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This paper treats a tuning of PID controllers method using multiobjective ant colony optimization. The design objective was to
apply the ant colony algorithm in the aim of tuning the optimum solution of the PID controllers (Kp,Ki, andKd) by minimizing the
multiobjective function. The potential of using multiobjective ant algorithms is to identify the Pareto optimal solution. The other
methods are applied to make comparisons between a classic approach based on the “Ziegler-Nichols” method and a metaheuristic
approach based on the genetic algorithms. Simulation results demonstrate that the new tuning method using multiobjective ant
colony optimization has a better control system performance compared with the classic approach and the genetic algorithms.

1. Introduction

Proportional-integral-derivative (PID) controllers are fre-
quently used in the control process to regulate the time do-
main behavior of many different types of dynamic plants.
These controllers are extremely popular because of their sim-
ple structure and they can usually provide a good closed loop
response characteristic. Despite its simple structure it seems
so hard to find a proper PID controller [1]. Considering this
problem, various methods have been proposed to tune these
parameters.

Ziegler-Nichols tuning method is the most standard one
but it is often difficult to find optimal PID parameters with
these methods. Therefore many optimization methods are
developed to tune the PID controllers such as fuzzy logic
[2, 3], neural network [4], neural-fuzzy logic [5], immune
algorithm [6], simulated annealing [7], and pattern recog-
nition [8]. In addition, we have many other optimum tuning
PID methods based on many random search methods such as
genetic algorithm (GA) [9, 10], particle swarm optimization
[11], and ant colony optimization [12].

In this work, we developed the problem of design PID
controllers as a multiobjective optimization problem taking
in consideration the ant colony optimization algorithm

(ACO). Researchers have reported the capacity of ACO to ef-
ficiently search for and locate an optimum solution. This
method was mainly inspired by the fact that ants are able to
find the shortest route between their nest and a food source.

Ant colony optimization (ACO) [13, 14] is a recently de-
veloped metaheuristic approach for solving hard combinato-
rial optimization problems such as the travelling salesman
problem TSP [15], quadratic assignment problem [16],
graph coloring problems [17], hydroelectric generation
scheduling problems [18], vehicle routing [19], sequential
ordering, scheduling [20], and routing in Internet-like net-
works [21].

Ant colony optimization algorithms are especially suited
for finding solutions to difficult optimization problems. A
colony of artificial ants cooperates to find good solutions,
which are an emergent property of the ants’ cooperative in–
teraction. Based on their similarities with ant colonies in
nature, ant algorithms are adaptive and robust and can be
applied to different versions of the same problem as well as
to different optimization problems.

The main traits of artificial ants are taken from their nat-
ural model. These main traits are as follows: (1) artificial ants
exist in colonies of cooperating individuals, (2) they com-
municate indirectly by depositing (artificial) pheromone
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Figure 1: PID control system.
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Figure 2: Ant colony optimization graph.

(stigmergic communication), (3) they use a sequence of local
moves to find the shortest path from a starting position, to
a destination point (i.e., the optimal solution to a given prob-
lem), and (4) they apply a stochastic decision policy using
local information only (i.e., they do not look ahead) to find
the best solution. If necessary in order to solve a particular
optimization problem, artificial ants have been enriched with
some additional capabilities not present in real ants.

An ant colony of finite size searches collectively for a good
solution to a given optimization problem. Each individual
ant can find a solution or at least part of a solution to the
optimization problem on its own but only when many ants
work together they can find the optimal solution. Since the
optimal solution can only be found through the global co-
operation of all the ants in a colony, it is an emergent result
of such this cooperation. While searching for a solution the
ants do not communicate directly but indirectly by adding
pheromone to the environment. Based on the specific prob-
lem an ant is given a starting state and moves through a
sequence of neighboring states trying to find the shortest
path. It moves based on a stochastic local search policy direc-
ted by its internal state (private information), the pheromone
trails, and local information encoded in the environment (to-
gether public information). Ants use this private and public
information in order to decide when and where to deposit
pheromones. In most applications the amount of pheromone
deposited is proportional to the quality of the move an ant
has made. Thus, the more pheromone, the better the solution
found. After an ant has found a solution, it dies, that is, it is
deleted from the system.

This paper is organized as follows: the implementation of
ACO to design multiobjective optimization is developed in
Section 2. In Section 3, the effectiveness of this approach is
tested, compared with other methods which are the standard
method (Ziegler-Nichols), metaheuristique method (Gene-
tic Algorithm), and ant system in the same section the
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Figure 3: Comparison of step responses of the G1(s) plant.

construction of a Pareto optimal set of solutions, and the
convergence graph in the ACO method are shown. Finally,
some conclusions are given in Section 4.

2. Design PID Controller Using Multiobjective
Ant Colony Algorithm

The series controllers are very frequent because of higher
order systems. The transfer function of PID controller is de-
fined for a continuous system as:

Gc

(

p
)

= Kp +
Ki

s
+ Kds. (1)

The design implies the determination of the values of the
constants Kp, Ki, and Kd, meeting the required performance
specifications.

The textbook version of the PID controller in continuous
time is

e(t) = r(t)− y(t),

u(t)=Kpe(t) + Ki

∫ t

0
e(τ)dτ + Kde(t)=up(t) + ui(t) + ud(t),

(2)

where e(t) = r(t) − y(t) is the difference between the ref-
erence signal r(t) and the output, y(t) of the controlled proc-
ess.

The PID controller is implemented to improve the dy-
namic response in addition to reduce or eliminate the steady-
state error. To characterise the performance of the PID con-
troller systems, we compute the indexes’ performance of the
transient response such as rise time (tr), overshoot (Os),
settling time (ts), the integral square error (ISE). . ..

The problem is how to tune the parameters of the PID
controllers using the multiobjective ant colony optimization
as indicated in Figure 1.

As shown in Figure 3, the gains Kp, Ki, and Kd of the
PID controller are generated by the multiobjective ACO
algorithm for a given plant.
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In order to exploit the ACO algorithm, it would be better
to represent our optimization problem by a direct way in the
form of construction graph.

The population is represented by 100 ∗ 3 matrix, where
the ant select the optimum parameters Kp, Ki, and Kd of
the PID control system by minimizing the objective function
LA. The graph shown in Figure 2 illustrates the design PID
problem using ant colony algorithm.

In this study, each parameter ofKp,Ki, andKd is coded by
100 numbers (nodes), respectively. Therefore, only one node
represents the optimum solution values of the parameters
Kp, Ki, and Kd.

The basic step in applying optimization method is to
choose the optimization criteria that are used to evaluate
fitness. Since the PID controller has many indexes perfor-
mance of the transient response, then we can combine them
into one objective function composed of the weighted sum
of objectives.

The objective function must be set:

LA = min(ΦF), (3)

where F = [ f1 f2 f3 f4 f5 f6 f7]T : vector of objective func-
tions, f1: setting time (ts), f2: overshoot (OS), f3: rise time
(tr), f4: integral absolute error (IAE), f5: integral square error
(ISE), f6: integral time absolute error (ITAE), f7: integral
time square error (MSE), and Φ = [λ1 λ2 λ3 λ4 λ5 λ6 λ7]:
vector of nonnegative weights.

The goal of multiobjective optimization problems is to
find the best compromise between multiple and conflicting
objectives. Considering all objectives in these problems, there
will be more than one solution that optimizes simultaneously
all the objectives and there is no distinct superiority between
these solutions. Usually there is not a single best solution
being better than the remainder with respect to every objec-
tive. Therefore, we face with a set of solutions which are bet-
ter than remainder solutions called the Pareto front. Among
the feasible solutions, solutions belonging to the Pareto front
are known as nondominated solutions, while the remainder
solutions are known as dominated. Since none of the Pareto
set solutions is absolutely better than the other nondomi-
nated solutions, all of them are equally acceptable as regards
the satisfaction of all the objectives [22].

ACO uses a pheromone matrix τ = {τi j} for the con-
struction of potential good solutions. The initial values of τ
are set τi j = τ0 for all (i, j), where τ0 > 0.

The probability PA
i j(t) of choosing a node j at node i is

defined in (4). At each generation of the algorithm, the ant
constructs a complete solution using (4), starting at source
node.

PA
i j(t) =

[

τi j(t)
]α[

ηi j
]β

∑

i, j∈TA

[

τi j(t)
]α[

ηi j
]β

, if i, j ∈ TA, (4)

where ηi j representing heuristic functions, α and β are con-
stants that determine the relative influence of the pheromone
values and the heuristic values on the decision of the ant, and
TA: is the path effectuated by the ant A at a given time.

The pheromone evaporation is a way to avoid unlimited
increase of pheromone trails. Also it allows the forgetfulness
of the bad choices:

τi j(t) = ρτi j(t − 1) +
NA
∑

A=1

∆τAi j (t), (5)

where ∆τAi j the quantity of pheromone on each path, NA:
number of ants, ρ: the evaporation rate 0 < ρ ≤ 1.

Implementation Algorithm. The proposed algorithm can be
described by the following general algorithm.

Begin

Step 1. Initialize randomly a potential solutions of the pa-
rameters (Kp, Ki, Kd) by using uniform distribution.

Initialize the pheromone trail, and the heuristic value.
Initialize the Pareto set to an empty set.

Step 2. Place the Ath ant on the node.
Compute the heuristic value associated in the multiobjective
LA.

Choose the successive node with probability:

PA
i j(t) =

[

τi j(t)
]α[

ηi j
]β

∑

i, j∈TA

[

τi j(t)
]α[

ηi j
]β

, if i, j ∈ TA, (6)

where ηi j = 1/K j , j = [p, i,d]: representing heuristic func-
tions, TA: is the path effectuated by the ant A at a given time.

The quantity of pheromone ∆τAi j on each path may be
defined as:

∆τAi j =

⎧

⎪

⎨

⎪

⎩

Lmin

LA
, if i, j ∈ TA,

0, else,
(7)

where LA is the value of the objective function found by the
ant A. L min is the best solution carried out by the set of the
ants until the current iteration.

Step 3. Use pheromone evaporation given by (5) to avoid
unlimited increase of pheromone trails and allow the forget-
fulness of bad choices:

τi j(t) = ρτi j(t − 1) +
NA
∑

A=1

∆τAi j (t), (8)

where NA: number of ants, and ρ: the evaporation rate 0 <
ρ ≤ 1.

Step 4. Evaluate the obtained solutions according to the dif-
ferent objectives.

Update the Pareto archive with the nondominated ones.
Reduce the size of the archive if necessary.

Step 5. Display the optimum values of the optimization pa-
rameters.

Step 6. Globally update the pheromone, according to the
optimum solutions calculated at Step 5.

Iterate from Step 2 until the maximum of iterations is
reached.
End
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Table 1: Simulation results.

Ziegle-Nichols [23] Genetic algorithm [24] Ant system [12]
Multiobjective ant

colony optimization

G1(s) = e−0.5s/(s + 1)2

Kp = 2.808
Ki = 1.712
Kd = 1.151
f1: ts = 4.78

f2: OS = 31.59%
f3: tr = 0.664
f5: ISE = 0.854

Kp = 2.391
Ki = 1.072
Kd = 1.458
f1: ts = 3.63

f2: OS = 5.84%
f3: tr = 0.676
f5: ISE = 0.797

Kp = 2.4911
Ki = 0.8158
Kd = 1.3540
f1: ts = 5.9

f2: OS = 4.95%
f3: tr = 0.701
f5: ISE = 0.809

Kp = 1.905
Ki = 0.903
Kd = 0.989
f1: ts = 3

f2: OS = 0%
f3: tr = 0.7

f5: ISE = 0.772

G2(s) =
4.228/(s + 0.5)(s2 + 1.64s + 8.456)

Kp = 2.190
Ki = 2.126
Kd = 0.565
f1: ts = 6.6

f2: OS = 16.46%
f3: tr = 0.8

f5: ISE = 0.785

Kp = 1.637
Ki = 0.964
Kd = 0.387
f1: ts = 5.97
f2: OS = 3%
f3: tr = 2.45

f5: ISE = 0.588

Kp = 2.517
Ki = 2.219
Kd = 1.151
f1: ts = 6.51
f2: OS = 16%
f3: tr = 0.627
f5: ISE = 0.684

Kp = 2.1604
Ki = 1.8546
Kd = 1.6920
f1: ts = 5.22

f2: OS = 0.09%
f3: tr = 2.54

f5: ISE = 0.448

G3(s) = 27/(s + 1)(s + 3)3

Kp = 3.072
Ki = 2.272
Kd = 1.038
f1: ts = 8.2473
f2: OS = 51.47%
f3: tr = 22.5
f5: ISE = 0.66

Kp = 1.772
Ki = 1.061
Kd = 0.772
f1: ts = 7.3959
f2: OS = 30.7%
f3: tr = 15.3

f5: ISE = 0.7311

Kp = 2.058
Ki = 1.137
Kd = 0.746
f1: ts = 7.0311
f2: OS = 19.82%

f3: tr = 8.9
f5: ISE = 0.708

Kp = 1.702
Ki = 1.061
Kd = 0.772
f1: ts = 6.973
f2: OS = 6%
f3: tr = 6.2

f5: ISE = 0.501

3. Simulation Results

In this section, we presented the numerical results to improve
the performance of the proposed solution algorithm.

All the computation is implemented with Matlab/Simu-
link. The values of the parameters in ACO are m = 500
(numbers of ants), α = 0.5, β = 0.5, ρ = 0.5, and maximum
generation = 300.

In this study, we utilised two examples in order to il-
lustrate the efficiency of the proposed algorithm.

Example 1. The performance of the algorithm developed
was tested with three transfer functions with different order.
The chosen performance criterion is often a weighted com-
bination of various performance characteristics such as rise
time, settling time, overshoot, and integral of the square of
the error [24].

We chose the following objective function:

LA = min
(

λ1 f1 + λ2 f2 + λ5 f5
)

. (9)

The objective function here is f1: the setting time to measure
the performance of the closed-loop system, f2: the overshoot,
and f5: the integral square error that should be minimized.

Therefore the vector of weights is Φ = [1 1 0 0 1 0 0].
The closed loop PID controller cascaded with the process

was tuned for the values Kp, Ki, and Kd first by using the
Ziegler-Nichols method [23], genetic algorithm [24], ant sys-
tem [12] and then by our multiobjective ant colony algo-
rithm. So that, the percent maximum overshoot, the settling
time, the rise time, and the integral of the squared error were
computed in both cases and given in Table 1.

In this table OS represents the percent maximum over-
shoot, ts is the 5 percent settling time, tr is the rise time, and
ISE is the integral of the squared error.
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Figure 4: Multiobjective optimization Pareto-sets of the G1(s)
plant.

The objective function used in [24] and [12] is defined
using the performance indices: the response overshoot (OS),
the 5% settling time ts, and integral of the square of the error
(ISE).

As shown in results of Table 1 and in all the cases tested,
the value of the maximum overshoot is quite small, nearly
zero percent and the values of the settling times, the rise
time, and the integral of the squared error obtained by
multiobjective ant colony optimization were much less than
those values by the other methods.

The graphs of the obtained three-dimensional Pareto
optimal fronts (the settling times, the overshoot, and the
squared error) for the generated problem corresponding in
each transfer function are depicted in Figures 4, 7, and 10.
So that, it is possible to find a well-distributed set of non-
dominated solutions along the Pareto optimal front.
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Figure 5: Convergence graph in the ACO method of the G1(s)
plant.
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Figure 6: Comparison of step responses of the G2(s) plant.
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Figure 9: Comparison of step responses of the G3(s) plant.
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Figure 12: The initial search space of parameters (Kp, Ki, Kd).

Figures 3, 6, and 9 show the step responses of G1(s),
G2(s), and G3(s), respectively, which are ploted with the op-
timum values of the parameters Kp, Ki, and Kd obtained by
the proposed algorithm. the results obtained by using Zieg-
ler-Nichols, genetic algorithm, and ant system algorithm are
presented for comparison.

In all cases, the proposed algorithm produces better res-
ponses than that obtained using the other methods. So, we
can say that the multiobjective ant colony algorithm well im-
proves the performance of the PID controllers.

Figures 5, 8, and 11 report the evaluation of the objective
function on the above three transfer functions. It is observed
that the objective function value decreases substantially.

Initially, each parameter (Kp, Ki, Kd) is randomly and
uniformly distributed with an average value which is equal to
the value founded by Ziegler-Nichols of the transfer function
G1(s), the search space of these parameters is shown in
Figure 12.

After several iterations, the multiobjective ant colony
algorithm generated the best solutions of the PID parameters
(Kbest

p ,Kbest
i ,Kbest

d ), the search space of these parameters is
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Figure 13: The Intermediate search space of parameters (Kbest
p ,
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d ).

shown in Figure 13, it may be noted that these solutions are
somewhat condensed.

After that, each parameter (Kbest
p Kbest

i Kbest
d ) is randomly

and uniformly distributed with an average value which is
equal to the value founded in the last generation, the multi-
objective ant colony algorithm generated the optimal solu-

tions (K
opt
p K

opt
i K

opt
d ), as shown in the Figure 14, and these

solutions are more condensed than that found in the last
generation.

4. Conclusions

In this study, a tuning PID method based on the multiob-
jective ant colony optimization is developed for getting good
performances and tunes the optimal PID parameters. In
contrast to the single-objective algorithms, which try to find
a single solution of the problem, the multiobjective technique
searches for the optimal Pareto set directly. The aim of the
multiobjective ACO algorithm is to determine the optimal
solutions of the PID controller parameters by minimization
the multiobjective function and to identify the Pareto op-
timal solution. This method is able to ind the optimum
solution of the PID controller’s parameters (Kp, Ki, and Kd)
that they allow to guarantee the performance of the system.
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Simulation results demonstrate that the new tuning me-
thod using multiobjective ant colony optimization has a bet-
ter control system performance compared with classic ap-
proach, the genetic algorithms and ant system. The multiob-
jective ACO algorithm is able to undertake local search with a
fast convergence rate. From the simulation study it has been
found that this method converges to the global optimum.
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