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Abstract

A procedure for tuning PID controllers with SSOD sampling for FOPTD systems is proposed. It is based on the
definition of a new robustness measure to avoid limit cycle oscillations, called the Tsypkin margin (My). This
margin is based on the Tsypkin method and does not rely on the attenuation of high order harmonics, as the
describing function approaches require. Therefore, the avoidance of limit cycle oscillations can be guaranteed for
any system, as a difference with the describing function based procedures. The procedure allows to obtain the PID
controller that minimizes the disturbance IAE while fulfilling constraints on robustness to oscillations and on control
action bumps due to the SSOD sampling. A freely available Java tool has been developed in order to simplify the
application of the tuning procedure. In case of a non FOPTD system, it first calculates an approximate FOPTD
model. The paper shows that the derivative filter parameter, N is a critical tuning parameter in order to find a
compromise between performance and control action bumps.
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1. Introduction

Nowadays event based controllers are a promising alternative to the classical time driven control systems to
reduce the measurement frequency needed for the control without degrading the closed loop performance. This is a
basic requirement for controllers in networked control systems where many devices (sensors, actuators, controllers)
share a communication channel with limited bandwidth. The reduction in the number of transmitted messages
improve the network overall behavior, for example avoiding dropouts and delays. The use of wireless communications
in control applications has also encouraged the development of event based controllers. In this case, the reduction of
data transmission implies an important decrease in power consumption, therefore increasing the lifetime of batteries
of self-powered remote sensors [9].

The reduction of the measurement frequency in event based control systems strongly depends on the strategy
used to generate the events to send data through the network. In that sense, send-on-delta (SOD) strategy has
emerged as one of the most promising approaches, which reduces considerably the sending of new data [8, 15]. The
SOD method consists in transmitting data from the sensor to the controller node only if the measurement value
changes more than a given specified ¢ value, [13]. A particular kind of SOD, named symetric-send-on-delta (SSOD),
is proposed in [5]. The SSOD sampler quantifies the input signal by a quantity multiple of a constant value ¢, then,
a new value of the input is sent by the sampler when the input changes in a quantity 9.

One of the key points in the analysis and design of event-based control systems is the existence of limit cycles
that can lead to sustained oscillations in the closed loop response. The characterization of limit cycles for different
kind of systems, such as integrator processes plus time delay (IPTD), first order processes plus time delay (FOPTD),
and second-order processes plus time delay (SOPTD), when using a SSOD sampling strategy has been presented
in [6]. The study of the limit cycles is important to predict the magnitude and frequency of the oscillation that
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could appear in a system as a consequence of the detuning of the controller produced by changes in the system’s
dynamic. From the PID tuning point of view, one of the main goal is to prevent limit cycles in order to avoid
undesired oscillations which can reduce the overall performance of the control system or produce excessive actuator
wear.

In [16] and [14], tuning methods for PI controllers with SSOD sampler have been developed based in new
robustness margins for limit cycles, that were obtained by applying the describing function (DF) technique and
entail with the classical concepts of phase and gain margins. The same approach was used in [18], where a unified
design of SSOD-PID control architecture for self-regulating and integral processes was investigated. The use of the
DF let to introduce tools of the classical control theory, such as the Nyquist plot, for the analysis and design of
event based control systems. That could make the design of event based PID controllers more understandable and
consequently boost its application in industry, since these concepts are generally taught in the automatic control
undergraduate courses.

It is well known, however, that the validity of the DF depends on the filtering properties of the open loop
transfer function: only under certain filtering conditions the higher order harmonics can be neglected and the DF
can be successfully applied. Therefore, low order models, such FOPTD and SOPTD, which are commonly used to
describe actual industrial processes, are excluded from this approach and new methods are required to use frequency
response based strategies. Concerning the kind of controller, the use of PID which increase the bandwidth respect
to the PI case could be an additional cumbersome for the application of the DF. In [12], the authors proposed a
new robustness measure to avoid limit cycle on SSOD based PI controllers. The proposal is based on the Tsypkin’s
method [20], which has been widely used to study the relay control systems, that is the reason why we named the
robustness measure Tsypkin’s margin (Mr). Unlike the margins proposed in [16] and [14], which are based on the
DF, the robustness margin My is valid not only for systems with good filtering capabilities but also for systems
whose dynamic is described by low order models.

In this paper, we propose a new method for tuning PID controllers for FOPTD systems using a SSOD sampling
strategy. It is well known that the FOPTD models admit a dimensionless representation that allows to express
some results, including homogeneous tuning rules that depend on the quotient between the time delay and time
constant, [3]. We combine this idea with the concept of Tsypkin’s margin to develop a general framework for tuning
SSOD based PID controllers. The proposal can be applied to any homogeneous tuning rule in order to evaluate
its performance when applied to SSOD based PID. This general framework has been then applied to the tuning
method developed by the author in [19] resulting in a set tuning rules for SSOD-PID which takes into account an
optimum trade-off between IAE index, the control action variations due to changes of magnitude § on the measured
variable, and the robustness to limit cycle expressed in terms of M.

The tuning of SSOD based PI controllers for FOPTD systems has been previously addressed in [4], where some
rules were designed by minimizing the 1% settling time of the closed loop response. Our study take into account
both PI and PID structures, and it proves that the latter can significantly improve the system performance without
degrading the robustness to limit cycles measured in terms of Mp. Additionally, an extensive study about the effect
of the derivative filter coefficient on the closed loop behavior is also presented here.

2. Problem statement

Consider the networked control system shown in Figure 1, where C(s) and G(s) are the controller and the
process transfer functions respectively, y, is the reference signal to be tracked, y is the controlled output, and p is the
disturbance input. It is supposed that the controller is located near the actuator and the sensor sends measurements
of process output y (or more precisely of the tracking error e) to the controller through a communication network
using the SSOD strategy. The ZOH block keeps in e the last sent value of process output e* until a new value is
transmitted by the SSOD block. Communication delays through the network are represented by the term exp(—t4s).

This control scheme was first proposed in [5] considering C(s) a PI controller, so the authors called it SSOD-PI
architecture. As commented in the introduction, some guide lines for PI tuning were given in [4] when the process
G(s) is a FOPTD model. Our goal in this paper is to design a PID controller with transfer function given by
equation (1) in order to reach an adequate performance and robustness of the closed-loop system. The objective of
the tuning procedure is not only to guarantee stability but also to avoid persistent oscillations or limit cycles that
can appear due to the SSOD strategy if the controller is not designed properly.
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Figure 1: Networked control system with SSOD sampling strategy. SSOD-C(s) architecture.
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Previous works have addressed the tuning of SSOD-PI controllers by predicting limit cycles using the Describing
Function [16, 14], a well known tool used in the analysis of non-linear control systems. In those works one of the
design objectives was to avoid the intersection between the negative inverse of the DF with the open-loop transfer
function on the polar plot. Nevertheless, it is known that the DF technique relies on the filtering capabilities of the
linear part of the control loop, which must be capable of filter enough the high frequency harmonics. The linear
part involves both the process and the controller dynamics, therefore, for processes with low filtering capabilities
and PID controllers, which trend to increase the bandwidth respect to the PI case, the DF could not be a suitable
approach to analyze the existence of limit cycles. This fact is illustrated through the following examples.

Example 1. Consider the FOPTD model whose transfer function is:

670.25

Gls) = s+1 (2)

Controllers C(s) have been tuned according to Ziegler-Nichols [21], Cohen-Coon [7], AMIGO [1] and Sanchis-
Romero-Balaguer [19] (SRB for the sake of brevity) methods. The resulting PID parameters are gathered in Table
1. The system in Figure 1 admits the Hammerstein- Wiener representation shown in Figure 2, being SSOD_ZOH
the combination of SSOD and ZOH blocks. The condition to avoid limit cycles is,

. 1
GOl(jw) 7é _N7 Yw
where Gy (jw) is the open-loop transfer function:
Goi(jw) = exp(—tajw)C(jw)G (jw)

and N is the describing function of the SSOD_ZOH block. Graphically this condition implies no intersection
between the Nyquist diagram and the negative inverse of N .
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Figure 2: Non-linear equivalent system to the control system with SSOD sampling strategy in Figure 1.

Figure 8 shows the Nyquist diagrams obtained with the controllers in Table 1 and the plot of —1/N. It can
be seen that the open-loop transfer functions corresponding to Ziegler-Nichols and Cohen-Coon methods intersect



Table 1: PID Parameters with different tuning rules for the system presented in equation (2).

Kp ‘ Ti ‘ Ta ‘ N

Ziegler-Nichols 6 0.4 0.1 10
Cohen-Coon 6.917 | 0.455 | 0.07 | 10
AMIGO 2.45 | 0.587 | 0.094 | 10
SRB 2.181 | 0.484 | 0.115 | 10

with —1/N, so these systems will present limit cycle oscillations. This is not the case for AMIGO and SRB
methods, for which intersections between Gy and —1/N do not take place, consequently, they are not expected to
oscillate. Simulations of the controlled systems presented in Figure 4 refute the predictions based on the DF since
the four controllers lead to oscillatory behaviors. As it can be seen each controller induces oscillations with different
waveforms because the difference in the tuning parameters produce different Goi(s), each one with its own limit
cycle. Additionally, it is worth noticing that the waveforms in Figure 4 are, generally speaking, hardly sinusoidal.
This is due to the failure of Goi(8) to attenuate higher harmonics sufficiently. It is the waveform’s harmonic content
which is responsible for the unsuccessful application of the DF in this example.
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Figure 3: Plots of the open-loop transfer functions obtained with the PID parameters in Table 1 (colored lines) and —1/N (black lines)
in the Nyquist diagram.

3. New robustness margin for existence of limit cycles

3.1. Tsypkin’s method approach

In order to predict more accurately the existence of limit cycles in the control systems presented in Figure 1
(or equivalently in Figure 2) and avoid them, an approach based on the Tsypkin’s method [20] is proposed, which
is valid independently of the filtering characteristics of the linear part of the system. Therefore, this approach is
especially interesting for low order systems, as for example FOPTD systems that are considered in this paper.

In systems with a SSOD__ZOH nonlinearity as that shown in Figure 2, the general shape of an oscillation is
depicted in Figure 5, in which the half period of an oscillation of m levels is shown. In this figure, the error signal
e has been represented, whose slope may be of any magnitude. The sampled error signal € has also been plotted as
a stair like signal with step widths defined by (pp, — pp—1)To/2, being T, the oscillation period and p; €]0, 1].

The Tsypkin’s method formalizes the situation represented in Figure 5 in the set of mathematic relations that
define the oscillation conditions presented in equations (3) and (4).
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Figure 4: Steady state oscillations of the system with G(s) given by equation (2) with the PID parameters in Table 1.
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These conditions are referred to the values of e and its derivative in specific times pp%, that is, when the
thresholds of magnitude pd are crossed. By applying the Fourier series and some basic calculations (see Appendix
A) a general expression of e(p,%2) can be obtained, equation (5), where n is the number of harmonics:

= £ 3 Piv1 + pi
e <Pp2) = —? Z *%{Gol jnwo (Zzsm( Pz+1 Pi)) cos <nﬂ- (*‘2 —pp
n=1,3,5,..
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Note that the previous expression depends on the real and imaginary part of the open-loop transfer function
(R{Goi(nws)}, S{Goi(nw,)}) and on the number of levels (m) crossed. It can be easily seen that as m increases,
the complexity of the calculations raise significantly because more oscillation conditions appear in equations (3) and
(4), and the complexity of (5) increases too. For the purpose of this paper we will focus on single leveled oscillations
(m = 1), because it has been observed that by avoiding oscillation for m = 1 no oscillations for m > 1 take place.
This result will be proved in section 6, where multi-level oscillations are addressed. Thus, for practical reasons, this
study will be focused on oscillations with m = 1, whose existence condition, obtained from equations (3) and (4)
are as follows:
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Figure 5: General form of an oscillation, which define the oscillation conditions in Tsypkin method.

ECp\m:l

T\ [ ¢ forp=1
e(pp2)_{0 forp=2 (6)

Ic de (pp%) | >0 forp=1 (7)
plm=1 dt ] <0 forp=2

It is worth noticing that conditions (6) and (7) are sufficient and necessary for the existence of limit cycles with
m = 1. Consequently, if any of the previous equations is not fulfilled, then, steady state oscillations do not appear
in the system. Therefore, for the sake of simplicity and taking into account that the objective is to avoid limit
cycles, we will consider the conditions in (6) to define a new robustness index to prevent oscillations. Evaluating
(5) in p = 1,2 and substituting the result in (6) taking into account that by definition ps, = 1 and renaming p; as
p, the following equations are obtained:

> 13,5 LR{Goi(jnw,)} sin (nmp) + 5 =0
ZZO:L&&“_ L3{Gor(jnw,)} cos? (252) +5=0

that finally can be rewritten as follows:

(8)

T+ Yot o sin (n7p) R{Goi(jnw, )}
sin (7wp)
5+ Xntas. 7 0s” (752) S{Goainwo)}
cos? (%£)
For a given frequency w, and p €]0, 1], the right hand members of the previous equations define a trajectory in
the Nyquist plane what we refer to as Tsypkin branch for w, (Br(w,))-

R{Goi(jwo)} = — (9)

S{Gor(jwo)} = - (10)

» Vpelo1]

B _ < R 3,5.. Esm (nmp) ER{Gol(jm‘)o)}‘ g +Zn 3,5.. 50052 (%) %{GOl(jnwo)}>
T(wo) -

sin (7p) ’ cos? (Z2)

Then, a limit cycle oscillation with frequency w, will take place if the Tsypkin branch for w, intercepts the point
(R{Go1(Jwo) }, S{Goi(jws)}) of the Nyquist diagram, that is:



(%{Gol(jwo)}vs{Gol(jwo)}) = BT(wo) (11)

Using these definitions we can establish a robustness measure against limit cycles as the minimum euclidean
distance between the Nyquist points (R{Goi(w)}, S{Goi(w)}) and its respective Tsypkin branches obtained for the
same frequency w. We will refer to this robustness measure as Tsypkin margin (Mr) that can be expressed as:

o0 . . 2 iy o0 nim min . 2
<Z + Z"odd % S111 (nﬂ—pmzn) §R{C"Yol(]nWWLG)}> I ( S + Znodd % cos? (pT) %{Gol (]nwmzn)}>

sin (7 pmin) cos? (TLpin)

MT (wmina pmzn) =

being wyin and ppin the values of w and p for which the minimum distance is obtained.
The following examples illustrate the use of M7 on predicting the existence of limit cycle and the graphical
interpretation of this new robustness margin.

Example 2. Non-oscillatory system. Consider the following FOPTD transfer function:

G(s) = ey

A PI controller with K,, = 0.84 and T; = 1.17 is tuned using the SRB method [19]. A set of Tsypkin branches rep-
resented in Figure 6 has been obtained by evaluating equations (9) and (10) for p €]0,1[ and w € [555, weg], where weg
is the crossover frequency. In order to make the visualization easier, different colors are used to represent each point
(R{Go1(jw)}, S{Goi(jw)}) and their respective Br(w). The minimal distance between (R{Goi(jw)}, S{Goi(jw)})
and Br(w), which has been highlighted with a dashed line, is My = 0.23, obtained for w = 1.0191rad/s. Note that
even though there are several branches (the red ones) very close to some points of Gy, these branches correspond

to frequencies whose points (R{Go(jw)}, S{Goi(jw)}) (the red ones), are further than 0.23.
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Figure 6: Nyquist diagram of G,;(w) and the Tsypkin band for a non oscillating system (M7 = 0.23).
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Figure 7: Nyquist diagram of G, (w) and the Tsypkin band for a system with steady-state oscillations (M7 = 0).

Example 3. Oscillatory system. Consider the system in Erample 1 and the PID obtained with SRB tuning
procedure. Applying the concept of Tsypkin margin concludes that the system will oscillate because a distance My = 0
has been obtained, as shown in Figure 7. The intersection between Gy (jw) and Br(w) takes place for p = 0.72 and
wo = 1.55 rad/s, Br(1.55) has been represented with a dashed line. The simulation shown in Figure 4 confirms this
prediction.

Example 4. Mt for well known tuning rules. The robustness measure My can be used to determine the
robustness against the oscillations produced by the SSOD structure presented in Figure 1, regardless of the method
used for tuning the controller C(s). As an extension of the work presented in [12], My has been evaluated for three
well-known tuning methods, namely Ziegler-Nichols (ZN), Cohen-Coon (CC) and AMIGO tuning rules for both PI
and PID. These methods have been used to tune controllers for FOPTD models with different ratio delay (L) and
time constant (7). The results are summarized in Figure 8.

It can be seen that the AMIGO tuning rules offer higher values of My with lower ratios L/T and then this
measure tends to a value around 0.45, both for its PI and PID controller. The Ziegler-Nichols method offers lower
values of My than the AMIGO method for lower values of L/T, not being this the case for systems with higher ratio
L/T where the Ziegler-Nichols method offers the highest values of Mry. The Cohen-Coon method offers the lowest
values of Mg overall. It can be also observed that for all methods and controller types there are values of ratio L/
with My = 0. The range of values with My = 0 is higher for PID controllers than for PI controller. Additionally,
for each method the values of My are higher for PI than for PID. This means that, in general, PI controllers have
better robustness properties than PID when used with SSOD sampling strategy.

4. SSOD-PID Controller Tuning

In this section, we propose a new tuning method for SSOD-PID controllers. It is worth noting that most of
the studies about SSOD based control systems are focused on the PI case and there is a lack of results concerning
the event based PID algorithm. From the discussion on Example 4, it is clear that the PI controllers have better
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Figure 8: My for FOPTD tuned with Ziegler-Nichols (ZN), Cohen-Coon (CC) and AMIGO tunning methods.

robustness properties than PID to be used on the control scheme presented in Figure 1. However, the benefits of
PID algorithm on improving the response of the control systems is no matter of doubt, and the case of SSOD-PID
is not an exception, as it will be proved in this section.

Our approach is focused on First Order Plus Time Delay (FOPTD) models, which allows to approximate a wide
range of actual industry processes, including those systems that do not admit the application of tuning methods
based on the describing function, as the ones presented in [16, 14], due to its low filtering properties. When using
FOPTD models a good technique for generalizing the results is expressing the transfer function in dimensionless
form. Our proposal is based on this feature, so before presenting the tuning method some preliminary results about
the dimensionless approach are presented in the next subsection.

4.1. Preliminary issues on dimensionless analysis

Let us consider G(s) in Figure 2 to be a FOPTD model. Without loss of generality, the network delay ¢4 can
be included in the time delay term L.

KeLs
75+ 1

G(s) =
A dimensionless representation of G(s) is attained by making the transformation § = Ls and G(5)/K:

Ke b5 =2 Ke™® qG)/K -, _ e s
Gls) =~ =5 G(3) = 7x =25 Gls) = (12)

ik}

The use of the dimensionless form of G(s) makes the analysis easier because the results can be expressed in terms
of the ratio L/7, the only parameter of G(5). That is the case for homogeneous tuning rules for PID controllers
which can be expressed by the following equations:

L _ L _ L _
K, =K "¢ () =K 'K,, T,=L¢ () =LT;, Ty= L¢3 () = LTy, (13)
T T T

Taking into account the previous equations, the dimensionless transfer function of the PID, obtained from equation
(1), is:

. 1 Tys s== N 1 Td/L§
C(s) =K, 1+TiS+Td$ == (C(5) =K, 1+E/L§+Td/L§ (14)
! Nt



C(35)=KC(5); CE) =¢1 |1+ —+ ——

‘N
where, for the sake of simplicity, the argument L/7 has been suppressed from ¢;, ¢o and ¢3. The dimensionless
open-loop transfer function of the system in Figure 2 can be obtained using equations (12) and (15):

(15)

Guils) = CEIGE) = o |1+ -+ 25 | _C (16)
~ )T
Furthermore, from equations (12) and (15):
Gas) = C)G() = (KCE) (G ) = COG) = Gul®) = Guls) (17)

The use of homogeneous rules for tuning the PID controllers has important implications that can simplify the
design of SSOD-PID for FOPTD systems. Concerning My, since its value only depends on the open-loop transfer
function, and according to the equation (17) G (5) = Goi(sL), the value of Tsypkin margin calculated with Gy;(3),
denoted as My, holds the following relation with Mq:

E(wminv pmin) = Mr (wminLa pmin) (18)

Thus, for FOPTD models tuned with homogeneous tuning rules, evaluating My with the dimensionless open-
loop transfer function G,;(3) offers the same value of My than with the dimensional open-loop transfer function.
Moreover, the frequency wy,:» can be directly obtained from the dimensionless value Wi, as Wmin = Wmin L.

When using a PID controller in structures with a SSOD sampler, other important issue to be considered in the
design is the change §, in the control action produced by the changes § on the sampled error signal e. The value
of §, is directly related to the smoothness of the control action and its limitation is important to avoid sudden
changes in the control action that could harm the actuator or cause a malfunctioning of the control system. It
should be taken into account that € is a noise free stair like signal with steps of magnitude §, which are amplified
by the controller in the same magnitude as a high frequency noise, according the following equation:

8y = K,(1+ N)§ = C(c0)3, (19)

where K, is the controller gain and N the derivative filter coefficient. Concerning the selection of NV it is important
to note that although a common practice in industry is to fix it at high values, some researches have recently shown
that using N as a free parameter allows to balance the noise amplification and the closed loop performance (see
[10, 11]). A similar effect of N in the case of the event based system in Figure 1 has been reported in [17], where
the selection of this parameter allows to set a trade-off between the control action jumps d,, and the TAE of the
disturbance response.

The fact of using homogeneous tuning rules, allows to obtain the value of C(cc) for a given system from the
dimensionless model by dividing the obtained value of C(cc0) by the system gain:

1 C(o0)
C(oo)pr(1+N)7K(1+N)— % (20)

Finally, following the dimensionless approach, a simple relation can be extracted between the IAE index for

dimensional and dimensionless models, which is given by the following equation (see Appendix B):

IAE = |K|L-TAE (21)

In summary, when using homogeneous rules to tune a PID controller for a FOPTD system G(s), the value of
the controller parameters, C(cc) and TAFE (or other indexes) can be calculated by scaling the results obtained with
the dimensionless model G/(5) using the equations (13), (20) and (21) respectively. Furthermore, the value of My
is the same as that obtained with G(3). To illustrate this idea let us introduce the Example 5.

10



Table 2: Summary of characteristics for the studied systems.

PI PID (N = 10)
My IAE, IAE, C(cx)| My IAE, IAE, C(x)
G(5) [038 33168 33458 09 | 00927 1.6626 1.9092 13.2
(s) | 0.38 6.6335 6.6916 0.9 | 0.0981 3253 38184 13.2
Gaa(s) | 038 6.6335 3.3458 045 | 0.0927 3.253 1.9092 6.6
Gaa2(s) | 038 13.2671 6.6916  0.45 | 0.0981 6.6505 3.8184 6.6

Example 5. Let us consider three different FOPTD systems whose transfer functions are

6—25 2¢~ 5 26—25
G = G =—) G = .
128) = 570 Grals) = Gaals) =5 —
The dimensionless model for these systems is G(35) = ;:1 PI and PID controllers are tuned using the Ziegler-

Nichols method, which is a well-known homogeneous tuning rule. The resulting My, the disturbance IAE (IAE,),
the reference IAE (IAE, ) and C(00) of each system is computed. The results are gathered in Table 2.

This table shows how all the systems, which have the same ratio L/T, have the same value of My, which confirms
that this margin only depends on the ratio L/T. The relation of the other performance indexes (IAE,, IAE, and
C(00)) with their dimensionless counterparts fulfill the described relations, as expected.

4.2. Tunning procedure

According to the previous section, it is possible to calculate the controller parameters for any FOPTD transfer
function G(s) with a given quotient L/7 and evaluate its performance and robustness from the results obtained for
the dimensionless model G(3) with the same value of L/7. In this section, we provide the controller parameters
and performance values for a wide range of models G(3) taking into account an optimum tradeoff between the TAE
performance index, the smoothness of the control action in terms of C'(0c0) and the robustness measure to limit
cycle M. From these values, it is possible to calculate the results for any system G(s) with the same ratio L/
using the equations (13), (20) and (21).

Our approach is based on the tuning algorithm proposed in [19], that we call SRB method, which minimize the
disturbance I AF index with restrictions on the phase and gain margins. The selection of this algorithm is based on
three facts: 1) This method offers different robustness configurations expressed in terms of phase and gain margins.
The definition of M7 intuitively suggests a direct relation with the phase margin. Therefore, different values of My
can be obtained by changing the phase margin. 2) The derivative filtering coefficient NV is considered as a free design
parameter, offering controllers with a smoother control action than those with high values of N. 3) According to
[3], the minimization of the disturbance TAE, which depends on the plant sensitivity, assures the homogeneity of
the tuning results obtained with this method.

It is worth noticing that SRB method has been originally developed for continuous-time controllers, but our
objective is to extend it to systems with a SSOD sampling strategy, the one presented in Figure 1, by fulfilling
the requirements on Mr and C(c0). More precisely, the design must minimize the disturbance I AE while meeting
requirements on robustness to limit cycle (M > My, ) and smoothness of the control action (C(00) < C.(c0)) that
formally can be written as in equation (22). Nevertheless, the relation between these requirements and the design
parameters used in the SRB method, that involves phase and gain margins (@, ym) and the derivative filtering
coefficient (), is not evident.

oo
minimize IAE:/|e(t)|dt
Ky, Ti,Ta,N

0

(22)
subject to Mg > Mr |
C(0) < Cr(c0)
The proposed solution is to calculate the controllers using various combinations of phase and gain margins and
derivative filtering coefficient. This produces a set of controllers with My, TAE, C'(co) and parameters K,,, T;,
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Figure 9: Summary of the calculus to obtain the dimensionless set of parameters for the controllers.

T4. Then, the controller that minimizes IAE fulfilling My > My, and C(00) < C,.(c0) is easily selected from this
set. The validity of this approach lies on the fact that once the controllers are obtained for a batch of G(3), that
is, varying the parameter L/7, the results can be used to obtain the controller for any FOPTD model with L/7
contained in the batch.

4.3. Calculating the dimensionless controllers

Following the previously described approach, dimensionless parameters were calculated using the SRB method
for a set of systems G/(3) with L/7 €]0, 3] for all the possible combinations of ¢,, = [50°, 52.5°, 55°, 57.5°, 60°, 62.5°,
65°, 67.5°, 70°] and N = [0, 0.5, 1, 2, 3, 4, 5,6, 7, 8,9, 10, 12, 14, 15, 16, 18, 20]. The gain margin was required to
meet 7, > 6 dB. The procedure is summarized in Figure 9. The values of ¢,,, and N have been selected to guarantee
a set of controllers dense enough in order to make the final controller as close as possible to the exact controller
that minimizes the IAE under the restrictions in My and C(c0), that is, the solution of the optimization problem
given by equation (22). As said in the previous section, once the set of dimensionless parameters is calculated, it
can be used to obtain the controller for any FOPTD model with L/7 €]0, 3], in consequence, the proposed griding
of ¢, and N does not suppose a computation overload for the tuning of each controller. It is also important to
remark that the phase and gain margins used as requirements are maintained from the dimensionless model to the
dimensional one, the only difference between the dimensionless and the dimensional cases is the frequency at which
these margins are measured due to the variable change (jWmin = jwminL). Therefore, in addition to the required
characteristics M, and C,.(00), all the controllers of the set have at least ¢, = 50° and 7,, = 6 dB.

Figure 10 shows the evolution of the margin My with the ratio L/7 for some representative values of ¢,, and
N. Several interesting conclusions rise from this figure. Firstly, it can be seen that for systems close to a first order
model (low values of L/7), My = 0. Then, for given values of L/7, depending on ¢,, and ~,,, M increases quickly,
reaching its maximum and then decreasing asymptotically to a final value. Secondly, the figures show that the
higher the phase margin, the higher M. This confirms our intuition about the relation between these parameters,
based on the fact that both measures are related with the robustness of the system. Finally, the relation between
the filtering coefficient IV and the robustness to limit cycle is clearly shown: increasing the value of N generally
reduces Mp. In addition, it can be seen that it does not exist much difference between the values of M obtained
for N=10, 15 and 20, thus, regarding to My, increasing N in a range further than 10 does not change significantly
the robustness of the system. Summarizing, in the majority of the considered cases, incrementing ¢,, tends to
increase M but increasing N tends to decrease M.

Figures 11 and 12 show the values of TAE and C(co) for different values of L/7. Only the cases for which
Mz # 0 have been represented. The worst results of TAE are obtained for the PI controllers (N = 0) and this
index improves as NN rises, however, as in the case of My, no significant improvement is observed regarding to the
TAF for those controllers with values of N > 10. On the other hand, the effect of ¢,,, on the TAE is not significant
for the PID controllers, for any value of N. The same can not be said for the PI cases, whose values of TAF for low
ratios L/7 clearly get worse with the increment of ¢,,. Regarding C(c0), it can be seen how, as expected, increasing
N increases 5(00), which increases significantly the value of §,. Furthermore, the variations of ¢,, barely affect
this parameter.

4.4. Software tool for tuning

As a result of the calculation described on the previous section, 162 controllers (K,, T; and T;) have been
obtained for each value of L/7 €]0, 3], by taking all the possible combinations of ¢,, = [50°, 52.5°, 55°, 57.5°, 60°,
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Figure 10: Evolution of My with L/7 for different configurations of ¢, and N.
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Figure 11: Obtained values of IAFE for the considered batch for different configurations of ¢, and N.
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62.5°, 65°, 67.5°, 70°] and N = [0, 0.5, 1, 2, 3,4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20]. Their respective values of
Mz, TAE and C(o00) have also been obtained. In order to manage this information more efficiently, a software tool
has been developed to facilitate the selection of the controller that minimizes the I AF while fulfilling the constraints
My > Mz, and C(00) < Cp(00). It should be noted in Figures 10, 11 and 12 that smooth relations exist between
the design parameters (¢,, and N) and the robustness/performance indexes (M7, TAE and C(oc0)). This indicates
that the proposed tuning procedure is not too sensitive to these parameters and therefore the solution obtained
from the pre-calculated set of dimensionless controllers will be close to the actual optimal solution.

The tuning procedure using the set of dimensionless parameters pre-calculated in section 4.3 has been im-
plemented in a Java application. The procedure is summarized in Figure 13. For a given FOPTD model and
requirements Mr, and C,.(o0) the quotient L/7 is calculated and the controllers for this value of L/7 fulfilling the
constrains My > Mz, and C(o0)/K < C,(00) are filtered. Then the controller with minimum TAF is selected and
the dimensional parameters K, T; and Ty are calculated using equations (13). If an arbitrary model is defined, the
tool first obtains a FOPTD approximation, and calculates the controller using that approximation. The robustness
margins and the response simulation, however, correspond to the original system, therefore it is easy to check the
effect of approximate modeling on the design. The software tool can be freely downloaded from:
https:/ /sites.google.com/a/uji.es/freepidtools/ssod TsypkinPid.

The use of the application is introduced through the following example.

Example 6. Let us consider for this example a system whose transfer function is:

1
(s+3)(s+1)(s+3)

G(s) =

The application consists of a main window including several tabs with different functionality. Firstly, the process
model must be defined in the Plant_definition tab, Figure 1. As commented before, since this model is not
a FOPTD transfer function, a FOPTD approximation is calculated which will be used to obtain the controller
parameters. The PID design is carried out in the PID_design tab, Figure 15, by fixing the desired value My, and
C(oc0). For this example it has been considered My, > 0.1 and C(00) < 20. Then a button allows to obtain the PID
controller parameters that minimize the IAE while fulfilling these constraints. The design results evaluated over

14



Svstem
PAT Ameters

Requirements

.'“}-r Celoa) Lit K

%—' Obtain dimensional

parameters

Filter the controllers . B
K, =K, /K

fulfilling: i
.‘UT = J“T, 1.- = j.'L
Cloc) /K < Chiaa) Ty=TyL
I N

Choose min(JTAE)

Figure 13: Summary of the controller design procedure.

| J Erurt tamnd D buring, Rosbate Sanchas L. - A

|| Pramidartion | P geepr | Save oan_BELin e | o Tene Arsporse | Cordp_Bode_smgram | USE_M_Cel W gt

I Sensor properties:  Hoseamoimse ipse0 020
i Actuator properties: w10 st
| sampling time {for digital simulation): T ésuci-non 1oa

| Define the transfer function with the numerator and denominator coefficients, and the delay:

Choose the form for ntroducing the plant model: © Tmwernacin & T conssares

| vt = . v s e W
| dona= . 1 e s e s 0 i

Dy =

Define the model with time constants and delay:

K=i1000 # =1 wimas ¥ =1 = o= batn =

| pap=n Hitrgrator Mepatre K Mepatirbets L= 1308 = 1132 snlltan

wisanes

Figure 14: Software tool process definition window.

the original systems, not the FOPTD approxzimation, are also shown on this tab. It can be seen how My = 0.32 is
greater than My, and that the value of C(oc0) = 18.28 stays below the mazimum required. The tool also shows the
Tsypkin band that defines the margin Mr, and the complete set of Tsypkin bands if desired.

A separate window shows the response of the controlled system to a step change in the setpoint and in the
disturbance input, see Figure 16, allowing to select the value of the SSOD parameter §, which has been fized to 0.1.

If the user wants to find another controller, the new restrictions must be introduced and the application will
compute the result. For example, consider now that the requirement on the control action changes to C,(c0) < 2,
then this parameter is introduced and the application computes the resultant controller as it is shown in Figure 17.
Here it can be seen that the new controller, which is a PI controller, fulfills the requirements on Mz and C(o0), but
the disturbance IAE has risen (from 1.37 to 1.86), as can be appreciated on Figure 18.

4.5. Tuning table

Alternatively to the software tool presented in the previous section, the tuning can also be carried out using
the table in Appendix C, that has been obtained for specific requirements on C(cc) and Mz, > 0.2. Of course,
this option is not as flexible and interactive as using the application, but provides a very simple way for tuning the
controller once the FOPTD model of the system is known.

The table provides the dimensionless parameters K, T; and N for different values of the ratio L/7. The value
of Ty has been omitted since its value is calculated as T; = T;/4. The empty entries in the table mean that it is not
possible to obtain a controller with the SRB method that fulfills the specified requirements. For the entries where
a character * appears, the controller parameters are the same as those obtained for the precedent value of C(c0),
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that is, the parameters on the columns at the left of the position marked with *. The following example illustrates
how the different proposed controllers on the table behave and some guidelines to choose them.

Example 7. Let us consider a FOPTD system whose transfer function is

0.5e~2¢
G(s) = el

(23)

By using the proposed tuning table a robustness of Mr, > 0.2 is obtained, and each of the controllers has different
levels of control action variations due to changes of § in the sampled signal. A measurement gaussian noise is
assumed, whose effect is mostly avoided by the choice of the SSOD thresholds 6 = 0.1.

For transfer function (23) the ratio L/7 is 0.4. Searching in Table C.3 the corresponding row, 4 controllers with
different values of C'(c0) can be found. Each controller is denoted as C; where i is the position of the controller
when reading the table from left to right. The parameters of the different controllers are expressed in a dimensionless
way, thus, these values must be converted to dimensional parameters using the expressions on equation (13).

Figure 19 shows the open-loop transfer function for all the cases with their respective Tsypkin margin, proving
that the robustness requirements have been fulfilled. Additionally, Figure 20 shows the closed-loop response to
reference and disturbance step changes on t = 1s and t = 25s respectively for all the cases. These systems do not
present limit cycle oscillations, as expected. The controllers with higher values of C(00), which have lower values of
IAE, result in faster responses but paying the price of having more abrupt changes in the control action (as shown
in Figure 21), as a result of higher derivative filter coefficients. This is more clear observing the response of the
system controlled with Cy, which is a PI controller, with regard to the others, which are PID.

The example shows that it is not reasonable to choose an excessively high value of C(oc), because the improvement
in the disturbance IAE is small for a high increase in control action bump. For example, controllers C3 and Cy
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have a very similar temporal response (IAE) but the changes in control action produced by Cy are significantly higher
than those produced by the controller Cs. The value of &, for Cs is §, = Kp(1+ N)§ = 3.74(1 +4)0.1 = 1.87, and
0y = 8.694 for Cy, resulting in a more aggressive control action.

5. Effect of the FOPTD approximation

The tuning procedure presented in the previous sections is based on using a FOPTD model. However, the
behavior of many actual industrial processes do not correspond strictly to this kind of models. In this sense, it is
important to evaluate the effect of this approximation on the final results with the original system, especially on Mp
since its value determines the presence of limit cycle oscillations. To shed light about this issue, we have considered
the following batch of 95 models widely used to evaluate the performance of PID controllers, which represent most
of the common dynamics in real applications, [2]:

—S8

e
G(s) = ——
)= Tsx12
T =0.3,05,0.7,1,1.3,1.5,2,4,6,8, 10, 20, 50, 100, 200, 500

1
G)=—ri—,
(s) (s+1)(Ts+1)2
T =0.05,0.1,0.2,0.5,2, 5,10

1
G(s) = TESIE
n=13,4,506,78
Gle) — 1
(s) = (s+ 1)(as +1)(a2s + 1)(a3s + 1)’ (24)

a=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9

G Te b T+ L

Ss) = s + =1,

() (Tis+1)(Ts+1) 1

T=1,2,510, L;=0.01,0.02,0.05,0.1,0.3,0.5,0.7,0.9, 1

1—as
G = -
()=
a=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1, 1.1

1

G =
) = GCEO(GTE £ 14T 1 1)
T =0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1

Controllers with M7 > 0.1 and without constraint on C(co) have been obtained for all these models using a
FOPTD approximation. The values of My calculated with both the FOPTD and the original transfer functions
are presented in Figure 22. It can be seen that the final My of the original system with the controller calculated
for its FOPTD approximation is greater than the My of the FOPTD approximation. Therefore, the robustness to
limit cycle is assured when using controllers designed with the procedure presented in this paper.

6. Multi-level oscillations

In the previous sections, single leveled oscillations with m = 1 have been characterized using the robustness
measure My and a tuning method has been proposed to avoid this kind of limit cycles. Nevertheless, the question
if avoiding oscillations with m = 1 is enough to ensure robustness to oscillations with m > 1 has not been addressed
yet. In this sense, some results were presented in [14] based on the shape of the describing function of the SSOD
sampler, however, as commented earlier, the filtering hypothesis that this technique assumes as true is not fulfilled
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Figure 22: My and AMryp for the considered systems.

90

for FOPTD systems. Thus, the study of multi-level oscillation (m > 1) must follow the same ideas as that for

m = 1, which was presented in section 3.

As commented in section 3, the complexity of the calculation based on Tsypkin’s conditions for oscillation raises
significantly with m. As an example, let us consider the case m = 2, whose oscillation conditions derived from

equation (6) are:

é forp=1

T 20 for p =2
ECP\m:Q € (pr) = 5 forp =3
forp=4

Evaluating equation (5) for m = 2 it can be obtained that:
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Using the equation (26) and the constraints presented in (25), four oscillation conditions are obtained, equation
(27). In order to facilitate the lecture of these equations, we have denoted as Cre, and Cjpy,, the coefficients that
multiply the real and imaginary parts of G,; respectively for each value of p. These coefficients only depend on the
values of p,,.

S0 (2 (S{Gat(nw0) }Clim, — R{Gor(nwo)}Cre,)) — 5 =0
Sy (G (S{Gor(160) }Ciny, — R{Gor(nw0)}Cre,)) — 5 =0 27
D moa (£ (3{Goi(nwo) }Cimy — R{Gor(nwo)}Cre,)) — X =0
Yomia (i (${Gor(nw0)}Cim,y = R{Gor(nwo)}Cre,)) =0

From equation (27) it can be seen that, unlike the case of conditions for m = 1 given by equations (8), it is
impossible to isolate the terms R{G,;(jw,)} and S{Goi(jw,)}, thus a robustness measure as My with direct visual
representation in the Nyquist plane can not be obtained when m > 1. Then, in order to compare the robustness
to oscillations with different m we need to define a more general robustness measure. To this aim, in the case
of equation (27), we can use the minimal Euclidean distance between the origin (0,0,0,0) and the points with
coordinates given by the left hand members when evaluated in p, €]0,1[,p =1,2,3,4 and w € [gﬁ,wcg]. Denoting
Ry the minimal Euclidean distance for m = 2, and L, the left hand members of equation (27) for each p, the
expression for the computation of Ry is:

4
Ry= min |3 Ly(w,pr, 2, s p1)? (28)

WyP1, 0 5P4 =1

Taking into account that for any value of m the conditions in (3) can be written as a system of equations similar
to (27) but with 2m equations, the general expression for R,, is as follows:

2m
R, = min Z Ly(w,p1,--+, pam)? (29)
wiprrpzm \| 4

When R,,, = 0, the oscillation requirements are fulfilled, and thus, oscillations with m levels could appear. On
the other hand, if R,, > 0, m-leveled oscillation will not occur. Obviously, the complexity of the calculus and the
computation time needed to obtain R,, increases with the number of oscillation levels m because more combinations
of the time fractions p, appear than in the case of m = 1.

Using R, it is possible to compare the robustness of a system to different m-leveled oscillations. With this
aim, the cases of R, Ro and Rs have been obtained for the batch of 95 models presented in equation (24) with its
respective controllers. These robustness measures have been represented in Figure 23. As can be seen, for all these
models the value of R,, increases with m. This shows that in general, by avoiding oscillations for m = 1 with the
proposed tuning method, the system will not present steady state oscillations for higher values of m.

7. Conclusions

The paper presents a PID tuning procedure for FOPTD systems with Symmetric Send on Delta sampling, that
allows to minimize the disturbance TAE while fulfilling constraints on the robustness to oscillations and on the
control action changes.

The robustness to avoid limit cycle oscillations due to the SSOD sampling has been taken into account by
defining a new robustness measure, Mr, based on Tsypkin method, that does not require the system to filter out
the high order harmonics (as it is required by methods based on the describing function). Therefore, the proposed
approach is valid for systems with insufficient filtering characteristics (where the describing function can not be
applied).

A set of precomputed controllers has been obtained for dimensionless FOPTD models with different values of
L/7, using a grid on phase margin and on derivative filter parameter N. For each controller in the set, the value
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Figure 23: R1, Rs and R3 for the batch of models with their respective controller obtained in the previous section.

of Mp and C(c0) has been computed. The tuning procedure consists on selecting from this set the controller that
minimizes the TAE and fulfills the required M7 and C(c0) constraints.

In order to simplify the application of the tuning procedure, a Java application has been developed (freely
available at https://sites.google.com/a/uji.es/freepidtools/ssod TsypkinPid), that computes the controller
parameters for the required My and C(oc0). If the system model is not FOPTD, the applicacion first computes
a FOPTD approximation, and calculates de PID controller using that approximated model. Alternatively to this
application, a table for tuning controllers with Mz > 0.2 and restrictions on C(00) is also provided.

An extensive study with a batch of models has shown that when the system is not FOPTD, the controller
obtained with the FOPTD approximation results in higher values of Mp than initially required, therefore, the
procedure guarantees the robustness to limit cycle oscillations for any system model.

The tuning procedure shows that the derivative filter coefficient, N is a crucial tuning parameter for SSOD
PID, because it allows to reach a reasonable compromise between performance (in terms of IAE for example) and
control action bumps due to the SSOD sampling.
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Appendix A. Tsypkin method calculations

Consider that the sampled error signal &(¢) follows a ladder-type form as shown in Figure 5, then the expression
of &(t) can be obtained through Fourier series expansion:

&(t) = % + 3 (an cos(wnt) + by sin(wnt)) (A1)

As the error signal is supposed centered around 0 and symmetric the coefficient aq is equal to 0. For the other
coefficients:
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To

P35 2 Pm+1%
ap =— / 0 cos(wnt)dt —|— — / 2§ cos(wpt)dt + ... + ? / md cos(wnt)dt+
o
P15 2 P2 5" 2 Pm %
Pm+2 % P2m %
2 2
+ = / (m —1)d cos(wpt)dt + ... + — / § cos(wnt)dt+
T, To
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2 2
+ = / —d cos(wpt)dt + ... + — / —md cos(wpt)dt+
T, T
SR Lotom %
Tetpmia e Tetpom 22
2 2
+ = —(m — 1)d cos(wpt)dt + ... + — —6 cos(wpt)dt
T T,
tpmi e Tetpom_1 e

Solving and arranging the equation, the first Fourier coefficient is obtained:

0 if n is even
— m 2m—1
Qp, = zfr (Z i(sin(nmpiyr1) —sin(nwp;)) + >, (2m —d)(sin(nmpit1) — sin(nwpl-))) if n is odd
i=1 i=m+1

In a similar way, the second coefficient is obtained:

0 if n is even
— m 2m—1
b, = ETfr <Z i(cos(nmp;) — cos(nmpiv1)) + >, (2m —i)(cos(nmp;) — cos(nﬁpi+1))> if n is odd
i=1 i=m+1
Substituting ag, a, and b, in equation (A.1), &(¢) is obtained. Taking into account that e = —Le, and knowing

that L is the open-loop transfer function of the system (L = G,;(jw)), the general expression for e(t) results in:

7, 46 i+1 + Pi
e <pp2> = (%{Gol Jnw,) (Zzsm ( (piv1 — pl)) cos (nﬂ' (,04_12p — pp>>

nodd
2m—1 p +p
1 i
+ Z (2m — 1) s1n( 5 (piv1 — pi)> cos (mr( as — >>
i=m-+1
40 > 1 . i .. nm . i+1 + Pi
- - <%{G’Ol(]nwo)} (Zzsm (?(pi_,_l - pl)) sin (mr (p LT O ))
Nodd 1=1
2m—1 nn +
+ Z—H (2m —1 sm( 5 (piv1 — pl)) sin (mr (P1+1 Pi >>

Appendix B. Dimensionless Indexes calculations

Considering a SIS(_) closed loop with input disturbance, the relation between the dimensionless error E (3) and
the load disturbance P(3) is

N3
@l |l

Ao
Va1

¥
~—

)C(5)



which substituting with the given expressions for G(3) and C(5):

) e’

T _ 1 N¢3s s
{Ls—i-l—i—(bl <1+¢2§+N+¢3§>e }

similarly, for a system with dimensions:

E(s) Kest

o (e V)

then, the relationship between those two expressions is:

From this expression it can be obtained the effect of a step disturbance of magnitude 1 on P(s) from a dimen-
sionless step of magnitude 1 on P(3):

__E(sL) BT _
B(s) = K5 [ P(s) = K== = KLE(sD)
sL

applying over this expression the linearity property of the Laplace transform, the gain K can be extracted. Then,
applying the change of scale of the Laplace transform for dealing with the delay:

L YE(s)} = Ke(t/L) (B.1)

where

e(t) =2 "{E(s)}
Being IAFE the IAFE obtained for the dimensionless model:

o0
TAE = / le(t)|dt
0
Using the expression (B.1) to calculate the index for a generic system:
TAE :/|Ké(t/L)|dt
0

Extracting the gain from the integral and performing a variable change ¢ = ¢/L for solving the integral:

IAE = |K|LTAE

Appendix C. Tuning table

See Table C.3.
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L ~ C(e0) <1 ~ C(o0) <2 ~ C(0) <5 ~ C() <10 _ VC(c0)

K, T; N|K, T; N |K, T; N |Kp, T N | K, T N
0.1 3.97 7.54 * * * *
0.2 244 322 05| 27 30 20 | 29 313 200
0.3 1.97  2.97 201 239 1.0 217 234 3.0 | 246 237 200
0.4 1.64 2.34 166 1.9 1.0 | 1.87 20 4.0 | 207 205 200
0.5 141  2.01 1.55 1.65 2.0 | 1.68 1.69 4.0 | 1.78 1.79 12.0
0.6 115 138 0.5 | 1.36 1.43 20| 145 159 50 | 148 1.6 6.0
0.7 1.06 128 05 | 1.24 14 20| 135 151 5.0 * * *
08 | 1.0 1.9 096 118 0.5 | 114 131 20| 1.25 147 7.0 | 1.26 148 8.0
0.9 | 094 1.36 095 1.12 1.0 | 1.08 1.28 3.0 | * * * * * *
1.0 | 0.9 1.35 091 107 1.0 | 098 12 20/ 1.05 1.29 4.0 | 1.1 137 120
1.1 | 0.83 1.23 0.85 1.05 1.0 | 099 1.22 4.0 | =* * * * * *
1.2 | 0.79 1.22 081 1.0 10| 089 109 20| =x * * * * *
1.3 | 074 113 0.77 096 1.0 | 087 1.1 3.0 =* * * * * *
14 | 072 113 074 095 1.0 | 084 106 3.0 | = * * * * *
1.5 | 065 087 05071 091 10| 083 107 50| = * * * * *
1.6 | 062 084 05| 068 088 10| 08 104 50| = * * * * *
1.7 | 061 081 05067 08 10| 078 101 50| = * * * * *
1.8 | 0.6 083 05065 083 10071 091 20| = * * * * *
1.9 | 058 08 05063 084 10069 08 20| = * * * * *
20 | 057 078 05 ]062 082 10| 071 093 4.0 | = * * * * *
21 | 056 076 05 |066 084 20| 07 09 40| = * * * * *
22 | 055 075 05| 064 08 20| 067 087 30| = * * * * *
23 | 054 073 05 ] 063 084 20| 067 086 4.0 | = * * * * *
24 053 072 05062 08 20065 084 30| = * * * * *
25 | 052 07 05061 08l 120|064 083 30| = * * * * *
26 | 051 069 05| 06 08 20062 081 30067 087 100 | = * *
27 | 05 067 05| 06 078 20 |062 08 30| 066 08 100 | = * *
28 | 05 067 05059 077 20061 079 30| 065 08 100 | = * *
29 | 049 066 05| 058 076 20| 06 077 3.0 064 083 10.0| = * *
30 | 049 065 05058 075 20|05 076 3.0 063 083 10.0| = * *

Table C.3: Tuning table for M7, > 0.2. (x): Take the parameters for the precedent case of C(co
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