOLPD model (1.2) is valid, then it is 
possible to mathematically determine the controller settings. A distinction is made between responding to a 
disturbance or responding to a set point. The controller settings that give a minimum ITAE are given in table 2-6. 

Table 2-6: Controller settings for minimum ITAE 1241, [31] 

It should be noted that by optimising with respect to one criterion one should not neglect other constraints. 

2.5.2 LQR optimisation of ISE 
Argelaguet [I] used LQR optimisation to minimise the ISE-criterion, which is the integral of the squared error. 
The model used in this optimisation is the FOLPD model with a first-order Pad6 approximation for the time 
delay. The tuning rules that result from the minimisation are equal to the IMC tuning rules for this model. 

2.5.3 Constrained optimisation 

Panagopoulos [27] rninimises the integrated error IE by maximising the integral gain Kp$, since these variables 
are inversely related for a step load disturbance. This minimisation is done under the constraint that the 
maximum sensitivity Ms does not exceed a desired value. A three dimensional grid with the values for Kp, K ~ T ~  
and K ~ Z D  satisfying this constraint can be drawn, which shows the maximal possible value for K&. Methods to 
numerically obtain the maximum value are also available. This approach guarantees a desired robustness and 
gives good load disturbance response. The setpoint response is tuned by setpoint weighting, discussed in section 
2.3.5. Ingimundarson [13] uses the same method, but uses as robustness constraint the L-norm of the transfer 



from disturbance and measurement noise to process and controller output. Further, a constraint is added such that 
the Nyquist plot has a smooth course without cusps. 

2.5.4 Modulus optimum MO and symmetric optimum SO 1201 
MO and SO are methods based on finding a controller that gives the closed loop frequency response a desired 
shape. The MO criterion requires that the magnitude of the frequency response of the closed loop transfer 
function should be as flat and as close to one as possible for a large bandwidth. Mathematically, the MO criterion 
is formulated as 

for as high n as possib!e. 
If the closed loop transfer is 

n equals three, and for the closed loop transfer 

n equals five. The desired open loop transfer can be calculated with 

The controller should be designed such that HcHp equals the desired open loop function. 
In the SO method, the desired open loop transfer equals 

The Bode phase diagram of this function is symmetrical around the frequency oo. Preitl [30] gives tuning rules 
to obtain this transfer function for integrating first and second order processes, which results in simple relations 
between the process and the controller parameters. 

2.5.5 MOM1 
Vrancic 
[38], [39] presents a method to achieve the MO criterion, by using multiple integration of the step response of 
the process. This is also called the method of moments. This method implicitly uses the process model: 

By integrating the open loop step response to a step change Au, the following areas can be calculated 

where 



Then the controller settings that meet the MO criterion (2.9), are calculated with 

For a PI controller, z~ is set to zero. 
The advantage of this method is that it is not necessary to calculate model parameters, since the controller 
parameters are directly calculated from a measured step response. However, the tuning is only applied to 
overcritically damped processes, which is generally not the case for mechanical systems. 

2.5.6 Kristiansson and Lennartson (2002) 

Kristiansson and Lennartson [15] perform an optimisation by minimising the H,-norm of the disturbance 
sensitivity function under three constraints with respect to stability robustness, control activity and noise 
sensitivity. They performed this procedure for a batch of stable non-oscillating plants and derived tuning rules 
from fitting a curve through the results. This results in simple tuning rules for PI and PID controllers. 

2.5.7 Other optimisation methods 
Pedret [28] gives a framework for optimisation to refine an initial choice of the controller parameters with 
guaranteed stability. Zolotas [43] proposes an optimisation algorithm using Quantitative Feedback Theory 
(QFT), which permits taking into account robustness to model uncertainty. 

2.6 Loop shaping 

The objective of loop shaping, discussed in e.g. [20], is to shape the open loop L such that both S and T satisfy 
certain stability and performance criteria. The sensitivity is important for tracking and disturbance rejection, and 
the complementary sensitivity is important for reducing the influence of measurement noise. Figure 2.5 shows 
typical bounds on S and T. By shaping the open loop transfer L, these bounds have to be satisfied. The resulting 
desired open loop is shown in figure 2.5 c). 

a) Bounds on S b) Bounds on T c) Bounds on L 

Figure 2.5: Bounds on S, T and L 



Typically, the disturbance rejection boundary is low-frequent, the mid-frequency range determines stability and 
performance, and the high-frequency range determines the attenuation of measurement noise. The open loop 
bandwidth is defined as the frequency where IL(jw)l=l. The design task is to tune the controller, such that the 
open loop satisfies the bounds, using the following rules: 

Higher P-action raises the low-frequent part of L, shifts the bandwidth to higher frequencies, but raises the 
peak value of S and T. 

o Higher I-action raises the low-frequent part of L, but raises the peak value of S and T, and reduces the phase 
until its breakpoint frequency. 
Higher D-action raises the high-frequent part, but reduces the peak value of S and T, and adds extra phase. 

These effects are shown in figure 2.6. 

a) Increasing P b) Increasing D c) Increasing I 

Figure 2.6: Effect of increasing controPler action on the open loop L 

With ihis method, the requirements for the controiier are strictly defined, which resuits in a predictable 
behaviour. 

2.6.1 Fixed structure H, 
An interesting extension of the previous method is the use of H, design methods. Similar to sensitivity loop 
shaping, boundaries are posed on transfers such as sensitivity, complementary sensitivity etc. This is done by 
specifying filters that characterise model uncertainties, disturbances, and the reference. Furthermore, filters are 
specified, which penalise certain signals, such as the control input, the tracking error, etc. The H, algorithm then 
computes a controller that satisfies the resulting boundaries in an optimal sense. Disadvantage is that the 
resulting controller often has a high order, which is difficult to implement in practice. Algorithms are developed 
that restrict the controller to have a fixed structure [25], such as PID. This leads in general to deteriorated 
performance. Fixed structure H, algorithms may be useful in automating the procedure of sensitivity loop 
shaping discussed before. The design task in the H, theory is to design the right penalising and characterising 
filters, which means that sufficient knowledge of the system, including uncertainties, has to be available. 
Tan [37] uses H, theory on FOLPD and IFOLPD processes, which results in tuning rules. These rules are almost 
the same as the M C  ruies with Pad6 approximation discussed earher, since the algorithm uses pole-cancellation, 
which is also the case in IMC. 

2.7 Other methods 

The methods described in the previous sections are the most popular methods, but many other methods are also 
available in literature. It is not possible to cover them all, but some of them are given below. Chen [5], Lee [IS], 
and Shen [34] use fuzzy neural networks to perform a parameter optimisation. Shen [35] uses a genetic 
algorithm to arrive at new tuning rules. Schadel [33] designs a PID controller based on the principle of cascaded 
damping ratios. Wang 
[40] specifies a desired control signal response to achieve smooth setpoint following. Munro 1231 uses the 
Nyquist crossing count to show the admissible region of PID parameters. 



2.8 Autotuning 

A logical step is to extend the tuning methods discussed above to auto-tuning, i.e. to automatically tune the 
controller parameters. Many methods to develop an auto-tuning algorithm are discussed in literature. Most of 
these methods perform a step response or frequency response measurement and use tuning rules to find the 
appropriate parameters. Gaikwad [lo] presents an algorithm that fits the controller parameters online to achieve 
a target loopshape, without model identification. Poulin [29] uses excitation by a relay to identify process 
dynamics, and then minimises the distance between the open loop and a target contour on the Nichols chart. 
Ingimundarson [14] uses step response experiments to estimate a FOLPD model with the method of moments of 
section 2.5.5, and automatically tunes the controller. Luo [21] applies the Ziegler-Nichols tuning rules on a 
process that is estimated by adding a relay pzrallel to the coii:ro!!er. Woodyatt [4!j presents an azt~t.dxer based 
en fie~jltency dom$fi zipproximltion. 



Conclusions 

This report overviews PID tuning methods found in literature. Only a selection is discussed, since it is 
impossible to include them all. Many methods have been presented based on the work by Ziegler and Nichols, 
and use very simple process models to derive tuning rules. The advantage is that the methods are very easy to 
use, and do in general not require extensive knowledge of the process. However, this leads also to unknown 
stability r~bustness and no good contro! over the resulting performance. The applicability of these methods is 
generally limited to process industry. - 
The use of more sophisticated model-based tuning methods, such as loopshaping, H, or IMC allows a better 
definition of desired closed-loop behaviour and robustness. A disadvantage is that first an accurate model has to 
be obtained, which is time-demanding and often difficult. 
An interesting field is the autotuning of PID-controllers. Advantages are that they are easy to use, and can cope 
with disturbances and process changes. This area is still subject of research. 
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