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Josep M. Guerrero, Fellow Member, IEEE, Óscar López, Member, IEEE, Jano Malvar, Student Member, IEEE

and Jesús Doval-Gandoy, Member, IEEE

Abstract—Current controller performance is key in grid-
connected power converters for renewable energy applications.
In this context, a challenging scenario is arising in multi-MW
wind turbines, where sampling and switching frequencies tend
to be lower and lower as power ratings increase. This strongly
affects achievable control time constant. With this perspective,
this paper presents a systematic procedure for accurate dy-
namics assessment and tuning of synchronous-frame PI current
controllers, which is based on linear control for multiple input
multiple output (MIMO) systems. The dominant eigenvalues of
the system are calculated with explicit consideration of time-delay
and cross-coupling terms, two factors which clearly impair the
system dynamics when considering a low sampling frequency.
The proposed methodology is summarized as follows. Firstly,
the plant and controller matrices are modeled in state-space.
Subsequently, the characteristic polynomial of the closed-loop
system is obtained and a computer-aided parametric analysis
is performed to calculate the MIMO root locus as a function
of the control gain. By its inspection, it is possible to identify
the gain which minimizes the current closed-loop time constant.
This tuning is suitable for wind turbine applications, taking
into consideration cascaded-control structures and grid-code
requirements. The validity and accuracy of the analysis is fully
supported by experimental verification.

Index Terms—Ac/dc power conversion, current control, pulse
width modulation converters, wind power generation.

I. INTRODUCTION

Synchronous-frame proportional-integral (dq-PI) current

controllers are widely employed in ac drives [1]–[3] and

grid-tied converters [4], [5]. The synchronous-frame axes d
and q rotate at the angular frequency ω of voltage/current

waveforms. From the control point of view, this is advanta-

geous since ac voltages/currents are controlled by dc variables,
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so PI regulators provide their highest performance. In this

manner, dq-PI current controllers achieve reference tracking

and disturbance rejection with zero steady-state error [1]–[7].

In addition to steady-state features, time-domain dynamics

are also very important in some grid-connected applications,

such as wind turbines. When cascaded controllers are imple-

mented, special care must be put on tuning the innermost

current loops, as they establish the dynamic performance of

the overall system (i.e., inner loops should be much faster

than the outer loops) [6], [8]–[10]. Furthermore, some grid

codes also demand stringent time-domain dynamics in terms of

reference tracking when a fault is detected, forcing generation

units to supply a certain amount of reactive current within a

specific response time [8], [11]. Fulfilling these requirements

becomes challenging in a multi-MW context, where switching

and sampling frequencies tend to be very low [12], [13].

Closed-loop dynamics mainly depends on the controller

gains, so the tuning process is key to optimize the current

control loop behavior. Ideally, the PI gains can be tuned so

that the system is defined by a single dominant pole, which

is set by the controller gain [1], [2] (this gain sets the closed-

loop bandwidth, so the term “bandwidth gain” is employed

in this paper). However, real systems may differ from ideal

ones mainly due to parameter deviations [1], [2] and time-

delay effects [3], [7]. Fine analysis for high-bandwidth tuning

optimization requires to include the time delay in the circuit

modeling [3], [7], [14]–[17].

A big shortcoming of dq-PI controllers arises when consid-

ering both the time-delay and the (cross-coupling) decoupling

schemes at the same time. The classical dq-PI with feedback

axes-decoupling presents important remaining cross-channel

effects [14]–[17]. On the other hand, cross-coupling terms

are usually neglected for tuning the controllers, so the dq-

PI system with delays can be approximated to a second order

single-input single-output (SISO) loop [3], [18]. Even though

these approaches give useful guidelines for the control pa-

rameters, they dismiss cross-coupling effects in the dynamics

(root-locus trajectories also depend on cross-coupling terms).

The influence of cross-coupling terms in the system dynamics

have been previously reported in electric drives applications

with high ratios of fundamental-to-sampling frequencies [14]–

[17]. Therefore, coupling should be also considered in the

grid-connected converters when low sampling frequencies are

considered.
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Fig. 1. MIMO current control problem for a grid-connected power converter.

This paper contributes a systematic procedure for accurate

assessment and tuning of the classic dq-PI current controllers

dynamics, which is based on linear control for multivariable,

or multiple input multiple output (MIMO), systems. The

effect of non-diagonal components, due to remaining cross

couplings associated to the system time-delay, is explicitly

considered. The MIMO characteristic polynomial is obtained

from an accurate modeling of the plant and control matrices,

which define the MIMO sensitivities. Its roots (eigenvalues)

determine the system closed-loop dynamics [19], [20]. These

roots depend on the controller tuning (bandwidth gain). From

a given design objective the tuning is obtained. In this work,

the design aim is to minimize the current loop time constant,

as it provides a good trade-off considering both cascading

controllers dynamics [6], [8], [9] and transient response for

grid-code compliance [8], [11].

The rest of the paper is organized as follows. Section

II shows a basic background in modeling and control from

reference papers. Section III develops the plant modeling

with explicit consideration of delays, which gives rise to a

non-diagonal plant transfer function with explicit time-delay

terms. Section IV analyzes a simplified second order standard

system, obtained by neglecting coupling terms. The main aim

of this section is to provide a qualitative description of the

closed-loop dynamics and support the assumptions made in

the next section. Section V develops the MIMO method for an

accurate calculation (as it includes coupling terms) of system

eigenvalues, and shows how to identify the pair of dominant

poles by inspection of MIMO root locus diagrams. Section VI

provides experimental support to the theoretical approach. The

key experimental results prove the higher accuracy provided

by the MIMO based approach.

II. BACKGROUND

Fig. 1 represents a power converter connected to the grid

and its discrete controller based on a dq-PI with feedback

decoupling implementation [1]. By assuming a stiff grid, i.e.,

|Xg| << Lω [21], [22], the state-space equation of the power

circuit (plant) is given by

d

dt

[
id(t)
iq(t)

]
=

[
−R/L ω
−ω −R/L

] [
id(t)
iq(t)

]
+

+
1

L
I

[
Ud(t)
Uq(t)

]
− 1

L
I

[
Ed(t)
Eq(t)

] (1)

with

I ≡
[
1 0
0 1

]
. (2)

Equation (1) has cross-coupling terms as a result of the Park

transforms [1], [7]. A classical decoupling strategy is given by

the following change of variable in the control action [1]:
[
U∗

d (t)
U∗

q (t)

]
= I

[
U ′

d(t)
U ′

q(t)

]
+

[
0 −Lω
Lω 0

] [
id(t)
iq(t)

]
. (3)

If the system time delays due to discrete operation and PWM

blocks are neglected (see Fig. 1):
[
Ud(t)
Uq(t)

]
=

[
U∗

d (t)
U∗

q (t)

]
. (4)

By substituting (4) in (1), the “effective plant” is given by the

following diagonal (decoupled) system:

d

dt

[
id(t)
iq(t)

]
=

−R

L
I

[
id(t)
iq(t)

]
+

1

L
I

[
U ′

d(t)
U ′

q(t)

]
− 1

L
I

[
Ed(t)
Eq(t)

]
. (5)

From (5), the plant matrix transfer function G(s) is given by

i(s)|E(s)=0 =
1

L(s+R/L)
I

︸ ︷︷ ︸
G(s)

·U(s). (6)

This plant modeling should be reconsidered to include the

effect of grid impedance when the stiff assumption is not

realistic, that is in weak grids [21], [22]. In such a situation,

a grid inductive part Lg should be added to L to give the

total system inductance and a grid resistive part Rg should be

added to R to give the total system resistance [23], [24]. On

the other hand, Fig. 1 is also suitable to describe induction

motor drives [3]. In that case, both the motor and converter

filter impedances should be included in the model [3].

After plant transfer modeling by (6), a diagonal PI controller

according to the internal model laws [1], [2], [25] is defined

as

K(s) =
αL(s+R/L)

s
I (7)

with α being the bandwidth gain, and assuming a good

knowledge of the filter parameters. G(s)K(s) = α/sI is the

resulting open-loop transfer function matrix. When the closed

loop is considered, the time constant is the inverse of α [1],

[7]. Since it is a first order diagonal system, each channel

is independent from each other, and the control problem

is reduced to two independent SISO loops. Such a simple

analysis is only accurate for a limited range of α values. In
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high-bandwidth systems, this first order approximation does

not provide reliable information about time response, damping

or stability [3]. In practice, it is assumed that α should be

ten times smaller than the sampling frequency fs [1], [7].

However, second order features (e.g., overshoot) are noticeable

for bandwidth gains even smaller than one-tenth of fs [3], [7].

Therefore, as time-delay effects are considered, the dynamics

is better defined by second order systems [3], [7], [15]–[17].

III. MULTIVARIABLE PLANT MODELING WITH

TIME-DELAY CONSIDERATION

This section details the system modeling taking into account

the controller delay. This has relevant effects in the closed-loop

dominant roots, as previously discussed.

A time delay td due to discrete-time operation and PWM

is considered. The value of td is given by

td = 1.5/fs, (8)

one sample due to discrete-time operation added to half a

sample associated to the PWM operation [3], [7], [16]. Thus,

the converter output voltage is rewritten as
[
Ud(t)
Uq(t)

]
= Φlag

[
U∗

d (t− td)
U∗

q (t− td)

]
(9)

with

Φlag =

[
cos(φ) sin(φ)
− sin(φ) cos(φ)

]
(10)

and

φ = tdω (11)

being a rotation matrix and its corresponding angle, respec-

tively. These expressions have an insightful physical meaning.

The output voltages (control action) in the synchronous frame

are delayed td (as in stationary frame analysis [3], [7]), but

also rotate an angle φ in relation to its reference vector (inputs

of the PWM block) [16].

To compensate these effects, a phase-angle lead φ̂ is in-

cluded in the inverse Park-transform before the modulation

block (see Fig. 1) [7], [16], [17]. This delay-compensation

technique can be modeled as
[
Ud(t)
Uq(t)

]
= ΦleadΦlag

[
U∗

d (t− td)
U∗

q (t− td)

]
(12)

with

Φlead =

[
cos(φ̂) − sin(φ̂)

sin(φ̂) cos(φ̂)

]
(13)

and

φ̂ = t̂dω̂ (14)

being the delay-compensation matrix and the estimated delay

angle, respectively. It is straightforward to notice that an

accurate estimation of the delay angle results in Φlead that

equals Φ
−1
lag and, therefore ΦleadΦlag = I. The control action

is then simplified to
[
Ud(t)
Uq(t)

]
=

[
U∗

d (t− td)
U∗

q (t− td)

]
= I

[
U ′

d(t− td)
U ′

q(t− td)

]
+

+

[
0 −Lω
Lω 0

] [
id(t− td)
iq(t− td)

]
.

(15)

As seen, besides its positive effect in dynamics [7], [16], [17],

the delay compensation simplifies the theoretical analysis.

Subsequently, time-domain expressions should be trans-

formed to the frequency-domain. A first order Padé approxi-

mation of the time-shifting property is given by

L(f(t− td)) = f(s) · e−std = f(s) · e
−

tds

2

e
tds

2

≈

≈ f(s) · −
td
2 s+ 1

td
2 s+ 1

= f(s) · −s+ 2/td
s+ 2/td

(16)

which is very accurate at frequencies one decade below 1/td,

i.e., at the expected bandwidth values [1], [7], [18]. Taking

into account this property, (15) is converted to the frequency

domain and substituted in (1). Thus, the power converter state-

space model results in

s

[
id(s)
iq(s)

]
=

[
−R/L 2ωs

s+2/td

− 2ωs
s+2/td

−R/L

] [
id(s)
iq(s)

]
+

+
−s+ 2/td
L(s+ 2/td)

I

[
U ′

d(s)
U ′

q(s)

]
− 1

L
I

[
Ed(s)
Eq(s)

]
.

(17)

It should be noted that there are still coupling terms due to

time-delay effects in the decoupling paths [16], [17]. Then,

from (17), the equivalent plant transfer function is given by

G(s) =
−s+ 2/td

L[(s+R/L)2(s+ 2/td)2 + 4ω2s2]
·

·
[
(s+R/L)(s+ 2/td) −2ωs

2ωs (s+R/L)(s+ 2/td)

]
.

(18)

Thus, in spite of axes-decoupling and delay-compensation

schemes, the effective plant still depends on the time delay.

It is interesting to mention that (18) is in agreement with

previous works in the field of electric drives, as it shows a

coupling dependence with ω [15]–[17].

A. Accuracy of the Time-Delay Rational Approximation

Linear control system with delays can be accurately as-

sessed by S-domain analysis methods in the range of frequen-

cies at which the rational approximations of time delays are

accurate [19], [20]. In this work, (16) approximates the system

delay by a rational function of first order. This approach

implicitly assumes its accuracy in the range of frequencies

at which the control acts, i.e., the control bandwidth, which

is assumed to be limited according to the one-to-tenth rule:

α ≤ 2πfs/10 [1], [7]. Fig. 2(a) proves the accuracy of this

assumption, as the rational function (modeled in the S-domain)

perfectly matches a one sampling delay (modeled in the Z-

domain) in the bandwidth range of frequencies. Fig. 2(b)

shows the accuracy of the rational approximation in the time-

domain by its step response. The rational expression has an

initial undershoot and then needs around three samples to track

the delayed signal [19].
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IV. DYNAMICS ASSESSMENT AND TUNING BY A SISO

ROOT-LOCUS APPROXIMATION

The multivariable system can be approximated to two

independent second order SISO systems by simply neglecting

the coupling terms in (18), so that G(s) becomes diagonal

[26]. Under this assumption, the open-loop transfer function

is

G(s)K(s) =
α(−s+ 2/td)

s(s+ 2/td)
I. (19)

The non-minimum phase zero at the numerator accurately

represents a negative impact due to the system delays, as

shown below. This expression, and hence the subsequent SISO

analysis, can be also obtained by assuming a first order Padé

approximation in the open-loop transfer function analyzed in

[3]. From (19), the closed-loop dynamics in the presence of

current reference changes is given by

T(s) =
α(−s+ 2/td)

s2 + (2/td − α)s+ 2α/td
I. (20)

A. SISO Root Locus

From (19), it is possible to calculate the eigenvalues of

(20), as a function of α, by the SISO root-locus method [27].

Fig. 3 represents the SISO root-locus diagram of the system

given by (19)-(20). The closed-loop poles evolve from the

open-loop poles at −2/td and 0 (at low α values) through the

system non-minimum phase zeros at +2/td and ∞ [27]; i.e.,

+ 2
 

2
 0 

Real Axis (s-1)

Im
a
g
in

a
ry

 A
x
is
(s
-1
)

0 

0 

damp

lim

%10

%10

lim

Fig. 3. SISO root locus from (19). Solid: trajectory of p1. Dashed: trajectory
of p2. Key α tuning values are highlighted.

as α increases, the non-minimum phase zeros (due to system

delays) “attract” the closed-loop poles to the unstable plane.

1) Identification of Dominant Time Constants: For low α
values, p1 is closer to the right half plane (RHP), and hence its

dynamics is slower than the one given by p2. In such a case,

it is possible to neglect the effect of p2 and consider pd = p1
as a single dominant eigenvalue. Hence, the dynamics of the

system is well defined by a single order system, for which the

time constant is

τ =
1

|ℜ{pd}|
. (21)

At a certain α p1 and p2 converge and then, for larger α
values, the system is defined by a pair of complex eigen-

values, such that p1 = p∗2. As they dominate the system

dynamics, the pair of complex eigenvalues can be referred

to pd1,2
= [pd1, p

∗

d1]. The dynamics of a second order system

is usually defined as a function of the standard parameters

ωn =
√

ℜ2{pd1}+ ℑ2{pd1} (natural frequency)

ξ =
ℜ{pd1}√

ℜ2{pd1}+ ℑ2{pd1}
(damping ratio).

(22)

Now, (20) can be written as a standard second order transfer

function as

T(s) =
ω2
n(1− std/2)

s2 + 2ξωns+ ω2
n

I (23)

with

ωn =
√
2α/td (natural frequency)

ξ =
2/td − α

2
√
2α/td

(damping ratio).

[td = 2/ωn(
√

1 + ξ2 − ξ)].

(24)

It should be noted that the non-minimum phase zero can be

kept as function of td (for the sake of clarity, as it does

not change with α), but also as a function of the standard

parameters (ωn and ξ). The time constant of a standard second

order system is given by

τ =
1

ξωn
=

1

|ℜ{pd1}|
. (25)

The settling time to within a tolerance band of the 2% of



0278-0046 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TIE.2015.2402114, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

the final value is given by the following expression [27]

ts ≈ 3.9τ. (26)

The rise time mainly depends on ωn and can be approxi-

mated by [27]

tr ≈ 1.8/ωn. (27)

B. Tuning by a Second Order Approximation

1) Tuning Objective: In wind turbine applications, the

control of the grid-side converter is usually based on cascaded

loops: outer loops, with slow dynamics, regulate the reactive

power delivered to the grid and the dc-link voltage; they

generate the references for the inner current controllers [6],

[23]. A fast dynamics of the inner current loops is sought

as they set the bottleneck of the whole system [3], [6], [8],

[10]. Furthermore, a fast dynamics is also demanded to fulfill

some stringent grid-code requirements [6], [8], [11]. In this

scenario, a suitable design guideline points to minimize the

current controller time constant τ , i.e., to maximize the decay

rate of its dominant poles [8].

2) SISO Guideline Tuning Values: From the second order

system defined by (20), some reference values can be obtained

analytically. When the system is critically damped (i.e., ξ = 1)

both eigenvalues coincide in a point, at which the real part of

the dominant roots reaches a maximum value. This is given

at

αdamp =
6− 4

√
2

td
. (28)

This tuning would provide the tuning objective (minimization

of τ ), according to the SISO approximation.

From (20), it is possible to calculate the limit of stability as

αlim =
2

td
. (29)

It is also interesting to define

α10% =
2πfs
10

(30)

as the gain that corresponds with the one-to-ten limit in the

bandwidth over control frequency ratio [1], [7]. This high-

bandwidth tuning provides a fast rise time, but with undamped

response (overshoot) [18].

V. DYNAMICS ASSESSMENT AND TUNING BY MIMO

ROOT LOCUS

The previous section shows how to simplify the dynamics

to a second order non-minimum phase system. However, that

analysis assumes the coupling terms are negligible, which

is not accurate, specially when considering a low-sampling-

frequency constraint. This section provides a methodology for

eigenvalues calculation taking into account the non-diagonal

terms arising from the MIMO modeling with system delays.

A. MIMO Poles and Zeros

Firstly, MIMO poles and zeros of G(s) and K(s) are

calculated. The following remarks should be pointed out.

• A MIMO transfer function matrix has a pole at p0 if any

of its elements has a pole at p0 [19], [20].

• MIMO zeros are such z0 values at which the MIMO ma-

trix loses rank [19], [20]. Usually, they do not correspond

with zeros of sensitivity-matrix elements [19], [20].

It is recommended to set each matrix in its Smith-McMillan

form to find poles and zeros, and their multiplicities [19], [20].

The Smith-McMillan form of G(s), obtained according to the

guidelines in [19], [20], is

G
SM (s) =



−s+ 2

td
0

0
−s+ 2

td

(s+R
L
)2(s+ 2

td
)2+4ω2s2


 . (31)

From (31), G(s) has a double (non-minimum phase) zero at

+2/td . Approximated values for G(s) poles can be obtained

by assuming 2/td >> R/L ∼ ω (circuit time constants are

longer than the time-delay [3]), so

pp1,p2 ≈ −R

L
(1± jtdω) (plant complex pair of poles)

pt1,t2 ≈ − 2

td
± j2ω (time-delay complex pair of poles).

(32)

K(s) is Smith-McMillan by definition: it has a double pole at

the origin and a double zero at −R/L.

B. MIMO Eigenvalues Calculation

The sensitivity matrix is defined by

S(s) = [I+G(s)K(s)]−1. (33)

The MIMO poles of (33) define the dynamics of the closed-

loop system. E.g., all of them should be in the left-half-plane

to assure stability.

Since the product G(s)K(s) does not contain unstable

MIMO pole-zero cancellations (this can be checked from

MIMO poles and zeros calculation in Section V-A), all the

closed-loop system poles defining dynamic responses are given

by the roots of the characteristic polynomial [19], [20], i.e.,

det[S−1(s)] = det[I+G(s)K(s)] = 0. (34)

As in the SISO case, the root-locus given by (34) depends

on α (gain). Therefore, the tuning gain that provides faster

decaying dominant roots can be identified by inspection of

root-locus diagrams.

To ease the calculations (and avoid any possible unstable

pole-zero cancellation), the characteristic polynomial (34) is

re-written using Matrix Fraction Description (MFD) matrices

[19], as follows:

det[S−1(s)] = det[ḠD(s)KD(s)+ḠN (s)KN (s)] = 0 (35)



0278-0046 (c) 2015 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE

permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TIE.2015.2402114, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

with

ḠD(s) = L[(s+R/L)2(s+ 2/td)
2 + 4ω2s2]I

ḠN (s) = (−s+ 2/td)[
(s+R/L)(s+ 2/td) −2ωs

2ωs (s+R/L)(s+ 2/td)

]

KD(s) = sI

KN (s) = αL(s+R/L)I.
(36)

1) Computer Aided Calculation: In practice, it is very

cumbersome to handle (36), since it involves non-diagonal

matrix determinant calculations. This means high order ex-

pressions, which are very difficult to simplify. On the other

hand, “Geometric Analysis” for MIMO systems has also been

discarded because of its complexity due to α2 terms in (34)–

(35), as reported in [28].

Thus, in this paper, the problem has been solved by means

of a computer-aided methodology. By means of the Matlab

Symbolic Math toolbox, the characteristic equation from (34)–

(36) results in a sixth order expression as follows

det(S−1) = L2t2ds
6 + (−2αL2t2d + 4L2td + 2RLt2d)s

5

+ (L2α2t2d + 16L2t2dω
2 + 4L2 − 4LRαt2d

+ 8LRtd +R2t2d)s
4 + (−4L2α2td + 8L2α

+ 2LRα2t2d + 8LR− 2R2αt2d + 4R2td)s
3

+ (4L2α2 − 8LRα2td + 16LRα+R2α2t2d

+ 4R2)s2 + (−4tdR
2α2 + 8R2α+ 8LRα2)s

+ 4R2α2 = 0.
(37)

Subsequently, the solutions are calculated and depicted as

function of α (parametric analysis) for a wide range of α
values. Fig. 4 shows a generic root locus obtained by solving

(37) for increasing α values. Section V-C details how to

interpret the MIMO root-locus diagrams.

It is also interesting to note that (37) is a function of

ω. This dependence comes from the cross-coupling terms

in the plant modeling. In a grid-connected converter, ω can

be assumed to be constant. However, in order to extend the

proposed methodology to motor drives, a parametric analysis

as a function of ω should be also considered, as this parameter

depends on the machine speed [15]–[17].

C. Tuning by MIMO Root-Locus Diagrams

Fig. 4 describes a generic root locus obtained by solving

(37) for increasing α values. The following assumptions are

made in order to analyze the MIMO root-locus diagram.

• The closed-loop poles are complex pairs. At α = 0 rad/s
the poles correspond to G(s)K(s) in open loop. As α
increases, the pole-trajectories tend to −R/L, (plant),

2/td (delay) and ∞, which correspond to MIMO zeros.

• As shown in the zoomed region of Fig. 4, the eigenvalues

from trajectory-1 are very close to the double zero at

−R/L [imposed by control design in (7)]. This implies

a double pole-zero cancellation around −R/L [19], [20],

L

R


dt

2

0







Trajectory-1 

Trajectory-2 
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2

dt
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a
g
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a
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x
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Fig. 4. Root locus given by (34)-(37) for increasing values of α.

and hence, the effect of these eigenvalues is not dominant

in the presence of a current step.

• At the range of gains suitable for tuning (i.e., up to α10%,

see shaded region in Fig. 4), the poles of trajectory-3 are

faster than the ones of trajectory-2. Therefore, they are

less dominant in the time response and hence, they are

neglected.

• The trajectory-2 poles set the system dynamics, as they

are dominant. Therefore, the dominant poles pd1,2
are

re-defined accordingly as the eigenvalues given by the

trajectory-2 in the MIMO root locus.

• The expressions (22)–(27), as defined in Section IV

for a standard second order system (including the non-

minimum phase zero at −2/td), are suitable to describe

the dynamics, but according to the re-defined MIMO

dominant eigenvalues .

As detailed in section IV-B1, the proposed tuning method

aims to minimize the current control time constant. This is

achieved by maximizing the negative real part of the dominant

eigenvalues: by inspection of the MIMO root locus it is

possible to select the tuning that places pd1,2
(trajectory-2) as

far as possible from the RHP. This key tuning is then defined

as αmin τ .

VI. EXPERIMENTAL VERIFICATION

The theoretical analysis has been validated in a lab-scale

prototype. The digital control is executed in a dSpace MABXII

DS1401 platform.

Fig. 5 shows the control scheme and a photo of the test-

bed. The control algorithm is as follows: the id controller

is an inner loop of the dc-link voltage Udc outer loop. The

reactive current iq is directly set by the dSpace user interface,

so the key waveforms are obtained by triggering step changes

in the reactive current reference i∗q [8]. The power converter

is working in rectifier mode of operation, which permits to

test the performance of the current controllers (suitable for
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Fig. 5. Lab prototype setup. (a) Circuit and (active-rectifier) controller
implementation; (b) Photo.

any working point of the power converter) without needing an

external power source.

Two different sampling frequencies have been considered in

the tests: fs = 2850Hz and fs = 1500Hz. As the switching

carrier frequency fc is reduced, it causes more significant low

order harmonics (in practical applications, fs is reduced as a

result of reducing fc and switching losses). The setup circuit

includes large inductors to better filter switching harmonics.

Grid voltage harmonics and dead-time effects are also an

important source of distortion at low fs (i.e., as the control

bandwidths are reduced accordingly). Therefore, a selective

active filtering was implemented aiming to enhance steady-

state waveforms without impairing very much the transient

response assessment (see Section VI-C2). For each of the

two cases, the equivalent resistance in the plant model of

the current loop, which includes the effects associated to

the switching and conduction losses, has been previously

Eigenvalues by SISO approx. 

Eigenvalues by MIMO (trajectory-2). 

 

 

 

MIMO pole-zero 

cancelations 

around –R/L 

Fig. 6. Detail of MIMO and SISO Root loci for fs = 2850Hz setup.

estimated by the method presented in [29].

Besides current distortion, another practical issue which dif-

ficulties the assessment of experimental figures is the inherent

low resolution of the problem: the time constant (a parameter

to measure) and the sampling period 1/fs are of the same

order of magnitude. To support time-domain assessments, the

estimated currents î SISOq and îMIMO
q are depicted. These are

the estimated dominant time responses, which are obtained

by applying the same current step as that commanded to the

actual plant to (23), with the corresponding set of parameters

ωn and ξ, as shown in Fig. 5(a). It should be also noticed that

the non-minimum phase zero at the numerator of (23) causes

some inaccuracies at the very beginning of the transient [19],

as discussed in Section III-A.

A. Case A: Tests at fs = 2850Hz

The setup parameters are shown in Table I. Fig. 6 details the

position of the dominant poles (the root loci is zoomed at the

second quadrant for a better resolution; the MIMO trajectory-3

is not displayed as its eigenvalues are not dominant). Table II

summarizes the main parameters in Fig. 6 for both the SISO

and the MIMO approaches. The key values (highlighted in the

plot) and assumptions to be made are explained below.

• The eigenvalues provided by the SISO approximation are

faster and more damped than the ones provided by the

MIMO solution, since the latter quantifies the effect of

the coupling terms. This cross coupling is expected to be

noticeable during transients.

• The tuning at αdamp corresponds to the theoretical value

from (28). It theoretically fulfills the tuning objective

according to the SISO approximation. However, it corre-

sponds to a quite reduced gain in the MIMO root locus.

• The tuning at αmin τ is obtained by inspection of the

MIMO root locus (the α which maximizes the negative

real part of the eigenvalues). This is achieved with a gain

higher than αdamp.

• The tuning at α10% is selected according to the one-to-

tenth rule α10% = 2πfs/10.

Fig. 7 shows the test results for the selected tunings.

Table III shows the integral absolute error (IAE) from Fig. 7
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TABLE I
CASE A: EXPERIMENTAL SETUP CIRCUIT PARAMETERS

Parameter Value

Plant Inductance L = 12.5mH
Estimated Plant Resistance R = 2.2Ω

Sampling frequency fs = 2850Hz
Carrier frequency fc = 2850Hz
td = 1.5/fs 351µs

RL 255Ω
Dc-link voltage Udc = 700V

Fundamental angular frequency ω = 2π50 rad/s

TABLE II
PREDICTED DYNAMICS FROM SISO AND MIMO ROOT LOCUS

DIAGRAMS OF FIG. 6

Tuning at α = αdamp = 652 rad/s
τ = 635µs

SISO pd = −1574 rad/s (1st order)
tst ≈ 2.5ms

ωn = 982 rad/s
MIMO pd1,2 = −857± j480 rad/s ξ = 0.87

tst ≈ 4.6ms
Tuning at α = αmin τ = 1000 rad/s

ωn = 1950 rad/s
SISO pd1,2 = −1400± j1356 rad/s ξ = 0.72

tst ≈ 2.9ms
ωn = 1540 rad/s

MIMO pd1,2 = −1048± j1127 rad/s ξ = 0.68
tst ≈ 3.8ms

Tuning at α = α10% = 1791 rad/s
ωn = 2609 rad/s

SISO pd1,2 = −1005± j2407 rad/s ξ = 0.39
tst ≈ 4.0ms

ωn = 2284 rad/s
MIMO pd1,2 = −848± j2121 rad/s ξ = 0.37

tst ≈ 4.7ms

captures, obtained by

IAE =

tw∑

t=0

|iq − îq|
fs

(38)

with tw = 10ms being the time window of the oscilloscope

captures [18], [29].

From these results, it can be observed that îMIMO
q matches

well the measured current iq in all the cases. More specifically,

Fig. 7(e) proves that the minimum time constant is achieved

with αmin τ , as correctly predicted by the MIMO root locus.

The corresponding IAEs in Table III show that the MIMO pre-

diction matches better than the SISO one the actual response

with αmin τ and αdamp. From Fig. 7(d), and its corresponding

IAEs, î SISOq is less accurate than îMIMO
q with αdamp being the

tuning gain. These results using low tuning gains also prove

that the SISO approximation is not suitable to find the aimed

gain, which minimizes the dominant time constant. At high

tuning gains, both SISO and MIMO time-domain predictions

become similar [see Fig. 7(f) and the last rows in Table III].

This fact is also as expected from Fig. 6 (SISO and MIMO

trajectories tend to be closer as α increases) and their estimated

settling times in Table II.

TABLE III
IAE OBTAINED FROM THE EXPERIMENTAL TESTS OF FIG. 7

Tuning at α = αdamp = 652 rad/s
SISO IAE = 4.9E−3 A · s

MIMO IAE = 1.0E−3 A · s
Tuning at α = αmin τ = 1000 rad/s
SISO IAE = 1.8E−3 A · s

MIMO IAE = 0.8E−3 A · s
Tuning at α = α10% = 1791 rad/s
SISO IAE = 3.5E−3 A · s

MIMO IAE = 3.4E−3 A · s

TABLE IV
CASE B: EXPERIMENTAL SETUP CIRCUIT PARAMETERS

Parameter Value

Plant Inductance L = 24.3mH
Estimated Plant Resistance R = 1.7Ω

Sampling frequency fs = 1500Hz
Carrier frequency fc = 1500Hz
td = 1.5/fs 1ms

RL 255Ω
Dc-link voltage Udc = 700V

Fundamental angular frequency ω = 2π50 rad/s

B. Case B: Tests at fs = 1500Hz

The setup parameters are shown in Table IV. Fig. 8 displays

the root loci from MIMO and SISO approaches, while Table V

details the position of the dominant poles for the three key

tunings, which have been obtained as in Case A.

Fig. 9 shows the key results for the selected tunings and

Table VI their corresponding IAEs. Since the main controller

bandwidth is reduced very much, the selective harmonic

elimination controller (see Section VI-C2) has some influence

on the dynamics: a good filtering is achieved in steady state,

but the 6th harmonic oscillation arises during the transients.

This fact impairs the assessments and significantly increases

the IAEs (with respect to the ones of Section VI-A). Despite

the 6th harmonic ripple, it can be said that îMIMO
q correctly

predicts the dominant time constant in all the cases. As ex-

pected, the dominant time constant is minimized with αmin τ

being the tuning gain. The experiments using αdamp should be

also highlighted: Fig. 9(d) and its corresponding IAEs prove

that îMIMO
q fits much better than î SISOq the actual iq current.

Therefore, the results using αmin τ and αdamp also show

that the SISO approximation is not suitable to find the gain

that minimizes the dominant time constant. As also predicted

in Fig. 8, SISO and MIMO time-domain predictions become

similar when using high tuning gains.

C. Implementation Issues

1) Discretization of Integrators: Similarly to the analysis in

section III-A, the accuracy of the time domain implementation

in the range of frequencies of the control should be checked.

Fig. 10 shows the frequency response of the discrete-time

integrator implementation obtained by the Tustin method. It

can be observed that it matches the theoretical frequency

response up to fs/10 and beyond. At higher frequencies,

the magnitude response of the discretized integrator becomes
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Fig. 7. Step responses from i∗q = 0 to i∗q = −8A at fs = 2850Hz for different tunings. (a) α = αdamp; (b) α = αmin τ ; (c) α = α10%; (d) α = αdamp,

zoomed view; (e) α = αmin τ , zoomed view; (f) α = α10%, zoomed view. Note that iq , î SISOq and îMIMO
q are inverted.
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Fig. 8. MIMO and SISO Root-loci for fs = 1500Hz setup.

lower than the one of the ideal integrator, so a good high-

frequency noise attenuation is expected. It is worth remarking

that (23), which is used to estimate î SISOq and îMIMO
q in

Fig. 5(a), is also discretized by the Tustin method.

2) Active Filtering for Dead-Time and Grid Harmonics: As

the sampling frequency and achievable control bandwidth are

reduced, grid voltage harmonics and dead-time effects become

very significant. In order to deal with current distortion, selec-

tive resonant filters for fifth (negative sequence) and seventh

(positive sequence) harmonics have been implemented in par-

allel to the main dq−PI controller [30]. Each resonant filter

has been implemented with a very small gain, and each phase-

lead compensation angle is calculated according to the Nyquist

criterion, as explained in [31]. This implementation eliminates

steady-state distortion due to grid harmonics and dead-times.

However, some oscillation is present during transients: a sixth

order harmonic oscillation in the dq−frame (i.e., at resonant

frequencies, the Nyquist trajectories are closer to the critical

TABLE V
PREDICTED DYNAMICS FROM SISO AND MIMO ROOT LOCUS

DIAGRAMS OF FIG. 8

Tuning at α = αdamp = 343 rad/s
τ = 635µs

SISO pd = −828 rad/s (1st order)
tst ≈ 4.7ms

ωn = 440 rad/s
MIMO pd1,2 = −364± j247 rad/s ξ = 0.83

tst ≈ 10.7ms
Tuning at α = αmin τ = 600 rad/s

ωn = 828 rad/s
SISO pd1,2 = −700± j843 rad/s ξ = 0.64

tst ≈ 5.6ms
ωn = 771 rad/s

MIMO pd1,2 = −464± j616 rad/s ξ = 0.60
tst ≈ 8.4ms

Tuning at α = α10% = 963 rad/s
ωn = 1373 rad/s

SISO pd1,2 = −529± j1267 rad/s ξ = 0.39
tst ≈ 7.4ms

ωn = 1075 rad/s
MIMO pd1,2 = −402± j997 rad/s ξ = 0.37

tst ≈ 9.7ms

point [31]). This oscillation becomes more significant as fs
is reduced, and hence impairs experimental validations, as

shown in Section VI-B. This corresponds with the fact that

the disturbance rejection ability decreases with the controller

bandwidth [3].

VII. CONCLUSIONS

This paper presents a systematic procedure for accurate

dynamics assessment and tuning of dq-PI current controllers

when a low sampling frequency is an imposed constraint.
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Fig. 9. Step responses from i∗q = 0 to i∗q = −8A at fs = 1500Hz for different tunings. (a) α = αdamp; (b) α = αmin τ ; (c) α = α10%; (d) α = αdamp,

zoomed view; (e) α = αmin τ , zoomed view; (f) α = α10%, zoomed view. Note that iq , î SISOq and îMIMO
q are inverted.

TABLE VI
IAE OBTAINED FROM THE EXPERIMENTAL TESTS OF FIG. 9

Tuning at α = αdamp = 343 rad/s
SISO IAE = 13.3E−3 A · s

MIMO IAE = 4.8E−3 A · s
Tuning at α = αmin τ = 600 rad/s
SISO IAE = 6.6E−3 A · s

MIMO IAE = 6.4E−3 A · s
Tuning at α = α10% = 963 rad/s
SISO IAE = 7.9E−3 A · s

MIMO IAE = 8.1E−3 A · s

Fig. 10. Accuracy of the discrete-time integrator obtained by the
Tustin method. Solid: discrete-time implementation (H(z) = 1

2fs

z+1
z−1

).

Dotted: ideal integator (H(s) = 1/s).

This contribution specially aims to grid-connected converters

in renewable energy applications, in which a fast dynamics

is needed, while the sampling frequency tends to decrease

as power ratings increase (e.g., grid code requirements in

multi-MW wind turbines). Taking into consideration cascaded-

control structures and grid-code requirements, minimizing the

current controller time constant is proposed as the tuning

objective.

The theoretical approach firstly models the system taking

the system delays and coupling terms into consideration.

Subsequently, a SISO root-locus approximation is obtained

by neglecting the coupling terms, as usually assumed. How-

ever, this assumption tends to become inaccurate for low

sampling frequency. A MIMO root locus based approach

is then proposed to provide a more accurate calculation of

the dominant eigenvalues. Then, by inspection of MIMO

root locus diagrams, the gain which minimizes the current

controller time constant αmin τ is obtained.

Experimental verification validates the high accuracy of the

proposed tuning methodology. Experimental figures prove that

αmin τ minimizes the settling time, and hence the current loop

time constant. Besides the tuning objective is suitable from

the MIMO root locus method, it is also important to highlight

how real dynamics tends to be slower and more undamped

than predictions assuming a negligible cross coupling.
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