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Abstract 

Variable selection is an important topic in regression analysis and is intended to select the 

best subset of predictors. Least absolute shrinkage and selection operator (Lasso) was introduced 

by Tibshirani in 1996. This method can serve as a tool for variable selection because it shrinks 

some coefficients to exact zero by a constraint on the sum of absolute values of regression 

coefficients.  

For logistic regression, Lasso modifies the traditional parameter estimation method, 

maximum log likelihood, by adding the L1 norm of the parameters to the negative log likelihood 

function, so it turns a maximization problem into a minimization one. To solve this problem, we 

first need to give the value for the parameter of the L1 norm, called tuning parameter. Since the 

tuning parameter affects the coefficients estimation and variable selection, we want to find the 

optimal value for the tuning parameter to get the most accurate coefficient estimation and best 

subset of predictors in the L1 regularized regression model. 

There are two popular methods to select the optimal value of the tuning parameter that 

results in a best subset of predictors, Bayesian information criterion (BIC) and cross validation 

(CV). The objective of this paper is to evaluate and compare these two methods for selecting the 

optimal value of tuning parameter in terms of coefficients estimation accuracy and variable 

selection through simulation studies.
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CHAPTER 1 

Introduction 

1.1 Background and Motivation 

Variable selection for regression models is a fundamental problem in statistical analysis. 

We want to select the best subset of predictors that significantly influence the response variables. 

The popular variable selection methods include but are not limited to the subset selection 

procedures and information criteria such as Akaike Information Criteria (Akaike, 1973) and 

Bayesian Information Criteria (Schwarz, 1978). Those methods select predictors in the way that 

predictors are either retained or eliminated from the model.  

In 1996, a shrinkage method called least absolute shrinkage and selection operator 

(Lasso) was proposed by Tibshirani. The substantial difference between Lasso and the subset 

selection procedures or the information criteria is that Lasso selects variables and estimates the 

coefficients simultaneously. Thus, Lasso is a continuous process. Initially, Lasso was proposed 

for linear regression models and it minimizes the residual sum of squares subject to a L1 norm 

constraint, which is the sum of the absolute value of the coefficients being less than a constant 

(Tibshirani, 1996). The parameter of the L1 norm constraint is called tuning parameter.  

It is important to choose the optimal value of the tuning parameter because it controls the 

balance of model sparsity and model fitting (Wang et al., 2007). Classical model selection 

criteria can be used for the selection of the tuning parameter, such as cross validation (CV), AIC 

and BIC. The performance of BIC and CV for choosing the optimal tuning parameter in terms of 
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percentage of correctly selected important predictors had been evaluated through simulation 

studies by Wang et al. (2007). The result shows that overall BIC has higher percentage of 

correctly selected important predictors than CV. However, the models they setup for the 

simulation studies are general linear regression models, so their result may not be appropriate to 

apply to the logistic regression models. Therefore, we are interested that whether BIC would still 

outperform CV for logistic regression models. The purpose of our study is to examine the 

performance of the CV and BIC for choosing the optimal value of tuning parameter in terms of 

variable selection and also estimation accuracy. 
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CHAPTER 2 

Methodology 

2.1 Logistic Regression 

Logistic regression is widely used to model the outcomes of a binary response. The 

logistic regression model is a branch of generalized linear models (GLM), a flexible 

generalization of linear regression that allows for residuals, the difference between the observed 

response values and the predicted values, not normally distributed. For a binary response, it is 

not appropriate to use general linear regression because the response values are binomial 

distributed. The response variable in logistic regression model can also be multi-nominal, taking 

two or more limited number of possible values. In this work, we focus only on binary outcomes.  

All regression models have three components: The response variable  , the linear 

combination of the predictors, which is the sum of the multiplication of predictors and their 

coefficients, and the link function, which specifies a function that links the expected value of   

and linear combination of the predictors. The logistic regression model links the linear 

combination of the predictors with a logit function of the probability of outcome of interest 

occurring. For a binary response, denote the vector of   response values as   and its two 

categories by   and  . Let   be the probability of      , (         )    be the   (   ) 

design matrix, a matrix of predictors with first column being ones,   be the number of predictors 

and    (             )  be the vector of the     parameters corresponding to the design 

matrix. The logistic regression model has the form 
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                                                        ( )    (     )                                                            (   )                                                      
, where                            The log of the odds,   (     ), is called the logit 

transformation of  . 

2.1.1 Maximum Likelihood Estimation 

Maximum likelihood estimation (MLE) is the standard method of estimating the 

unknown parameters in a logistic regression model. This method yields values for the unknown 

parameters which maximize the probability of obtaining the observed response values. The 

likelihood function expresses the probability of the observed response values as a function of the 

unknown parameters  . Let  (    ) be the probability of     , (         ), since the 

response variable   in a two-class logistic regression follows a Bernoulli distribution, the 

likelihood function is obtained as follows: 

                                                 ( )  ∏ (    )      (    )      
                                           (   ) 

The log likelihood is defined as the natural log of the equation (1.2): 

 ( )      ( )  ∑{      (    )  (    )       (    ) } 
    

   ∑   (    )    (   (    ))  
                                             (   ) 

To maximize the log likelihood, we set its first derivative to zero. The score equation is 
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                                          ( )   ∑  (    (    ))    
                                                (   ) 

The solution to the score equation is the MLE of  .  The Newton-Raphson method can be 

used to numerically compute the  , which requires the second-order derivative or Hessian matrix 

                                       ( )       ∑      
     (    )    (    )                                   (   ) 

The process of Newton-Raphson method begins with a tentative solution, slightly revises 

it to check whether it can be improved, and repeats this revision until the improvement is minute, 

at which point the process is said to have converged (Menard and Scott, 2002).  

However, in some instances, the estimation may not reach convergence. When that 

occurs, the estimated coefficients are meaningless because the iterative process was unable to 

find the appropriate solution. There might be a number of reasons that cause non-convergence. 

One reason might be that the ratio of number of predictors and sample size is high. In general, 

logistic regression models require about 10 observations per predictor (Peduzzi et al., 1996). 

Another reason might be serious multi-collinearity, which refers to that there are two or more 

predictors highly correlated. As multi-collinearity increases, standard errors of coefficients 

estimates increase and the likelihood of model convergence decreases (Menard and Scott, 2002). 

Separation also might be a reason for non-convergence. Separation occurs when the predictor or 

a linear combination of several predictors is associated with only one response value when the 

predictor or the linear combination of several predictors is greater than a constant. Consider the 

set of data on 10 observations in Table 1. This dataset has a binary response   with value 0 or 1 
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and one predictor  . This is an example of separation problem because when    ,     and 

when    ,    . 

Table 1 Dataset Exhibiting Separation 

    

-5 0 

-4 0 

-3 0 

-2 0 

-1 0 

1 1 

2 1 

3 1 

4 1 

5 1 

 

Figure 1 shows that there are infinite numbers of logistic curves fitted to this dataset, 

meaning that there are infinite estimates for the coefficients, in which case, the estimation does 

not reach the convergence. 
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Figure 1 Logistic Curves with Separation Problem 

2.1.2 Goodness of Fit 

Instead of using R2 as the statistic for overall fit of a linear regression model, we have 

deviance for logistic regression. Logistic regression compares the observed values and predicted 

values based on the log likelihood function defined in equation (1.3).  Deviance (D) of a given 

model is calculated by comparing the given model and the saturated model as expression (1.6). 

The saturated model contains as many parameters as the sample size so it perfectly fits the data. 

                                (                                                                 )                          (   ) 
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The ratio of likelihood of the fitted model and likelihood of the saturated model in 

equation (1.6), called likelihood ratio, has a negative value. Model deviance (D) is the 

multiplication of negative two and the log of the likelihood ratio, which produces an 

asymptotically chi-squared distributed value. Therefore, upon a chi-square distribution, we can 

use model deviance as test statistics to assess the model fit. The fit of the model gets poorer as 

the difference or deviance of the observed values from predicted values gets bigger. The 

deviance will decrease if we add more variables into the model.  

2.1.3 Likelihood Ratio Test 

To examine the contribution of individual predictor, we need to test their statistical 

significance. In linear regression, a coefficient represents the increased value of the predicted 

response value for each unit increase of that predictor, and the significance of a predictor is 

assessed by a t test. While in logistic regression, a coefficient represents the increased value of 

the log odds of probability of occurrence of interested outcome for each unit increase of the 

corresponding predictor, and we use different significance tests, such as likelihood ratio test or 

Wald test, to examine the significance of predictors. Here we give a brief introduction to the 

likelihood ratio test. 

The likelihood ratio test that we use to assess the model fit as we discussed in section 

2.1.2 can also be used to examine the significance of predictors. Let model A be a fitted model 

that includes the predictor we want to test, and model B is the fitted model that excludes that 

predictor from model A. Then the test statistic (G) is calculated by subtracting the deviance of 

model A (  ) from the deviance of model B (  ).  
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                                       (                                            )                          (   ) 

There is a significant association between that predictor and the response variable if 

deviance of model A is significantly smaller. In addition to testing the significance of individual 

predictor, likelihood ratio test can also be used to test the significance of a set of predictors. The 

computation of test statistic has the same form as (1.7), and the model A for this test should be a 

model that includes all the predictors we want to test, and model B excludes those predictors 

from model A.  

2.2 Variable Selection in Logistic Regression 

A statistical model is a simplification of reality (Agresti, 2007). At the initial stage of 

modeling, a large number of candidate predictors are considered to minimize possible modeling 

biases (Fan and Li, 2006). However, in most cases, not all the predictors have significant effects 

on the response variable. In statistics, a result is called statistically significant if it is unlikely to 

have occurred by chance. A simpler model that contains only the important predictors is 

preferred because it is easy to explain. Parsimony is especially important for high dimension 

data. The parsimony means that the simplest plausible model with the fewest possible number of 

predictors is desired. 

Variable selection plays an important role in regression analysis and is intended to select 

the best subset of predictors. There are typically two competing goals in statistical modeling: The 

model should be complex enough to fit the data well, and also should be simple to interpret 

(Agresti, 2007). We give a brief summary of three popular variable selection methods for logistic 

regression: subset selection procedures, information criteria and shrinkage method. 
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2.2.1 Subset Selection Procedures 

The traditional and the most commonly used variable selection methods in logistic 

regression include backward elimination, forward selection and stepwise selection.  Those subset 

selection procedures produce a subset model at each step by adding or eliminating a predictor 

from a previous model. Before implementing these procedures, we need to specify a stopping 

rule: either a cutoff value of the selection criterion or the significance level for the likelihood 

ratio test or the Wald test for testing the significance of predictors. Each step of these procedures 

evaluates the current model or the new added predictor and then decides whether we should stop 

or move on to next step. A final model with the best subset of predictors will be chosen at the 

end of each procedure. 

Backward elimination starts with the full model that includes all candidate predictors. 

Variables are sequentially deleted from a previous model until the selection criterion of the 

current model reaches the cutoff value specified in the stopping rule, or all the predictors in the 

current model are significant. Forward selection, on the contrary, begins with an empty model. 

The stopping rule for forward selection could be that any added factor would not be significant at 

a pre-specified significance level. Until the pre-defined stopping rule is satisfied, the most 

significant predictor of each current model is sequentially added to the model. Stepwise selection 

modifies the forward selection, where all predictors in the current model are re-evaluated. At 

each stage of the variable selection process, a predictor might be entered, and another may be 

eliminated. Also the stepwise selection process ends when it meets a pre-specified stopping rule. 

Despite the popularity, there are limitations of these subset selection procedures. 
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(1) The three different selection procedures can result in different subsets of variables as   

the “best” model for the same data set.  

(2) The correlation among the predictors can result in a final model that is slightly over-

fitting, which means that the model is more complex than it should be. 

(3) The result is uncertain because only the current model was used to perform statistical 

inference at each step of the selection while the set of variables included in the current model are 

very sensitive to the dataset. 

 (4) The omission of some important predictors can cause bias on the parameter 

estimation. 

  (5) Only the nested models, where one model is a subset of another, can be compared. 

Therefore, although the subset selection procedures are simple and commonly used in 

practice, it’s not appropriate to use them in the situations that they give very inconsistent results 

or when we want to compare the non-nested models, etc. 

2.2.2 Information Criteria: AIC and BIC 

The Akaike Information Criterion, AIC, (Akaike, 1973) and Bayesian Information 

Criterion, BIC, (Schwartz, 1978) are the model selection tools based on information theory. The 

AIC comes from approximately minimizing the difference between the true data distribution and 

the model distribution, known as the Kullback-Leibler information entropy. While Schwarz 

derived BIC to asymptotically approximate a transformation of the Bayesian posterior 

probability of a model. AIC and BIC are given in equation (1.8) and (1.9), respectively, where   

is the number of parameters in the model,   is the number of observations,   is the maximum 

likelihood achieved by the model and     ( ) is the model deviance. 
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                                                            ( )                                                     (   ) 

                                                        ( )      ( )                                             (   ) 

AIC and BIC both penalize the complexity of the model with an increasing function of 

number of parameters and also reward the goodness-of-fit. An optimal model achieves the 

minimum of AIC or BIC. Both information criteria provide a way to compromise between the 

two competing goals for model building: the model should be complex enough to fit the data 

adequately, but a simple model is preferred for easy interpretation. However, the penalty term of 

BIC is more stringent than the penalty term of AIC. Consequently, BIC tends to favor more 

parsimonious model than AIC does. 

When a true model has finite number of candidate predictors and this true model is 

represented in the list of candidate models, a consistent criterion will asymptotically select the 

fitted model that has the correct structure with probability one. Whereas if the true model has 

infinite number of candidate predictors and this true model is not in the list of candidate models, 

an asymptotically efficient criterion will asymptotically select the fitted model with minimum 

model deviance. AIC is asymptotically efficient yet not consistent, while BIC is consistent but 

not asymptotically efficient. 

A substantial advantage of AIC and BIC compared with the subset selection procedures 

is that they can be used to compare non-nested models (Burnham and Anderson, 2002). Also 

AIC and BIC are able to compare models based on different probability distributions.  
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2.3 Shrinkage Method 

In linear regression, parameter estimation by the ordinary least square (OLS) method is 

unbiased. However the estimates may have large variance in some cases, the occurrence of 

multi-collinearity for instance.  With slight sacrifice of bias, ridge regression tends to improve 

the prediction accuracy by shrinking some coefficients. But ridge regression will not shrink 

values of any coefficients to exact 0, and the fitted model might be too complex to interpret. In 

1996, Tibshirani introduced a different shrinkage method, called the Lasso (least absolute 

shrinkage and selection operator). This method shrinks values of some coefficients to 0 by a 

constraint on the sum of absolute values of regression coefficients, so Lasso can serve as a tool 

for variable selection. The substantial difference between Lasso and the subset selection 

procedures or the information criteria is that Lasso selects variables and estimates the 

coefficients simultaneously and retains good features of both subset selection and ridge 

regression. 

In Lasso, the constraint on the sum of absolute values regression coefficients is expressed 

as expression (1.10).   is number of parameters in the model, and t is a positive constant called 

tuning parameter.  

                                                              ∑ |  |                                                                   (    ) 

Since the sum of all the coefficients should be less than the value of tuning parameter t, 

the closer to 0 of t, the more coefficients will shrink towards 0. Therefore, choosing the value of 

the tuning parameter is crucial for lasso because it controls the model complexity and prediction 

accuracy.  
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There are two popular methods to select the optimal value of the tuning parameter that 

results in a best subset of predictors included in the model. One is to compare the BIC for the 

resulting models given different value of the tuning parameter. The desired value of the tuning 

parameter is the one with a minimal BIC. The other is the Cross Validation (CV). The total 

observations are randomly divided into two parts: training portion and test portion. The training 

portion is used to fit a model, and then the fitted model is validated by predicting the test portion. 

The difference between the predicted value and the true value is called cross-validated error. The 

optimal tuning parameter for a “best” fitted model is the one with minimum mean of cross-

validated errors. The objective of this paper is to evaluate and compare these two methods for 

selecting the optimal tuning parameter through simulation studies. 

2.4 L1 Regularized Logistic Regression 

Lasso was originally developed for linear models, and it penalizes the complexity of the 

model with a constraint on the sum of the absolute values of the model coefficients. For the two-

class logistic regression, the lasso modifies the traditional parameter estimation method, 

maximum log-likelihood, see equation (1.3), with a constraint on the vector of model coefficients 

as expression (1.10). The lasso solves the following problem:  

   { ∑    (    )     (   (    ))     }  
                                                      ∑ |  |                                                           (   )               

Another way to state this optimization problem is to add the L1 norm of the parameter, ∑ |  |        to the objective as following. In this form of L1 regularization logistic regression, 

tuning parameter is λ. 
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        { ∑ (  (    )     (   (    )))    ∑ |  |        }                           (   )        

Un-regularized logistic regression is a convex optimization problem and the objective 

function is continuously differentiable, so we can use the standard convex optimization methods 

such as Newton’s method to solve it efficiently. The L1 regularized logistic regression, on the 

other hand, needs to solve a constrained optimization problem, which is more complex and time 

consuming. A number of algorithms to solve this optimization problem have been proposed. 

Generalized lasso was proposed by Roth (2004) and this algorithm develops a generalized lasso 

algorithm proposed by Osborne (2000). Lee et al. (2006) proposed an efficient algorithm that 

interactively approximates the objective function by a quadratic approximation at the current 

point, and maintains the L1 constraint at the same time.  

More recently, Friedman, Hastie and Tibshirani (2009) developed an efficient algorithm 

called coordinate descent for estimation of generalized linear model with convex penalties. Also 

they provide an R package        which is publicly available. We used this R package        

to estimate the coefficients with the coordinate descent algorithm in all simulation studies.  

As the values of tuning parameter increases, more coefficients will shrink to zero. For 

example, we simulated a dataset with 200 observations based on the model that has a binary 

response  , eight normally distributed predictors with mean 0 and standard deviation 1, the true 

model is  

  (  (   )   (   ))                               
Then, we used the        function available in the        package to fit a series of L1 

regularized logistic regression models with the values of   suggested by       . Figure 2 is the 
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plot of coefficient estimates against the values of the tuning parameter  . The scale at the top is 

the number of predictors left in the model.  
 

 

Figure 2 Relationship of the Coefficients Estimates and    ( ) in L1 regularized logistic 

regression 

When   ( )    ,         , coefficient of    turns into 0, seven predictors 

left in the model. When   ( )      ,         , coefficients of   ,   ,    and    turn 

into 0, and predictors   ,   ,    and    are left in the model. 
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2.5 Selection of Tuning Parameter 

2.5.1 Cross Validation 

Cross validation is a popular method for estimating the prediction error and comparing 

different models. Typically, we would partition the dataset into two parts: the training data and 

the testing data. In k-fold cross validation, the dataset will be randomly split into k mutually 

exclusive subsets of approximately equal size.  

Among the k subsets, one subset is retained as validation data for testing the model, and 

the remaining k-1 subsets are used as training data to fit the model. The cross validation process 

is repeated k times, and each of the subsets is used exactly once as validation data. Different 

values of the tuning parameter could result in different fitted model using the same training data. 

The optimal model is the one that has the minimum cross-validated errors, and the corresponding 

value of the tuning parameter for the optimal model is preferred. 

2.5.2 Bayesian Information Criterion 

For L1 regularized logistic regression model, we estimate the coefficients using penalized 

maximum likelihood estimation (2.2) given the value of the tuning parameter. Bayesian 

Information Criterion (BIC) compares models based on the deviance. BIC of a logistic regression 

model is calculated as follows: 

                                 ( )     ( )      ( )                             (   ) 

BIC penalizes the model complexity with term     ( ). For two models with same 

deviance, the model that includes less number of parameters has smaller BIC value. The variable 
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selection process based on BIC compares the models resulted in different tuning parameter 

values. The optimal fitted model is identified by the minimum value of BIC. 

2.6 Simulation Study  

The purpose of this simulation is to examine the performance of the CV and BIC for 

choosing the optimal value of tuning parameter in terms of variable selection and also prediction 

accuracy.  Their performance in terms of variable selection is evaluated by the True Positive 

Rate (TPR) and False Positive Rate (FPR). TPR is the proportion of correctly selected important 

predictors among the true important predictors, while the FPR is the proportion of falsely 

selected important predictors among the true unimportant predictors. Both TPR and FPR have 

value ranging from 0 to 1. A model that has both TPR closer to 1 and FPR closer to 0 is desired.  

Their performance in terms of prediction accuracy is evaluated by the sum of absolute 

difference between the estimated coefficients and true coefficients, which is called bias for the 

sake of simplicity. A model with smaller bias estimates the coefficients more accurately. 

However, since a model that has more true important predictors tends to have larger bias, this 

estimation accuracy evaluation criterion is adjusted by dividing the bias by the number of 

important predictors in the true model, called adjusted bias. 

2.6.1 The Model Setup 

To compare the performance of CV and BIC for selecting the optimal tuning parameter, 

we generated the data consisting n observations based on the models with different number of 

predictors ( ), proportion of important predictors among all predictors (    ). The   ( ) 

correlation structure with different correlation coefficient ( ) was used.  
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In practice, the important predictors, although they all significantly affect the response, 

may have different level of influence on the response variable, so we set up two different 

structures for the vector of the coefficients ( )  
2.6.2 Design of the Simulation 

We chose the models with number of predictors ( ), proportion of important predictors 

among all predictors (    ), number of observations ( ), correlation coefficient ( ) and the 

vector of coefficients ( ) as follow. 

1)              

2)                   

3)                      

4)                                    

When ρ=0, the predictors are independent and identically distributed (IID).  

5)     (     ⏟            ⏟      ) or    (     ⏟                    ⏟                ⏟      ) 

We call the vector of coefficients as    if the first    elements are 1 and the last      

elements are 0. While the vector of coefficients is called as    if the first      elements are 1, 

the following      elements are 0.5 and the last     elements are 0. For instance, a model has 

4 important predictors out of total 6 predictors and the structure of the coefficients is   , then the 

logit of this model is 

                          

 If the structure of the coefficients of this model is   , then the logit of this model is 
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In addition, we are interested in their performance on the complex data that has a large 

number of predictors, called high dimension data. So we also simulated data with 400 or 800 

observations based on the model with 50 predictors, and 20% of these predictors are important.   

Under each scenario, we simulated 200 data sets. All simulations were conducted using 

the        package available in R 2.15.1, which is developed by Friedman, Hastie and 

Tibshirani. This package provides extremely efficient procedures for fitting the lasso 

regularization path for logistic regression models.  

2.6.3 The Procedure 

The following procedures explain how the BIC and CV methods select the value for 

tuning parameter λ and how we compute the bias, adjusted bias, TPR and FPR with the 

coefficients estimates of the selected model.  

1)  Simulate one dataset consisting n observations based on the model with    important 

predictors among   candidate predictors and the structure of the vector of coefficients is    

or    . All predictors are normally distributed with mean   and standard deviation  , and they 

are correlated in the   ( ) correlation structure with correlation coefficient  .  

2)  With the simulated data and the value of tuning parameter λ suggested by the        

function in        R package, fit a penalized L1 logistic model and get the coefficients 

estimates and model deviance. 
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3)  Compute the BIC for each subset model by adding the model deviance and 

multiplication of   and    ( )  then find the subset model with the smallest BIC and its 

estimated coefficients. Then compute the bias, adjusted bias, TPR and FPR of this selected 

model.  

4)  The        package provides the           function to perform a 10-fold cross 

validation and returns an optimal value for the tuning parameter λ, which results in a model with 

minimum mean cross validated error (cvm). With the same simulated data, we use this function 

and get the optimal value of tuning parameter λ and its corresponding coefficients estimation. 

Then compute the bias, adjusted bias, TPR and FPR of this selected model;  

5)  Repeat 1) through 4) for 200 times and at each time the dataset generated has the same 

scenario with the dataset generated in 1). Then calculate the mean and standard deviation of the 

bias, adjusted bias, TPR and FPR for each method. 
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CHAPTER 3 

Result and Conclusion 

3.1 Simulation Result 

We conducted the simulations and summarized the results in seven sets. In simulation set 

A, we kept the structure of the vector of coefficients vector as    and the predictors are 

independent and identically distributed (IID). Table 2 is the summary result of this simulation 

set. When          ,      and      , some fitted models did not converge. The possible 

reason is that the ratio of the number of predictors and sample size is high. We mark all the non-

convergence cases with N/A, and we will discuss the non-convergence issues in detail in section 

3.3.  

Except the non-convergence, Table 2 shows very consistent results. BIC gives smaller 

bias, higher TPR and smaller standard deviation of the TPR; while CV gives smaller standard 

deviation of the bias, lower FPR and smaller standard deviation of the FPR. Therefore, BIC 

outperforms CV regarding the bias, TPR and standard deviation of the TPR, while CV performs 

better regarding the standard deviation of the bias, FPR and standard deviation of the FPR. The 

only exception here is that when          ,      and      , BIC has a smaller standard 

deviation of the bias. 

  



23 
 

 

Table 2 Result of Simulation Set A with Model Setup as     and      

n p p1/p Method Bias 
Standard 
Deviation 
of Bias 

Adjusted 
Bias 

Standard 
Deviation 
of 
Adjusted 
Bias 

TPR 

Standard 
Deviation 
of  
TPR 

FPR 

Standard 
Deviation 
of 
FPR 

100 10 0.8 BIC 3.7903 2.5862 0.4738 0.3233 0.9919 0.0378 0.6050 0.3565 

CV 4.8796 0.9017 0.6100 0.1127 0.9481 0.0981 0.2325 0.3320 

0.2 BIC 1.0216 0.4959 0.5108 0.2480 0.9550 0.1750 0.0881 0.1307 

CV 1.3015 0.3124 0.6508 0.1562 0.9175 0.2285 0.0331 0.0757 

20 0.8 BIC 
N/A 

CV 

0.2 BIC 1.0181 0.4400 0.5091 0.2200 0.9650 0.1546 0.1081 0.1399 

CV 1.2961 0.2966 0.6481 0.1483 0.9525 0.1707 0.0444 0.0821 

200 10 0.8 BIC 2.1580 0.8294 0.2697 0.1037 1.0000 0.0000 0.6475 0.3573 

CV 3.9721 0.7201 0.4965 0.0900 1.0000 0.0000 0.2175 0.2772 

0.2 BIC 0.7337 0.2626 0.3669 0.1313 1.0000 0.0000 0.0813 0.1119 

CV 1.0528 0.2343 0.5264 0.1172 0.9975 0.0354 0.0206 0.0557 

20 0.8 BIC 6.6026 4.0100 0.4127 0.2506 0.9988 0.0088 0.7750 0.2351 

CV 8.9240 1.1806 0.5578 0.0738 0.9950 0.0181 0.3188 0.2282 

0.2 BIC 1.8739 0.4421 0.4685 0.1105 1.0000 0.0000 0.1013 0.1006 

CV 2.1536 0.3719 0.5384 0.0930 0.9988 0.0177 0.0653 0.0760 

400 10 0.8 BIC 1.4741 0.5110 0.1843 0.0639 1.0000 0.0000 0.6300 0.3481 

CV 3.2117 0.6160 0.4015 0.0770 1.0000 0.0000 0.2100 0.2938 

0.2 BIC 0.5510 0.1892 0.2755 0.0946 1.0000 0.0000 0.0688 0.1016 

CV 0.8651 0.1744 0.4325 0.0872 1.0000 0.0000 0.0169 0.0480 

20 0.8 BIC 3.6373 1.4316 0.2273 0.0895 1.0000 0.0000 0.7563 0.2549 

CV 7.1566 1.1119 0.4473 0.0695 1.0000 0.0000 0.3688 0.2480 

0.2 BIC 1.4401 0.3272 0.3600 0.0818 1.0000 0.0000 0.0809 0.0865 

CV 1.7669 0.3027 0.4417 0.0757 1.0000 0.0000 0.0450 0.0726 

 

Table 3 is the summary result for simulation set B, in which we kept the model 

coefficients vector as    and the predictors are independent and identically distributed (IID). As 

the result of simulation set B, BIC is better in terms of bias, TPR and standard deviation of TPR, 

while CV is better in terms of standard deviation of the bias, FPR and standard deviation of FPR. 

However, same as simulation set A, when          ,      and      , BIC has a smaller 

standard deviation of the bias. Besides, when          ,      and      , BIC has lower 
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TPR and larger standard deviation of TPR, while CV has higher FPR and larger standard 

deviation of FPR. 

Table 3 Result of Simulation Set B with Model Setup as    and     

n p p1/p Method Bias 
Standard 
Deviation 
of Bias 

Adjusted 
Bias 

Standard 
Deviation 
of 
Adjusted 
Bias 

TPR 

Standard 
Deviation 
of  
TPR 

FPR 

Standard 
Deviation 
of 
FPR 

100 10 0.8 BIC 3.1454 1.2296 0.3932 0.1537 0.8563 0.1957 0.4575 0.3908 

CV 3.9936 0.7785 0.4992 0.0973 0.7513 0.1969 0.1700 0.2811 

0.2 BIC 0.9390 0.4221 0.4695 0.2111 0.7125 0.3048 0.0763 0.1325 

CV 1.0900 0.2666 0.5450 0.1333 0.6900 0.3104 0.0513 0.1101 

20 0.8 BIC 
N/A 

CV 

0.2 BIC 2.0437 0.5132 0.5109 0.1283 0.6525 0.2855 0.0566 0.0809 

CV 2.2183 0.3898 0.5546 0.0974 0.6838 0.2384 0.0597 0.0837 

200 10 0.8 BIC 1.7906 0.6629 0.2238 0.0829 0.9831 0.0597 0.4625 0.4039 

CV 3.0989 0.5775 0.3874 0.0722 0.9188 0.0969 0.1350 0.2441 

0.2 BIC 0.6546 0.3163 0.3273 0.1581 0.9250 0.1790 0.0763 0.1194 

CV 0.8902 0.2160 0.4451 0.1080 0.8525 0.2340 0.0388 0.0924 

20 0.8 BIC 5.1437 1.9938 0.3215 0.1246 0.9628 0.0750 0.6325 0.3099 

CV 6.7466 1.0806 0.4217 0.0675 0.9028 0.0935 0.2825 0.2596 

0.2 BIC 1.5752 0.4002 0.3938 0.1000 0.8775 0.1754 0.0803 0.0949 

CV 1.7813 0.3377 0.4453 0.0844 0.8600 0.1818 0.0597 0.0837 

400 10 0.8 BIC 1.2509 0.3562 0.1564 0.0445 1.0000 0.0000 0.5625 0.3913 

CV 2.5564 0.4661 0.3196 0.0583 0.9894 0.0371 0.1800 0.2747 

0.2 BIC 0.4744 0.1740 0.2372 0.0870 0.9900 0.0702 0.0594 0.0929 

CV 0.7337 0.1689 0.3669 0.0845 0.9400 0.1629 0.0131 0.0404 

20 0.8 BIC 3.0542 0.9174 0.1909 0.0573 0.9978 0.0115 0.6825 0.2776 

CV 5.4874 0.8716 0.3430 0.0545 0.9838 0.0302 0.2913 0.2478 

0.2 BIC 1.1675 0.2836 0.2919 0.0709 0.9925 0.0428 0.0906 0.0879 

CV 1.4549 0.2504 0.3637 0.0626 0.9688 0.0866 0.0425 0.0719 

 

Correlation coefficient   was set as 0.5 for simulation set C and D. Simulation set C has     and simulation set D has   . The results displayed in Table 4 and 5 indicate that BIC is 
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better in terms of bias, TPR and standard deviation of TPR, while CV is better in terms of 

standard deviation of the bias, FPR and standard deviation of FPR. 

Table 4 Result of Simulation Set C with Model Setup as    and       

n p p1/p Method Bias 
Standard 
Deviation 

of Bias 

 
Adjusted 

Bias 

Standard 
Deviation 

of 
Adjusted 

Bias 

TPR 

Standard 
Deviation 

of 
TPR 

FPR 

Standard 
Deviation 

of 
FPR 

   

100 10 0.8 BIC 
N/A 

CV 

0.2 BIC 0.9415 0.6937 0.4708 0.3468 0.9975 0.0354 0.0975 0.1402 

CV 1.1534 0.2609 0.5767 0.1304 0.9800 0.0982 0.0344 0.0674 

20 0.8 BIC 

 N/A 
CV 

0.2 BIC 

CV 

200 10 0.8 BIC 3.0178 1.2486 0.3772 0.1561 0.9944 0.0288 0.5325 0.3787 

CV 3.9681 0.6680 0.4960 0.0835 0.9869 0.0423 0.1425 0.2623 

0.2 BIC 0.6941 0.2551 0.3471 0.1276 1.0000 0.0000 0.0700 0.1075 

CV 1.0301 0.1948 0.5151 0.0974 0.9950 0.0499 0.0094 0.0414 

20 0.8 BIC 
 N/A 

CV 

0.2 BIC 1.6497 0.3953 0.4124 0.0988 0.9950 0.0351 0.0869 0.0895 

CV 1.9986 0.3585 0.4996 0.0896 0.9900 0.0491 0.0447 0.0702 

400 10 0.8 BIC 1.9683 0.5612 0.2460 0.0702 1.0000 0.0000 0.4850 0.3646 

CV 3.3590 0.5508 0.4199 0.0689 0.9994 0.0088 0.1350 0.2336 

0.2 BIC 0.4951 0.1899 0.2475 0.0949 1.0000 0.0000 0.0650 0.0946 

CV 0.8232 0.1685 0.4116 0.0843 1.0000 0.0000 0.0125 0.0434 

20 0.8 BIC 5.4143 2.3651 0.3384 0.1478 0.9994 0.0062 0.6363 0.2844 

CV 7.6377 1.0174 0.4774 0.0636 0.9984 0.0116 0.2288 0.2239 

0.2 BIC 1.2765 0.3031 0.3191 0.0758 1.0000 0.0000 0.0766 0.0804 

CV 1.6639 0.2799 0.4160 0.0700 1.0000 0.0000 0.0272 0.0500 
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Table 5 Result of Simulation Set D with Model Setup as    and        

n p p1/p Method Bias 
Standard 
Deviation 
of Bias 

 
Adjusted 
Bias 

Standard 
Deviation 
of 
Adjusted 
Bias 

TPR 

Standard 
Deviation 
of  
TPR 

FPR 

Standard 
Deviation 
of 
FPR 

   

100 10 0.8 BIC 
N/A 

CV 

0.2 BIC 0.8206 0.4347 0.4103 0.2174 0.8275 0.2435 0.0756 0.1234 

CV 0.9703 0.2105 0.4852 0.1052 0.7550 0.2604 0.0319 0.0841 

20 0.8 BIC 

 N/A 
CV 

0.2 BIC 

CV 

200 10 0.8 BIC 2.4886 1.1343 0.3111 0.1418 0.9538 0.0734 0.4300 0.3685 

CV 3.0479 0.5302 0.3810 0.0663 0.9144 0.0900 0.1200 0.2255 

0.2 BIC 0.5839 0.2461 0.2920 0.1230 0.9450 0.1568 0.0744 0.1100 

CV 0.8088 0.1763 0.4044 0.0882 0.8825 0.2125 0.0238 0.0593 

20 0.8 BIC 
 N/A 

CV 

0.2 BIC 1.2533 0.3213 0.3133 0.0803 0.9300 0.1206 0.0519 0.0728 

CV 1.5441 0.2925 0.3860 0.0731 0.8938 0.1449 0.0184 0.0508 

400 10 0.8 BIC 1.6001 0.5269 0.2000 0.0659 0.9944 0.0260 0.4475 0.3697 

CV 2.5235 0.4206 0.3154 0.0526 0.9769 0.0487 0.1075 0.2119 

0.2 BIC 0.3988 0.1613 0.1994 0.0807 0.9900 0.0702 0.0644 0.1002 

CV 0.6557 0.1328 0.3278 0.0664 0.9725 0.1143 0.0075 0.0346 

20 0.8 BIC 4.1588 1.2247 0.2599 0.0765 0.9797 0.0343 0.5613 0.2928 

CV 5.5960 0.7269 0.3498 0.0454 0.9656 0.0455 0.1838 0.1917 

0.2 BIC 0.9856 0.2500 0.2464 0.0625 0.9888 0.0520 0.0538 0.0712 

CV 1.3098 0.2245 0.3274 0.0561 0.9700 0.0852 0.0178 0.0511 

 

For simulation set E and F, correlation coefficient   was set as 0.8. Simulation set C has     and simulation set D has   . Table 6 and Table 7 display the results for simulation set E and 

F, which seem that they have the same overall results as simulation set A – D, BIC performs 

better in terms of bias, TPR and standard deviation of TPR, while CV performs better in terms of 



27 
 

 

standard deviation of the bias, FPR and standard deviation of FPR. Exception here is that for 

models with                     , CV gets smaller bias that BIC. 

Table 6 Result of Simulation Set E with Model Setup as     and       

n p p1/p Method Bias 
Standard 
Deviation 
of Bias 

 
Adjusted 
Bias 

Standard 
Deviation 
of 
Adjusted 
Bias 

TPR 

Standard 
Deviation 
of  
TPR 

FPR 

Standard 
Deviation 
of 
FPR 

   

100 10 0.8 BIC 
N/A 

CV 

0.2 BIC 1.2049 0.7732 0.6025 0.3866 0.9325 0.1713 0.1225 0.1575 

CV 1.2505 0.3155 0.6253 0.1578 0.9025 0.1986 0.0450 0.0763 

20 0.8 BIC 

 N/A 
CV 

0.2 BIC 

CV 

200 10 0.8 BIC 5.1295 4.7349 0.6412 0.5919 0.9188 0.0884 0.3925 0.3320 

CV 4.3571 0.5607 0.5446 0.0701 0.8950 0.0958 0.1725 0.2681 

0.2 BIC 0.8002 0.3819 0.4001 0.1910 0.9925 0.0609 0.0925 0.1164 

CV 1.0287 0.2238 0.5144 0.1119 0.9875 0.0783 0.0363 0.0737 

20 0.8 BIC 
 N/A 

CV 

0.2 BIC 1.8012 0.5062 0.4503 0.1266 0.9538 0.1005 0.0703 0.0792 

CV 2.0599 0.3668 0.5150 0.0917 0.9425 0.1113 0.0309 0.0509 

400 10 0.8 BIC 3.1205 1.1793 0.3901 0.1474 0.9838 0.0440 0.3700 0.3334 

CV 3.6516 0.5827 0.4565 0.0728 0.9756 0.0570 0.2025 0.2840 

0.2 BIC 0.5626 0.2488 0.2813 0.1244 1.0000 0.0000 0.0900 0.1183 

CV 0.8457 0.1619 0.4228 0.0810 1.0000 0.0000 0.0213 0.0487 

20 0.8 BIC 13.1369 26.8904 0.8211 1.6807 0.9400 0.0567 0.5163 0.3171 

CV 8.5609 1.1904 0.5351 0.0744 0.9338 0.0606 0.1913 0.2112 

0.2 BIC 1.3493 0.3740 0.3373 0.0935 0.9963 0.0305 0.0794 0.0751 

CV 1.7161 0.2972 0.4290 0.0743 0.9950 0.0351 0.0263 0.0479 
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Table 7 Result of Simulation Set F with Model Setup as     and       

n p p1/p Method Bias 
Standard 
Deviation 
of Bias 

 
 
Adjusted 
Bias 

Standard 
Deviation 
of 
Adjusted 
Bias 

TPR 

Standard 
Deviation 
of  
TPR 

FPR 

Standard 
Deviation 
of 
FPR 

   

100 10   0.8 BIC 
N/A 

CV 

0.2 BIC 0.8388 0.4525 0.4194 0.2262 0.8325 0.2366 0.0775 0.1030 

CV 0.9768 0.2423 0.4884 0.1212 0.7625 0.2553 0.0363 0.0737 

20 0.8 BIC 

N/A 
CV 

0.2 BIC 

CV 

200 10 0.8 BIC 3.4683 1.2562 0.4335 0.1570 0.8513 0.1059 0.3275 0.3530 

CV 3.3085 0.4808 0.4136 0.0601 0.8213 0.1082 0.1475 0.2496 

0.2 BIC 0.6487 0.3135 0.3244 0.1568 0.9325 0.1713 0.0794 0.1136 

CV 0.8035 0.1867 0.4018 0.0934 0.8775 0.2156 0.0269 0.0662 

20 0.8 BIC 
N/A 

CV 

0.2 BIC 1.4632 0.4400 0.3658 0.1100 0.8788 0.1349 0.0625 0.0698 

CV 1.5927 0.2660 0.3982 0.0665 0.8525 0.1487 0.0244 0.0442 

400 10 0.8 BIC 2.4893 0.7680 0.3112 0.0960 0.9344 0.0792 0.3150 0.3337 

CV 2.8171 0.4017 0.3521 0.0502 0.9069 0.0938 0.1275 0.2605 

0.2 BIC 0.4870 0.2110 0.2435 0.1055 0.9850 0.0855 0.0744 0.0851 

CV 0.6606 0.1435 0.3303 0.0717 0.9500 0.1504 0.0244 0.0497 

20 0.8 BIC 6.3251 1.8855 0.3953 0.1178 0.8856 0.0706 0.3413 0.2631 

CV 6.2647 0.7322 0.3915 0.0458 0.8672 0.0725 0.1475 0.1862 

0.2 BIC 1.0367 0.3360 0.2592 0.0840 0.9600 0.0919 0.0569 0.0547 

CV 1.3137 0.2193 0.3284 0.0548 0.9313 0.1119 0.0144 0.0318 

 

To simulate the cases that multi-collinearity exists among the predictors, correlation 

coefficient   was set as 0.95 for simulation set G and as 0.99 for simulation set H. Since non-

convergence occurs for most cases where           , we only considered the cases that           . The results displayed in Table 8 and Table 9 indicate that overall BIC is better in terms 
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of TPR and standard deviation of TPR, while CV is better in terms of bias, standard deviation of 

the bias, FPR and standard deviation of FPR.  

Table 8 Result of Simulation Set G with Model Setup as          and        

  n p Method Bias 
Standard 
Deviation 
of Bias 

Adjusted 
Bias 

Standard 
Deviation 
of 
Adjusted 
Bias 

TPR 

Standard 
Deviation 
of 
TPR  

FPR 

Standard 
Deviation 
of 
FPR    100 10 BIC 1.8225 1.1823 0.9113 0.5911 0.7150 0.2629 0.1331 0.1373 

  
    CV 1.4723 0.4519 0.7361 0.2260 0.6750 0.2688 0.0775 0.1007 

  
  20 BIC 4.3403 7.0126 1.0851 1.7532 0.6638 0.1729 0.0931 0.0917 

  
    CV 2.9292 1.4622 0.7323 0.3655 0.6500 0.1807 0.0506 0.0750 

  
200 10 BIC 1.2479 0.6690 0.6240 0.3345 0.8725 0.2185 0.1181 0.1136 

  
    CV 1.2049 0.3629 0.6024 0.1814 0.8350 0.2357 0.0706 0.0891 

  
  20 BIC 2.7406 1.1243 0.6852 0.2811 0.8138 0.1662 0.0856 0.0760 

  
    CV 2.4373 0.5340 0.6093 0.1335 0.7875 0.1732 0.0506 0.0622 

  
400 10 BIC 0.9624 0.5620 0.4812 0.2810 0.9700 0.1190 0.1263 0.1215 

  
    CV 0.9977 0.2859 0.4989 0.1429 0.9575 0.1398 0.0731 0.0915 

  
  20 BIC 2.2933 0.9125 0.5733 0.2281 0.8988 0.1375 0.0756 0.0685 

  
    CV 2.1578 0.5074 0.5395 0.1268 0.8875 0.1499 0.0397 0.0490    100 10 BIC 1.5140 2.4719 0.7570 1.2360 0.6575 0.2632 0.1156 0.1308 

  
    CV 1.1571 0.4656 0.5785 0.2328 0.6175 0.2698 0.0606 0.0938 

 
 20 BIC    

N/A 
    

 
  CV        

  
200 10 BIC 0.9937 0.5146 0.4969 0.2573 0.7850 0.2482 0.1006 0.1105 

  
    CV 0.9673 0.2999 0.4837 0.1500 0.7525 0.2506 0.0531 0.0767 

  
  20 BIC 2.1994 0.8786 0.5499 0.2196 0.7063 0.1726 0.0706 0.0693 

  
    CV 1.9331 0.4379 0.4833 0.1095 0.6688 0.1789 0.0331 0.0451 

  
400 10 BIC 0.7943 0.3972 0.3971 0.1986 0.8250 0.2391 0.1038 0.1108 

  
    CV 0.8008 0.2436 0.4004 0.1218 0.7925 0.2470 0.0563 0.0866 

  
  20 BIC 1.7332 0.6161 0.4333 0.1540 0.8100 0.1529 0.0759 0.0660 

  
    CV 1.6027 0.3785 0.4007 0.0946 0.7963 0.1526 0.0347 0.0468 
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Table 9 Result of Simulation Set H with Model Setup as           and         

  n p Method Bias 
Standard 
Deviation 
of Bias 

Adjusted 
Bias 

Standard 
Deviation 
of 
Adjusted 
Bias 

TPR 

Standard 
Deviation 
of 
FPR  

FPR 

Standard 
Deviation 
of 
FPR    100 10 BIC 2.4868 1.8741 1.2434 0.9371 0.5500 0.2745 0.1281 0.1178 

  
    CV 1.7782 0.9675 0.8891 0.4837 0.5075 0.2675 0.0981 0.1032 

  
  20 BIC 5.3582 3.2656 1.3396 0.8164 0.4450 0.1647 0.0853 0.0752 

  
    CV 3.4747 0.8052 0.8687 0.2013 0.4500 0.1825 0.0631 0.0645 

  
200 10 BIC 2.0443 1.0062 1.0221 0.5031 0.6250 0.2641 0.1394 0.1216 

  
    CV 1.5943 0.6418 0.7971 0.3209 0.5850 0.2658 0.1063 0.1083 

  
  20 BIC 4.3439 1.4143 1.0860 0.3536 0.5463 0.1943 0.0850 0.0672 

  
    CV 3.2312 0.7921 0.8078 0.1980 0.5400 0.2012 0.0703 0.0657 

  
400 10 BIC 1.7044 0.8148 0.8522 0.4074 0.7525 0.2556 0.1519 0.1252 

  
    CV 1.3831 0.5395 0.6915 0.2698 0.7325 0.2599 0.1069 0.1066 

  
  20 BIC 3.6605 1.2499 0.9151 0.3125 0.6588 0.1912 0.0884 0.0684 

  
    CV 2.9465 0.8151 0.7366 0.2038 0.6488 0.1927 0.0681 0.0661    100 10 BIC 2.0813 1.7247 1.0406 0.8623 0.4600 0.2574 0.1225 0.1141 

  
    CV 1.4137 0.5226 0.7069 0.2613 0.4100 0.2593 0.0881 0.0961 

 
  20 BIC 3.9380 1.4646 0.9845 0.3662 0.3688 0.1584 0.0741 0.0636 

 
    CV 2.7300 0.6769 0.6825 0.1692 0.3563 0.1554 0.0566 0.0534 

  
200 10 BIC 1.7622 1.2395 0.8811 0.6198 0.5525 0.2476 0.1325 0.1213 

  
    CV 1.3004 0.5531 0.6502 0.2765 0.5125 0.2478 0.1006 0.1097 

  
  20 BIC 3.4510 1.4918 0.8627 0.3730 0.4950 0.1973 0.0766 0.0690 

  
    CV 2.5374 0.7063 0.6343 0.1766 0.4738 0.1932 0.0547 0.0588 

  
400 10 BIC 1.3118 0.8059 0.6559 0.4029 0.6400 0.2707 0.1319 0.1229 

  
    CV 1.0977 0.5099 0.5489 0.2549 0.6225 0.2676 0.0950 0.1043 

  
  20 BIC 2.8258 0.9989 0.7065 0.2497 0.5913 0.1928 0.0747 0.0629 

  
    CV 2.2592 0.6805 0.5648 0.1701 0.5613 0.1850 0.0559 0.0609 

 

Last, in the high dimension case, each data has 50 predictors. Simulation result shown in 

Table 10 still indicates that BIC performs better in terms of bias, TPR and standard deviation of 

TPR, while CV performs better in terms of standard deviation of the bias, FPR and standard 

deviation of FPR. However, BIC now outperforms CV regarding the FPR and standard deviation 

of FPR when       and       or    . 
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Table 10 Result of High Dimension Case with Model Setup as          and      

p p1/p ρ n Method Bias 
Standard 
Deviation 
of Bias 

Adjusted 
Bias 

Standard 
Deviation 
of 
Adjusted 
Bias 

TPR 

Standard 
Deviation 
of  
TPR 

FPR 

Standard 
Deviation 
of 
FPR 

 
50 

 
0.2 

 
  0 400 

BIC 5.2689 0.6457 0.5269 0.0646 1.0000 0.0000 0.1088 0.0769 

CV 5.2725 0.5282 0.5273 0.0528 1.0000 0.0000 0.1324 0.0799 

800 
BIC 4.2315 0.5354 0.4231 0.0535 1.0000 0.0000 0.1106 0.0749 

CV 4.3045 0.4328 0.4305 0.0433 1.0000 0.0000 0.1209 0.0830 

 
0.5 400 

BIC 4.8942 0.5945 0.4894 0.0594 1.0000 0.0000 0.0740 0.0595 

CV 5.0262 0.5524 0.5026 0.0552 1.0000 0.0000 0.0841 0.0662 

800 
BIC 4.0391 0.5300 0.4039 0.0530 1.0000 0.0000 0.0696 0.0601 

CV 4.2414 0.4626 0.4241 0.0463 1.0000 0.0000 0.0621 0.0551 

 
0.8 400 

BIC 4.8043 0.6009 0.4804 0.0601 0.9710 0.0497 0.0655 0.0516 

CV 5.1444 0.5499 0.5144 0.0550 0.9685 0.0507 0.0545 0.0491 

800 
BIC 3.9678 0.5452 0.3968 0.0545 0.9980 0.0140 0.0778 0.0512 

CV 4.3667 0.5256 0.4367 0.0526 0.9975 0.0157 0.0558 0.0469 

 

3.2 Conclusion 

By varying the number of observations ( ), number of predictors ( ), proportion of 

important predictors among all predictors (    ), the strength of correlation between the 

predictors ( ) and the structure of the vector of coefficients ( )  we compared the performances 

of BIC and CV on choosing the tuning parameter of the L1 regularized logistic regression in 

terms of parameter estimation and variable selection. Overall, simulation results show that: 

1) BIC achieves smaller bias, higher TPR and smaller standard deviation of TPR. 

2)  CV achieves smaller standard deviation of bias, lower FPR and smaller standard 

deviation of FPR.  
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However, when serious multi-collinearity exists among the predictors, the CV performs 

better with smaller bias. The simulation result indicates that BIC achieves better prediction 

accuracy, and it has more consistency and power to choose the true important predictors, while 

CV achieves better estimation accuracy when serious multi-collinearity exists, and it tends to get 

more consistent coefficients estimation, although not as accurate as BIC, and also performs 

better screening out the false important predictors correctly and consistently.  

However there are several exceptions: 

1)  BIC outperforms CV with smaller standard deviation of the bias when p1=8, n=400 

and predictors are IID. 

2)  BIC outperforms CV with lower FPR and smaller standard deviation of the FPR 

when     ,      , predictors are IID and true model has coefficients vector    . 

3)  CV outperforms BIC with higher TPR and smaller standard deviation of the TPR 

when     ,      , predictors are IID and true model has coefficients vector    . 

4)  CV outperforms BIC with smaller bias when                   and 

predictors have a correlation coefficient 0.8. 

We also find that a high ratio of the number of predictors and number of observations 

and/or existence of multi-collinearity could cause non-convergence of the fitted models. 

3.3 Remarks on the Non-convergence Issue 

According to the simulation result, some fitted models didn’t reach convergence. As we 

mentioned in section 2.2.1, the possible reasons for non-convergence include but are not limited 
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to the high ratio of the number of predictors and sample size, multi-collinearity and separation 

problem. Next we use two non-convergence cases as examples, analyze the reason that causes 

the non-convergence and the possible solutions. 

3.3.1 Example 1 

When the models are setup as                   and       , the coefficients 

estimation of some fitted models didn’t reach convergence. Here multi-collinearity is not the 

reason for non-convergence because all the predictors are independent and identically 

distributed. Using one dataset with non-converged fitted L1 regularized logistic regression 

model, we conducted a linear discriminate analysis to find the linear combination of the 

predictors which separates the two classes of the response variable. This classification procedure 

results in a misclassification rate 5%, which means that it didn’t completely separate two classes 

of the response variable. Thus, separation is not the reason for non-convergence.  

Next, using the same dataset, we fitted a logistic regression model without the L1 penalty, 

the maximum likelihood estimators didn’t converge neither. However, with a larger sample size, 

200, all the fitted models converged. So the reason that causes the non-convergence of this case 

is high ratio of number of predictors and sample size. The solution for the non-convergence 

caused by this reason can be solved with an increased sample size. In general, the logistic 

regression models require approximately 10 observations per predictor to reach convergence 

(Peduzzi, 1996). 
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3.3.2 Example 2 

When the models are setup as                     and      , the coefficients 

estimation of some fitted models didn’t reach convergence. Since when the models are setup as                   and      , all the fitted models converged, collinearity might be 

the reason for non-convergence when predictors are correlated. We checked whether the non-

convergence problem can be solved if we fit a logistic regression with both L1 penalty and L2 

penalty (Hui and Trevor, 2003). L2 penalty is used to remedy the multi-collinearity problem, and 

it is a constraint on the sum of the square of the coefficients as expression 3.1. Here c is a 

positive constant. 

             ∑    
                                                                   (   ) 

The L1 and L2 penalized maximum likelihood estimation solves the following 

optimization problem  

     { ∑ (  (    )     (   (    )))  (   )∑ |  |   ∑                }    (   ) 
, where   is constant with value between 0 and 1.   is the tuning parameter for this minimization 

problem. The L1 penalty might shrinkage some coefficients to exact zero while L2 penalty does 

not. Using one dataset with non-converged fitted L1 and L2 regularized logistic regression model, 

when      , the fitted model reached convergence. So when there exists collinearity among 

the predictors, L1 and L2 regularized logistic regression is a good alternative to L1 regularized 

logistic regression since it can remedy the collinearity problem with the L2 penalty. 
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CHAPTER 4 

Discussion and Future Work 

4.1 Discussion 

Lasso is a regression shrinkage and variable selection method that was proposed by 

Tibshirani in 1996. It adds a constraint on the model coefficients to achieve a sparse solution 

(Friedman et al., 2009). However, the Lasso does a poor job in the      case. A new 

regularization and variable selection method, elastic net, was introduced by Zou and Hastie in 

2003. This method is viewed as a generalization of the lasso. It improves the Lasso and also is 

useful when number of predictors is much larger than the number of observations.  

There are also many literatures to compare the Lasso with other variable selection 

methods for logistic regression. Fu (1998) compared the bridge regression, a special family of 

penalized regressions, with the Lasso, and concluded that the bridge regression performs well 

compared to the Lasso. However, Lasso is the well-developed shrinkage and variable selection 

method, in addition, a fast algorithm called coordinate descent for estimation of the logistic 

regression model was developed by Friedman, Hastie and Tibshirani. This allows a wider 

application of L1 regularized logistic regression in practice.  

4.2 Remaining Issues 

First, our study only focuses on the selection of tuning parameter in two-class logistic 

regression. Further study can be conducted to evaluate the performance of BIC and CV for 
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choosing the tuning parameter in multinomial logistic regression models, or the case where the 

logit is a nonlinear function of predictors.  

Second, in the case that number of predictors is much greater than the sample size, Lasso 

does not work well. Elastic net method is a better choice to select variables and estimate 

coefficients in this case. Last, although        package provides efficient procedures for fitting 

lasso regularization path for logistic regression, in the cases where the fitted models do not 

converge, a method to detect the non-convergence is desired.  
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Appendix  

R Code 

 In this appendix, we give the R code for simulating the 200 datasets based on the model 

setup as     , vector of coefficients as    (                           ),       and       and computing the average bias, TPR and FPR of the 200 fitted models. 

 

### Package glmnet was used to fit the L1 regularized logistic regression model 

library(glmnet) 

 

### Simulated 200 datasets for each model setup 

rpt=200  

### Number of predictors 

p=10  

### Number of important predictors 

p1=0.2*p 

### Number of unimportant predictors 

p0=p-p1 

### Sample size 

n=100  

### mean of the predictors 

mu=rep(0,p) 

### Correlation structure of the predictors 

sigma=diag(1,p) 

for (i in 1:p){ 

 for (j in 1:p){ 

  sigma[i,j] <- 0.8^(abs(i-j)) 

 } 

} 

### vector of coefficients of predictors  

beta=c(rep(1,p1/2),rep(0.5,p1/2),rep(0,p0)) 

 

### Storage for the bias when using BIC 

Bias_BIC=rep(NA,rep=rpt) 

### Storage for the bias when using CV 
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Bias_CV =rep(NA,rep=rpt) 

### Storage for the TPR when using BIC 

TPR_BIC =rep(NA,rep=rpt) 

### Storage for the FPR when using BIC 

FPR_BIC =rep(NA,rep=rpt) 

### Storage for the TPR when using CV  

TPR_CV  =rep(NA,rep=rpt) 

### Storage for the FPR when using CV  

FPR_CV  =rep(NA,rep=rpt) 

 

for (i in 1:rpt){ 

  ### Simulate matrix of predictors x 

  x <- mvrnorm(n,mu,sigma) 

  ### Simulate values of response y 

  prob <- 1/(1+exp(-(x%*%beta))) 

  y <- rbinom(n,1,prob) 

 

  ### fit L1 regularized logistic regression models 

  fit.BIC <- glmnet(x,y,family="binomial") 

  ### calculate the BIC for each fitted model 

  BIC <- deviance(fit.BIC)+(fit.BIC$df+1)*(log(n)) 

  ### Get the coefficients estimation of the fitted model with min BIC 

  coef.BIC <- as.matrix(coef(fit.BIC)[2:(p+1),which.min(BIC)]) 

  ### Get the coefficients estimates of the true important predictors 

  b1.BIC <- coef.BIC[1:p1] 

  ### Get the coefficients estimates of the predictors with true coefficients 1 

  b11.BIC <- coef.BIC[1:(p1/2)] 

  ### Get the coefficients estimates of the predictors with true coefficients 0.5 

  b12.BIC <- coef.BIC[((p1/2)+1):p1] 

  ### Get the coefficients estimates of the predictors with true coefficients 0 

  b0.BIC <- coef.BIC[(p1+1):p] 

  ### Calculate the Bias of the fitted model with min BIC 

  Bias_BIC[i] <- sum(abs(1-b11.BIC))+sum(abs(0.5-b12.BIC))+sum(abs(0-b0.BIC)) 

  ### Calculate the TPR of the fitted model with min BIC 

  TPR_BIC[i] <- length((abs(b1.BIC)>0.01)[(abs(b1.BIC)>0.01)==TRUE])/p1 

  ### Calculate the TPR of the fitted model with min BIC 

  FPR_BIC[i] <- length((abs(b0.BIC)>0.01)[(abs(b0.BIC)>0.01)==TRUE])/p0 

 

  ### fit L1 regularized logistic regression models and  

  ### return the tuning parameter with min cross validated error 

  fit.CV <- cv.glmnet(x,y,family="binomial") 
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  ### Get the coefficients estimation of the selected model 

  coef.CV <- as.matrix(coef(fit.CV)[2:(p+1),]) 

  ### Get the coefficients estimates of the predictors with true important predictors 

  b1.CV <- coef.CV[1:p1] 

  ### Get the coefficients estimates of the predictors with true coefficients 1 

  b11.CV <- coef.CV[1:(p1/2)] 

  ### Get the coefficients estimates of the predictors with true coefficients 0.5 

  b12.CV <- coef.CV[((p1/2)+1):p1] 

  ### Get the coefficients estimates of the predictors with true coefficients 0 

  b0.CV <- coef.CV[(p1+1):p] 

  ### Calculate the Bias of the selected model 

  Bias_CV[i] <- sum(abs(1-b11.CV))+sum(abs(0.5-b12.CV))+sum(abs(0-b0.CV)) 

  ### Calculate the TPR of the selected model 

  TPR_CV[i] <- length((abs(b1.CV)>0.01)[(abs(b1.CV)>0.01)==TRUE])/p1 

  ### Calculate the FPR of the selected model 

  FPR_CV[i] <- length((abs(b0.CV)>0.01)[(abs(b0.CV)>0.01)==TRUE])/p0 

} 

 
### Result of BIC 
### Mean of the 200 Biases 
Bias.BIC <- mean(Bias_BIC) 
### Standard deviation of the 200 Biases 
Std.Bias.BIC <- sd(Bias_BIC) 
### Mean of the 200 Adjusted Biases 
Adj.Bias.BIC <- mean(Bias_BIC/p1) 
### Standard deviation of the 200 Adjusted Biases 
Std.Adj.Bias.BIC <- sd(Bias_BIC/p1) 
### Mean of the 200 TPRs 
TPR.BIC <- mean(TPR_BIC) 
### Standard deviation of the 200 TPRs 
Std.TPR.BIC <- sd(TPR_BIC) 
### Mean of the 200 FPRs 
FPR.BIC <- mean(FPR_BIC) 
### Standard deviation of the 200 FPRs 
Std.FPR.BIC <- sd(FPR_BIC) 
 
### Result of CV 
### Mean of the 200 Biases 
Bias.CV <- mean(Bias_CV) 
### Standard deviation of the 200 Biases 
Std.Bias.CV <- sd(Bias_CV) 
### Mean of the 200 Adjusted Biases 
Adj.Bias.CV <- mean(Bias_CV/p1) 
### Standard deviation of the 200 Adjusted Biases 
Std.Adj.Bias.CV <- sd(Bias_CV/p1) 
### Mean of the 200 TPRs 
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TPR.CV <- mean(TPR_CV) 
### Standard deviation of the 200 TPRs 
Std.TPR.CV <- sd(TPR_CV) 
### Mean of the 200 FPRs 
FPR.CV <- mean(FPR_CV) 
### Standard deviation of the 200 FPRs 
Std.FPR.CV <- sd(FPR_CV) 
 
### END ### 
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