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Abstract

A procedure for tuning PID controllers with SSOD sampling for FOPTD systems is proposed. It is based on the
definition of a new robustness measure to avoid limit cycle oscillations, called the Tsypkin margin (MT ). This
margin is based on the Tsypkin method and does not rely on the attenuation of high order harmonics, as the
describing function approaches require. Therefore, the avoidance of limit cycle oscillations can be guaranteed for
any system, as a difference with the describing function based procedures. The procedure allows to obtain the PID
controller that minimizes the disturbance IAE while fulfilling constraints on robustness to oscillations and on control
action bumps due to the SSOD sampling. A freely available Java tool has been developed in order to simplify the
application of the tuning procedure. In case of a non FOPTD system, it first calculates an approximate FOPTD
model. The paper shows that the derivative filter parameter, N is a critical tuning parameter in order to find a
compromise between performance and control action bumps.
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1. Introduction

Nowadays event based controllers are a promising alternative to the classical time driven control systems to
reduce the measurement frequency needed for the control without degrading the closed loop performance. This is a
basic requirement for controllers in networked control systems where many devices (sensors, actuators, controllers)
share a communication channel with limited bandwidth. The reduction in the number of transmitted messages
improve the network overall behavior, for example avoiding dropouts and delays. The use of wireless communications
in control applications has also encouraged the development of event based controllers. In this case, the reduction of
data transmission implies an important decrease in power consumption, therefore increasing the lifetime of batteries
of self-powered remote sensors [9].

The reduction of the measurement frequency in event based control systems strongly depends on the strategy
used to generate the events to send data through the network. In that sense, send-on-delta (SOD) strategy has
emerged as one of the most promising approaches, which reduces considerably the sending of new data [8, 15]. The
SOD method consists in transmitting data from the sensor to the controller node only if the measurement value
changes more than a given specified δ value, [13]. A particular kind of SOD, named symetric-send-on-delta (SSOD),
is proposed in [5]. The SSOD sampler quantifies the input signal by a quantity multiple of a constant value δ, then,
a new value of the input is sent by the sampler when the input changes in a quantity δ.

One of the key points in the analysis and design of event-based control systems is the existence of limit cycles
that can lead to sustained oscillations in the closed loop response. The characterization of limit cycles for different
kind of systems, such as integrator processes plus time delay (IPTD), first order processes plus time delay (FOPTD),
and second-order processes plus time delay (SOPTD), when using a SSOD sampling strategy has been presented
in [6]. The study of the limit cycles is important to predict the magnitude and frequency of the oscillation that
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could appear in a system as a consequence of the detuning of the controller produced by changes in the system’s
dynamic. From the PID tuning point of view, one of the main goal is to prevent limit cycles in order to avoid
undesired oscillations which can reduce the overall performance of the control system or produce excessive actuator
wear.

In [16] and [14], tuning methods for PI controllers with SSOD sampler have been developed based in new
robustness margins for limit cycles, that were obtained by applying the describing function (DF) technique and
entail with the classical concepts of phase and gain margins. The same approach was used in [18], where a unified
design of SSOD-PID control architecture for self-regulating and integral processes was investigated. The use of the
DF let to introduce tools of the classical control theory, such as the Nyquist plot, for the analysis and design of
event based control systems. That could make the design of event based PID controllers more understandable and
consequently boost its application in industry, since these concepts are generally taught in the automatic control
undergraduate courses.

It is well known, however, that the validity of the DF depends on the filtering properties of the open loop
transfer function: only under certain filtering conditions the higher order harmonics can be neglected and the DF
can be successfully applied. Therefore, low order models, such FOPTD and SOPTD, which are commonly used to
describe actual industrial processes, are excluded from this approach and new methods are required to use frequency
response based strategies. Concerning the kind of controller, the use of PID which increase the bandwidth respect
to the PI case could be an additional cumbersome for the application of the DF. In [12], the authors proposed a
new robustness measure to avoid limit cycle on SSOD based PI controllers. The proposal is based on the Tsypkin’s
method [20], which has been widely used to study the relay control systems, that is the reason why we named the
robustness measure Tsypkin’s margin (MT ). Unlike the margins proposed in [16] and [14], which are based on the
DF, the robustness margin MT is valid not only for systems with good filtering capabilities but also for systems
whose dynamic is described by low order models.

In this paper, we propose a new method for tuning PID controllers for FOPTD systems using a SSOD sampling
strategy. It is well known that the FOPTD models admit a dimensionless representation that allows to express
some results, including homogeneous tuning rules that depend on the quotient between the time delay and time
constant, [3]. We combine this idea with the concept of Tsypkin’s margin to develop a general framework for tuning
SSOD based PID controllers. The proposal can be applied to any homogeneous tuning rule in order to evaluate
its performance when applied to SSOD based PID. This general framework has been then applied to the tuning
method developed by the author in [19] resulting in a set tuning rules for SSOD-PID which takes into account an
optimum trade-off between IAE index, the control action variations due to changes of magnitude δ on the measured
variable, and the robustness to limit cycle expressed in terms of MT .

The tuning of SSOD based PI controllers for FOPTD systems has been previously addressed in [4], where some
rules were designed by minimizing the 1% settling time of the closed loop response. Our study take into account
both PI and PID structures, and it proves that the latter can significantly improve the system performance without
degrading the robustness to limit cycles measured in terms of MT . Additionally, an extensive study about the effect
of the derivative filter coefficient on the closed loop behavior is also presented here.

2. Problem statement

Consider the networked control system shown in Figure 1, where C(s) and G(s) are the controller and the
process transfer functions respectively, yr is the reference signal to be tracked, y is the controlled output, and p is the
disturbance input. It is supposed that the controller is located near the actuator and the sensor sends measurements
of process output y (or more precisely of the tracking error e) to the controller through a communication network
using the SSOD strategy. The ZOH block keeps in ē the last sent value of process output e∗ until a new value is
transmitted by the SSOD block. Communication delays through the network are represented by the term exp(−tds).

This control scheme was first proposed in [5] considering C(s) a PI controller, so the authors called it SSOD-PI
architecture. As commented in the introduction, some guide lines for PI tuning were given in [4] when the process
G(s) is a FOPTD model. Our goal in this paper is to design a PID controller with transfer function given by
equation (1) in order to reach an adequate performance and robustness of the closed-loop system. The objective of
the tuning procedure is not only to guarantee stability but also to avoid persistent oscillations or limit cycles that
can appear due to the SSOD strategy if the controller is not designed properly.
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Figure 1: Networked control system with SSOD sampling strategy. SSOD-C(s) architecture.

C(s) = Kp

(

1 +
1

Tis
+

NTds

Tds+N

)

(1)

Previous works have addressed the tuning of SSOD-PI controllers by predicting limit cycles using the Describing
Function [16, 14], a well known tool used in the analysis of non-linear control systems. In those works one of the
design objectives was to avoid the intersection between the negative inverse of the DF with the open-loop transfer
function on the polar plot. Nevertheless, it is known that the DF technique relies on the filtering capabilities of the
linear part of the control loop, which must be capable of filter enough the high frequency harmonics. The linear
part involves both the process and the controller dynamics, therefore, for processes with low filtering capabilities
and PID controllers, which trend to increase the bandwidth respect to the PI case, the DF could not be a suitable
approach to analyze the existence of limit cycles. This fact is illustrated through the following examples.

Example 1. Consider the FOPTD model whose transfer function is:

G(s) =
e−0.2s

s+ 1
(2)

Controllers C(s) have been tuned according to Ziegler-Nichols [21], Cohen-Coon [7], AMIGO [1] and Sanchis-
Romero-Balaguer [19] (SRB for the sake of brevity) methods. The resulting PID parameters are gathered in Table
1. The system in Figure 1 admits the Hammerstein-Wiener representation shown in Figure 2, being SSOD_ZOH
the combination of SSOD and ZOH blocks. The condition to avoid limit cycles is,

Gol(jω) 6= −
1

N
, ∀ω

where Gol(jω) is the open-loop transfer function:

Gol(jω) = exp(−tdjω)C(jω)G(jω)

and N is the describing function of the SSOD_ZOH block. Graphically this condition implies no intersection
between the Nyquist diagram and the negative inverse of N .

♠ ♠
✻

✲✲ ✲ ✲✲
❄

-
yr y

G(s)exp(−tds)C(s)

SSOD_ZOH

e ē

p

Figure 2: Non-linear equivalent system to the control system with SSOD sampling strategy in Figure 1.

Figure 3 shows the Nyquist diagrams obtained with the controllers in Table 1 and the plot of −1/N . It can
be seen that the open-loop transfer functions corresponding to Ziegler-Nichols and Cohen-Coon methods intersect
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Table 1: PID Parameters with different tuning rules for the system presented in equation (2).

Kp Ti Td N

Ziegler-Nichols 6 0.4 0.1 10
Cohen-Coon 6.917 0.455 0.07 10

AMIGO 2.45 0.587 0.094 10
SRB 2.181 0.484 0.115 10

with −1/N , so these systems will present limit cycle oscillations. This is not the case for AMIGO and SRB
methods, for which intersections between Gol and −1/N do not take place, consequently, they are not expected to
oscillate. Simulations of the controlled systems presented in Figure 4 refute the predictions based on the DF since
the four controllers lead to oscillatory behaviors. As it can be seen each controller induces oscillations with different
waveforms because the difference in the tuning parameters produce different Gol(s), each one with its own limit
cycle. Additionally, it is worth noticing that the waveforms in Figure 4 are, generally speaking, hardly sinusoidal.
This is due to the failure of Gol(s) to attenuate higher harmonics sufficiently. It is the waveform’s harmonic content
which is responsible for the unsuccessful application of the DF in this example.

−1.5 −1 −0.5 0 0.5

−1.5

−1

−0.5

0

0.5

ℜ

ℑ

Ziegler-Nichols
Cohen-Coon

AMIGO
SRB

Figure 3: Plots of the open-loop transfer functions obtained with the PID parameters in Table 1 (colored lines) and −1/N (black lines)
in the Nyquist diagram.

3. New robustness margin for existence of limit cycles

3.1. Tsypkin’s method approach
In order to predict more accurately the existence of limit cycles in the control systems presented in Figure 1

(or equivalently in Figure 2) and avoid them, an approach based on the Tsypkin’s method [20] is proposed, which
is valid independently of the filtering characteristics of the linear part of the system. Therefore, this approach is
especially interesting for low order systems, as for example FOPTD systems that are considered in this paper.

In systems with a SSOD_ZOH nonlinearity as that shown in Figure 2, the general shape of an oscillation is
depicted in Figure 5, in which the half period of an oscillation of m levels is shown. In this figure, the error signal
e has been represented, whose slope may be of any magnitude. The sampled error signal ē has also been plotted as
a stair like signal with step widths defined by (ρp − ρp−1)To/2, being To the oscillation period and ρi ∈]0, 1[.

The Tsypkin’s method formalizes the situation represented in Figure 5 in the set of mathematic relations that
define the oscillation conditions presented in equations (3) and (4).
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Figure 4: Steady state oscillations of the system with G(s) given by equation (2) with the PID parameters in Table 1.
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(4)

These conditions are referred to the values of e and its derivative in specific times ρp
To

2 , that is, when the
thresholds of magnitude pδ are crossed. By applying the Fourier series and some basic calculations (see Appendix
A) a general expression of e(ρp To

2 ) can be obtained, equation (5), where n is the number of harmonics:

e

(

ρp
To

2

)

= −
4δ

π

∞
∑

n=1,3,5,...

1

n
ℜ{Gol(jnωo)}

(
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∑

i=1

i sin
(nπ

2
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(

nπ

(
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2
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∞
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(
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i sin
(nπ

2
(ρi+1 − ρi)

)

sin

(

nπ

(

ρi+1 + ρi
2

− ρp

))

+

2m−1
∑

i=m+1

(2m− i) sin
(nπ

2
(ρi+1 − ρi)

)

sin

(

nπ

(

ρi+1 + ρi
2

− ρp

))

)

(5)

Note that the previous expression depends on the real and imaginary part of the open-loop transfer function
(ℜ{Gol(nωo)}, ℑ{Gol(nωo)}) and on the number of levels (m) crossed. It can be easily seen that as m increases,
the complexity of the calculations raise significantly because more oscillation conditions appear in equations (3) and
(4), and the complexity of (5) increases too. For the purpose of this paper we will focus on single leveled oscillations
(m = 1), because it has been observed that by avoiding oscillation for m = 1 no oscillations for m > 1 take place.
This result will be proved in section 6, where multi-level oscillations are addressed. Thus, for practical reasons, this
study will be focused on oscillations with m = 1, whose existence condition, obtained from equations (3) and (4)
are as follows:
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Figure 5: General form of an oscillation, which define the oscillation conditions in Tsypkin method.
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(
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)

dt
=
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> 0 for p = 1
< 0 for p = 2

(7)

It is worth noticing that conditions (6) and (7) are sufficient and necessary for the existence of limit cycles with
m = 1. Consequently, if any of the previous equations is not fulfilled, then, steady state oscillations do not appear
in the system. Therefore, for the sake of simplicity and taking into account that the objective is to avoid limit
cycles, we will consider the conditions in (6) to define a new robustness index to prevent oscillations. Evaluating
(5) in p = 1, 2 and substituting the result in (6) taking into account that by definition ρ2m = 1 and renaming ρ1 as
ρ, the following equations are obtained:

∑∞
n=1,3,5,...

1
nℜ{Gol(jnωo)} sin (nπρ) +

π
4 = 0

∑∞
n=1,3,5,...

1
nℑ{Gol(jnωo)} cos

2
(

nπρ
2

)

+ π
8 = 0

(8)

that finally can be rewritten as follows:

ℜ{Gol(jωo)} = −
π
4 +

∑∞
n=3,5..

1
n sin (nπρ)ℜ{Gol(jnωo)}

sin (πρ)
(9)

ℑ{Gol(jωo)} = −
π
8 +

∑∞
n=3,5..

1
n cos2

(

nπρ
2

)

ℑ{Gol(jnωo)}

cos2
(

πρ
2

) (10)

For a given frequency ωo and ρ ∈]0, 1[, the right hand members of the previous equations define a trajectory in
the Nyquist plane what we refer to as Tsypkin branch for ωo (BT (ωo)).

BT (ωo) =

(

−
π
4 +

∑∞
n=3,5..

1
n sin (nπρ)ℜ{Gol(jnωo)}

sin (πρ)
,−

π
8 +

∑∞
n=3,5..

1
n cos2

(

nπρ
2

)

ℑ{Gol(jnωo)}

cos2
(

πρ
2

)

)

, ∀ρ ∈]0, 1[

Then, a limit cycle oscillation with frequency ωo will take place if the Tsypkin branch for ωo intercepts the point
(ℜ{Gol(jωo)},ℑ{Gol(jωo)}) of the Nyquist diagram, that is:
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(ℜ{Gol(jωo)},ℑ{Gol(jωo)}) = BT (ωo) (11)

Using these definitions we can establish a robustness measure against limit cycles as the minimum euclidean
distance between the Nyquist points (ℜ{Gol(ω)},ℑ{Gol(ω)}) and its respective Tsypkin branches obtained for the
same frequency ω. We will refer to this robustness measure as Tsypkin margin (MT ) that can be expressed as:

MT (ωmin, ρmin) =

√

√

√

√

(

π
4 +

∑∞
nodd

1
n sin (nπρmin)ℜ{Gol(jnωmin)}

sin (πρmin)

)2

+

(

π
8 +

∑∞
nodd

1
n cos2

(

nπρmin

2

)

ℑ{Gol(jnωmin)}

cos2
(

πρmin

2

)

)2

being ωmin and ρmin the values of ω and ρ for which the minimum distance is obtained.
The following examples illustrate the use of MT on predicting the existence of limit cycle and the graphical

interpretation of this new robustness margin.

Example 2. Non-oscillatory system. Consider the following FOPTD transfer function:

G(s) =
e−s

s+ 1
.

A PI controller with Kp = 0.84 and Ti = 1.17 is tuned using the SRB method [19]. A set of Tsypkin branches rep-
resented in Figure 6 has been obtained by evaluating equations (9) and (10) for ρ ∈]0, 1[ and ω ∈ [

ωcg

200 , ωcg], where ωcg

is the crossover frequency. In order to make the visualization easier, different colors are used to represent each point
(ℜ{Gol(jω)},ℑ{Gol(jω)}) and their respective BT (ω). The minimal distance between (ℜ{Gol(jω)},ℑ{Gol(jω)})
and BT (ω), which has been highlighted with a dashed line, is MT = 0.23, obtained for ω = 1.0191rad/s. Note that
even though there are several branches (the red ones) very close to some points of Gol, these branches correspond
to frequencies whose points (ℜ{Gol(jω)},ℑ{Gol(jω)}) (the red ones), are further than 0.23.

-1.5 -1 -0.5 0 0.5
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-1.5

-1

-0.5

0

0.5

ℑ

MT=0.23

Figure 6: Nyquist diagram of Gol(ω) and the Tsypkin band for a non oscillating system (MT = 0.23).
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Figure 7: Nyquist diagram of Gol(ω) and the Tsypkin band for a system with steady-state oscillations (MT = 0).

Example 3. Oscillatory system. Consider the system in Example 1 and the PID obtained with SRB tuning
procedure. Applying the concept of Tsypkin margin concludes that the system will oscillate because a distance MT = 0
has been obtained, as shown in Figure 7. The intersection between Gol(jw) and BT (w) takes place for ρ = 0.72 and
ωo = 1.55 rad/s, BT (1.55) has been represented with a dashed line. The simulation shown in Figure 4 confirms this
prediction.

Example 4. MT for well known tuning rules. The robustness measure MT can be used to determine the
robustness against the oscillations produced by the SSOD structure presented in Figure 1, regardless of the method
used for tuning the controller C(s). As an extension of the work presented in [12], MT has been evaluated for three
well-known tuning methods, namely Ziegler-Nichols (ZN), Cohen-Coon (CC) and AMIGO tuning rules for both PI
and PID. These methods have been used to tune controllers for FOPTD models with different ratio delay (L) and
time constant (τ). The results are summarized in Figure 8.

It can be seen that the AMIGO tuning rules offer higher values of MT with lower ratios L/τ and then this
measure tends to a value around 0.45, both for its PI and PID controller. The Ziegler-Nichols method offers lower
values of MT than the AMIGO method for lower values of L/τ , not being this the case for systems with higher ratio
L/τ where the Ziegler-Nichols method offers the highest values of MT . The Cohen-Coon method offers the lowest
values of MT overall. It can be also observed that for all methods and controller types there are values of ratio L/τ
with MT = 0. The range of values with MT = 0 is higher for PID controllers than for PI controller. Additionally,
for each method the values of MT are higher for PI than for PID. This means that, in general, PI controllers have
better robustness properties than PID when used with SSOD sampling strategy.

4. SSOD-PID Controller Tuning

In this section, we propose a new tuning method for SSOD-PID controllers. It is worth noting that most of
the studies about SSOD based control systems are focused on the PI case and there is a lack of results concerning
the event based PID algorithm. From the discussion on Example 4, it is clear that the PI controllers have better
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Figure 8: MT for FOPTD tuned with Ziegler-Nichols (ZN), Cohen-Coon (CC) and AMIGO tunning methods.

robustness properties than PID to be used on the control scheme presented in Figure 1. However, the benefits of
PID algorithm on improving the response of the control systems is no matter of doubt, and the case of SSOD-PID
is not an exception, as it will be proved in this section.

Our approach is focused on First Order Plus Time Delay (FOPTD) models, which allows to approximate a wide
range of actual industry processes, including those systems that do not admit the application of tuning methods
based on the describing function, as the ones presented in [16, 14], due to its low filtering properties. When using
FOPTD models a good technique for generalizing the results is expressing the transfer function in dimensionless
form. Our proposal is based on this feature, so before presenting the tuning method some preliminary results about
the dimensionless approach are presented in the next subsection.

4.1. Preliminary issues on dimensionless analysis
Let us consider G(s) in Figure 2 to be a FOPTD model. Without loss of generality, the network delay td can

be included in the time delay term L.

G(s) =
Ke−Ls

τs+ 1

A dimensionless representation of G(s) is attained by making the transformation s̄ = Ls and G(s̄)/K:

G(s) =
Ke−Ls

τs+ 1

s= s̄
L===⇒ G(s̄) =

Ke−s̄

τ
L s̄+ 1

G(s̄)/K
====⇒ Ḡ(s̄) =

e−s̄

τ
L s̄+ 1

(12)

The use of the dimensionless form of G(s) makes the analysis easier because the results can be expressed in terms
of the ratio L/τ , the only parameter of Ḡ(s̄). That is the case for homogeneous tuning rules for PID controllers
which can be expressed by the following equations:

Kp = K−1φ1

(

L

τ

)

= K−1Kp, Ti = Lφ2

(

L

τ

)

= LT i, Td = Lφ3

(

L

τ

)

= LT d, (13)

Taking into account the previous equations, the dimensionless transfer function of the PID, obtained from equation
(1), is:

C(s) = Kp






1 +

1

Tis
+

Tds
Tds

N
+ 1







s= s̄
L===⇒ C(s̄) = Kp






1 +

1

Ti/Ls̄
+

Td/Ls̄

Td/Ls̄

N
+ 1






(14)
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C̄(s̄) = KC(s̄); C̄(s̄) = φ1






1 +

1

φ2s̄
+

φ3s̄

φ3s̄

N
+ 1






(15)

where, for the sake of simplicity, the argument L/τ has been suppressed from φ1, φ2 and φ3. The dimensionless
open-loop transfer function of the system in Figure 2 can be obtained using equations (12) and (15):

Gol(s̄) = C̄(s̄)Ḡ(s̄) = φ1






1 +

1

φ2s̄
+

φ3s̄

φ3s̄

N
+ 1







e−s̄

τ
L s̄+ 1

(16)

Furthermore, from equations (12) and (15):

Gol(s̄) = C̄(s̄)Ḡ(s̄) = (KC(s̄))

(

G(s̄)

K

)

= C(s̄)G(s̄) = Gol(s̄) = Gol(sL) (17)

The use of homogeneous rules for tuning the PID controllers has important implications that can simplify the
design of SSOD-PID for FOPTD systems. Concerning MT , since its value only depends on the open-loop transfer
function, and according to the equation (17) Gol(s̄) = Gol(sL), the value of Tsypkin margin calculated with Gol(s̄),
denoted as MT , holds the following relation with MT :

MT (ωmin, ρmin) = MT (ωminL, ρmin) (18)

Thus, for FOPTD models tuned with homogeneous tuning rules, evaluating MT with the dimensionless open-
loop transfer function Gol(s̄) offers the same value of MT than with the dimensional open-loop transfer function.
Moreover, the frequency ωmin can be directly obtained from the dimensionless value ωmin as ωmin = ωminL.

When using a PID controller in structures with a SSOD sampler, other important issue to be considered in the
design is the change δu in the control action produced by the changes δ on the sampled error signal ē. The value
of δu is directly related to the smoothness of the control action and its limitation is important to avoid sudden
changes in the control action that could harm the actuator or cause a malfunctioning of the control system. It
should be taken into account that ē is a noise free stair like signal with steps of magnitude δ, which are amplified
by the controller in the same magnitude as a high frequency noise, according the following equation:

δu = Kp(1 +N)δ = C(∞)δ, (19)

where Kp is the controller gain and N the derivative filter coefficient. Concerning the selection of N it is important
to note that although a common practice in industry is to fix it at high values, some researches have recently shown
that using N as a free parameter allows to balance the noise amplification and the closed loop performance (see
[10, 11]). A similar effect of N in the case of the event based system in Figure 1 has been reported in [17], where
the selection of this parameter allows to set a trade-off between the control action jumps δu and the IAE of the
disturbance response.

The fact of using homogeneous tuning rules, allows to obtain the value of C(∞) for a given system from the
dimensionless model by dividing the obtained value of C(∞) by the system gain:

C(∞) = Kp(1 +N) =
φ1

K
(1 +N) =

C(∞)

K
(20)

Finally, following the dimensionless approach, a simple relation can be extracted between the IAE index for
dimensional and dimensionless models, which is given by the following equation (see Appendix B):

IAE = |K|L · IAE (21)

In summary, when using homogeneous rules to tune a PID controller for a FOPTD system G(s), the value of
the controller parameters, C(∞) and IAE (or other indexes) can be calculated by scaling the results obtained with
the dimensionless model Ḡ(s̄) using the equations (13), (20) and (21) respectively. Furthermore, the value of MT

is the same as that obtained with Ḡ(s̄). To illustrate this idea let us introduce the Example 5.
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Table 2: Summary of characteristics for the studied systems.

PI PID (N = 10)
MT IAEp IAEr C(∞) MT IAEp IAEr C(∞)

G(̄s) 0.38 3.3168 3.3458 0.9 0.0927 1.6626 1.9092 13.2
G1,2(s) 0.38 6.6335 6.6916 0.9 0.0981 3.253 3.8184 13.2
G2,1(s) 0.38 6.6335 3.3458 0.45 0.0927 3.253 1.9092 6.6
G2,2(s) 0.38 13.2671 6.6916 0.45 0.0981 6.6505 3.8184 6.6

Example 5. Let us consider three different FOPTD systems whose transfer functions are

G1,2(s) =
e−2s

2s+ 1
, G2,1(s) =

2e−s

s+ 1
, G2,2(s) =

2e−2s

2s+ 1
.

The dimensionless model for these systems is G(s̄) = e−s̄

s̄+1 . PI and PID controllers are tuned using the Ziegler-
Nichols method, which is a well-known homogeneous tuning rule. The resulting MT , the disturbance IAE (IAEp),
the reference IAE (IAEr) and C(∞) of each system is computed. The results are gathered in Table 2.

This table shows how all the systems, which have the same ratio L/τ , have the same value of MT , which confirms
that this margin only depends on the ratio L/τ . The relation of the other performance indexes (IAEp, IAEr and
C(∞)) with their dimensionless counterparts fulfill the described relations, as expected.

4.2. Tunning procedure
According to the previous section, it is possible to calculate the controller parameters for any FOPTD transfer

function G(s) with a given quotient L/τ and evaluate its performance and robustness from the results obtained for
the dimensionless model G(s) with the same value of L/τ . In this section, we provide the controller parameters
and performance values for a wide range of models G(s) taking into account an optimum tradeoff between the IAE
performance index, the smoothness of the control action in terms of C(∞) and the robustness measure to limit
cycle MT . From these values, it is possible to calculate the results for any system G(s) with the same ratio L/τ
using the equations (13), (20) and (21).

Our approach is based on the tuning algorithm proposed in [19], that we call SRB method, which minimize the
disturbance IAE index with restrictions on the phase and gain margins. The selection of this algorithm is based on
three facts: 1) This method offers different robustness configurations expressed in terms of phase and gain margins.
The definition of MT intuitively suggests a direct relation with the phase margin. Therefore, different values of MT

can be obtained by changing the phase margin. 2) The derivative filtering coefficient N is considered as a free design
parameter, offering controllers with a smoother control action than those with high values of N . 3) According to
[3], the minimization of the disturbance IAE, which depends on the plant sensitivity, assures the homogeneity of
the tuning results obtained with this method.

It is worth noticing that SRB method has been originally developed for continuous-time controllers, but our
objective is to extend it to systems with a SSOD sampling strategy, the one presented in Figure 1, by fulfilling
the requirements on MT and C(∞). More precisely, the design must minimize the disturbance IAE while meeting
requirements on robustness to limit cycle (MT > MTr

) and smoothness of the control action (C(∞) < Cr(∞)) that
formally can be written as in equation (22). Nevertheless, the relation between these requirements and the design
parameters used in the SRB method, that involves phase and gain margins (φm, γm) and the derivative filtering
coefficient (N), is not evident.

minimize
Kp,Ti,Td,N

IAE =

∞
∫

0

|e(t)|dt

subject to MT ≥ MTr
,

C(∞) ≤ Cr(∞)

(22)

The proposed solution is to calculate the controllers using various combinations of phase and gain margins and
derivative filtering coefficient. This produces a set of controllers with MT , IAE, C(∞) and parameters Kp, Ti,
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Figure 9: Summary of the calculus to obtain the dimensionless set of parameters for the controllers.

Td. Then, the controller that minimizes IAE fulfilling MT > MTr
and C(∞) < Cr(∞) is easily selected from this

set. The validity of this approach lies on the fact that once the controllers are obtained for a batch of G(s), that
is, varying the parameter L/τ , the results can be used to obtain the controller for any FOPTD model with L/τ
contained in the batch.

4.3. Calculating the dimensionless controllers
Following the previously described approach, dimensionless parameters were calculated using the SRB method

for a set of systems G(s) with L/τ ∈]0, 3] for all the possible combinations of φm = [50◦, 52.5◦, 55◦, 57.5◦, 60◦, 62.5◦,
65◦, 67.5◦, 70◦] and N = [0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20]. The gain margin was required to
meet γm ≥ 6 dB. The procedure is summarized in Figure 9. The values of φm and N have been selected to guarantee
a set of controllers dense enough in order to make the final controller as close as possible to the exact controller
that minimizes the IAE under the restrictions in MT and C(∞), that is, the solution of the optimization problem
given by equation (22). As said in the previous section, once the set of dimensionless parameters is calculated, it
can be used to obtain the controller for any FOPTD model with L/τ ∈]0, 3], in consequence, the proposed griding
of φm and N does not suppose a computation overload for the tuning of each controller. It is also important to
remark that the phase and gain margins used as requirements are maintained from the dimensionless model to the
dimensional one, the only difference between the dimensionless and the dimensional cases is the frequency at which
these margins are measured due to the variable change (jωmin = jωminL). Therefore, in addition to the required
characteristics MTr

and Cr(∞), all the controllers of the set have at least φm = 50◦ and γm = 6 dB.
Figure 10 shows the evolution of the margin MT with the ratio L/τ for some representative values of φm and

N . Several interesting conclusions rise from this figure. Firstly, it can be seen that for systems close to a first order
model (low values of L/τ), MT = 0. Then, for given values of L/τ , depending on φm and γm, MT increases quickly,
reaching its maximum and then decreasing asymptotically to a final value. Secondly, the figures show that the
higher the phase margin, the higher MT . This confirms our intuition about the relation between these parameters,
based on the fact that both measures are related with the robustness of the system. Finally, the relation between
the filtering coefficient N and the robustness to limit cycle is clearly shown: increasing the value of N generally
reduces MT . In addition, it can be seen that it does not exist much difference between the values of MT obtained
for N=10, 15 and 20, thus, regarding to MT , increasing N in a range further than 10 does not change significantly
the robustness of the system. Summarizing, in the majority of the considered cases, incrementing φm tends to
increase MT but increasing N tends to decrease MT .

Figures 11 and 12 show the values of IAE and C(∞) for different values of L/τ . Only the cases for which
MT 6= 0 have been represented. The worst results of IAE are obtained for the PI controllers (N = 0) and this
index improves as N rises, however, as in the case of MT , no significant improvement is observed regarding to the
IAE for those controllers with values of N > 10. On the other hand, the effect of φm on the IAE is not significant
for the PID controllers, for any value of N . The same can not be said for the PI cases, whose values of IAE for low
ratios L/τ clearly get worse with the increment of φm. Regarding C(∞), it can be seen how, as expected, increasing
N increases C(∞), which increases significantly the value of δu. Furthermore, the variations of φm barely affect
this parameter.

4.4. Software tool for tuning
As a result of the calculation described on the previous section, 162 controllers (Kp, Ti and Td) have been

obtained for each value of L/τ ∈]0, 3], by taking all the possible combinations of φm = [50◦, 52.5◦, 55◦, 57.5◦, 60◦,
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Figure 10: Evolution of MT with L/τ for different configurations of φm and N .
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Figure 11: Obtained values of IAE for the considered batch for different configurations of φm and N .
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Figure 12: Obtained values of C(∞) for the considered batch for different configurations of φm and N .

62.5◦, 65◦, 67.5◦, 70◦] and N = [0, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20]. Their respective values of
MT , IAE and C(∞) have also been obtained. In order to manage this information more efficiently, a software tool
has been developed to facilitate the selection of the controller that minimizes the IAE while fulfilling the constraints
MT > MTr

and C(∞) < Cr(∞). It should be noted in Figures 10, 11 and 12 that smooth relations exist between
the design parameters (φm and N) and the robustness/performance indexes (MT , IAE and C(∞)). This indicates
that the proposed tuning procedure is not too sensitive to these parameters and therefore the solution obtained
from the pre-calculated set of dimensionless controllers will be close to the actual optimal solution.

The tuning procedure using the set of dimensionless parameters pre-calculated in section 4.3 has been im-
plemented in a Java application. The procedure is summarized in Figure 13. For a given FOPTD model and
requirements MTr

and Cr(∞) the quotient L/τ is calculated and the controllers for this value of L/τ fulfilling the
constrains MT > MTr

and C(∞)/K < Cr(∞) are filtered. Then the controller with minimum IAE is selected and
the dimensional parameters Kp, Ti and Td are calculated using equations (13). If an arbitrary model is defined, the
tool first obtains a FOPTD approximation, and calculates the controller using that approximation. The robustness
margins and the response simulation, however, correspond to the original system, therefore it is easy to check the
effect of approximate modeling on the design. The software tool can be freely downloaded from:
https://sites.google.com/a/uji.es/freepidtools/ssodTsypkinPid.

The use of the application is introduced through the following example.

Example 6. Let us consider for this example a system whose transfer function is:

G(s) =
1

(s+ 1
3 )(s+ 1)(s+ 3)

The application consists of a main window including several tabs with different functionality. Firstly, the process
model must be defined in the Plant_definition tab, Figure 14. As commented before, since this model is not
a FOPTD transfer function, a FOPTD approximation is calculated which will be used to obtain the controller
parameters. The PID design is carried out in the PID_design tab, Figure 15, by fixing the desired value MTr

and
C(∞). For this example it has been considered MTr

≥ 0.1 and C(∞) ≤ 20. Then a button allows to obtain the PID
controller parameters that minimize the IAE while fulfilling these constraints. The design results evaluated over
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Figure 13: Summary of the controller design procedure.

Figure 14: Software tool process definition window.

the original systems, not the FOPTD approximation, are also shown on this tab. It can be seen how MT = 0.32 is
greater than MTr

and that the value of C(∞) = 18.28 stays below the maximum required. The tool also shows the
Tsypkin band that defines the margin MT , and the complete set of Tsypkin bands if desired.

A separate window shows the response of the controlled system to a step change in the setpoint and in the
disturbance input, see Figure 16, allowing to select the value of the SSOD parameter δ, which has been fixed to 0.1.

If the user wants to find another controller, the new restrictions must be introduced and the application will
compute the result. For example, consider now that the requirement on the control action changes to Cr(∞) ≤ 2,
then this parameter is introduced and the application computes the resultant controller as it is shown in Figure 17.
Here it can be seen that the new controller, which is a PI controller, fulfills the requirements on MT and C(∞), but
the disturbance IAE has risen (from 1.37 to 1.86), as can be appreciated on Figure 18.

4.5. Tuning table
Alternatively to the software tool presented in the previous section, the tuning can also be carried out using

the table in Appendix C, that has been obtained for specific requirements on C(∞) and MTr
> 0.2. Of course,

this option is not as flexible and interactive as using the application, but provides a very simple way for tuning the
controller once the FOPTD model of the system is known.

The table provides the dimensionless parameters Kp, Ti and N for different values of the ratio L/τ . The value
of Td has been omitted since its value is calculated as Td = Ti/4. The empty entries in the table mean that it is not
possible to obtain a controller with the SRB method that fulfills the specified requirements. For the entries where
a character ∗ appears, the controller parameters are the same as those obtained for the precedent value of C(∞),
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Figure 15: Software tool PID design window.

Figure 16: Software tool time response window.
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Figure 17: Software tool PID design window with modified parameters.

Figure 18: Software tool time response window with modified parameters.
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Figure 19: Nyquist plot of the open-loop transfer function with all the controllers and its minimum Tsypkin branch.

that is, the parameters on the columns at the left of the position marked with ∗. The following example illustrates
how the different proposed controllers on the table behave and some guidelines to choose them.

Example 7. Let us consider a FOPTD system whose transfer function is

G(s) =
0.5e−2s

5s+ 1
. (23)

By using the proposed tuning table a robustness of MTr
> 0.2 is obtained, and each of the controllers has different

levels of control action variations due to changes of δ in the sampled signal. A measurement gaussian noise is
assumed, whose effect is mostly avoided by the choice of the SSOD thresholds δ = 0.1.

For transfer function (23) the ratio L/τ is 0.4. Searching in Table C.3 the corresponding row, 4 controllers with
different values of C(∞) can be found. Each controller is denoted as Ci where i is the position of the controller
when reading the table from left to right. The parameters of the different controllers are expressed in a dimensionless
way, thus, these values must be converted to dimensional parameters using the expressions on equation (13).

Figure 19 shows the open-loop transfer function for all the cases with their respective Tsypkin margin, proving
that the robustness requirements have been fulfilled. Additionally, Figure 20 shows the closed-loop response to
reference and disturbance step changes on t = 1s and t = 25s respectively for all the cases. These systems do not
present limit cycle oscillations, as expected. The controllers with higher values of C(∞), which have lower values of
IAE, result in faster responses but paying the price of having more abrupt changes in the control action (as shown
in Figure 21), as a result of higher derivative filter coefficients. This is more clear observing the response of the
system controlled with C1, which is a PI controller, with regard to the others, which are PID.

The example shows that it is not reasonable to choose an excessively high value of C(∞), because the improvement
in the disturbance IAE is small for a high increase in control action bump. For example, controllers C3 and C4

18



0 5 10 15 20 25 30 35 40 45 50 55 60

0

0.25

0.5

0.75

1

1.25
y
(t
),
C

1

0 5 10 15 20 25 30 35 40 45 50 55 60

0

0.25

0.5

0.75

1

1.25

y
(t
),
C

2

0 5 10 15 20 25 30 35 40 45 50 55 60

0

0.25

0.5

0.75

1

1.25

t[s]

y
(t
),
C

3

0 5 10 15 20 25 30 35 40 45 50 55 60

0

0.25

0.5

0.75

1

1.25

t[s]

y
(t
),
C

4
Figure 20: Disturbance response for the considered system with all the controllers.

0

2

4

u
(t
),
C

1

0

2

4

6

8

u
(t
),
C

2

0 10 20 30 40 50 60

Ev
en

ts

0 10 20 30 40 50 60

Ev
en

ts

0

5

10

15

u
(t
),
C

3

0

20

40

60

80

u
(t
),
C

4

0 10 20 30 40 50 60

t[s]

Ev
en

ts

0 10 20 30 40 50 60

t[s]

Ev
en

ts

Figure 21: Control action and events generated by crossing the SSOD levels in black for the considered system with all controllers.

19



have a very similar temporal response (IAE) but the changes in control action produced by C4 are significantly higher
than those produced by the controller C3. The value of δu for C3 is δu = Kp(1 +N)δ = 3.74(1 + 4)0.1 = 1.87, and
δu = 8.694 for C4, resulting in a more aggressive control action.

5. Effect of the FOPTD approximation

The tuning procedure presented in the previous sections is based on using a FOPTD model. However, the
behavior of many actual industrial processes do not correspond strictly to this kind of models. In this sense, it is
important to evaluate the effect of this approximation on the final results with the original system, especially on MT

since its value determines the presence of limit cycle oscillations. To shed light about this issue, we have considered
the following batch of 95 models widely used to evaluate the performance of PID controllers, which represent most
of the common dynamics in real applications, [2]:

G(s) =
e−s

(Ts+ 1)2
,

T = 0.3, 0.5, 0.7, 1, 1.3, 1.5, 2, 4, 6, 8, 10, 20, 50, 100, 200, 500

G(s) =
1

(s+ 1)(Ts+ 1)2
,

T = 0.05, 0.1, 0.2, 0.5, 2, 5, 10

G(s) =
1

(s+ 1)n
,

n = 3, 4, 5, 6, 7, 8

G(s) =
1

(s+ 1)(αs+ 1)(α2s+ 1)(α3s+ 1)
,

α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

G(s) =
Te−L1s

(T1s+ 1)(Ts+ 1)
, T1 + L1 = 1,

T = 1, 2, 5, 10, L1 = 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 1

G(s) =
1− αs

(s+ 1)3
,

α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1

G(s) =
1

(s+ 1)((sT )2 + 1.4sT + 1)
,

T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

(24)

Controllers with MT ≥ 0.1 and without constraint on C(∞) have been obtained for all these models using a
FOPTD approximation. The values of MT calculated with both the FOPTD and the original transfer functions
are presented in Figure 22. It can be seen that the final MT of the original system with the controller calculated
for its FOPTD approximation is greater than the MT of the FOPTD approximation. Therefore, the robustness to
limit cycle is assured when using controllers designed with the procedure presented in this paper.

6. Multi-level oscillations

In the previous sections, single leveled oscillations with m = 1 have been characterized using the robustness
measure MT and a tuning method has been proposed to avoid this kind of limit cycles. Nevertheless, the question
if avoiding oscillations with m = 1 is enough to ensure robustness to oscillations with m > 1 has not been addressed
yet. In this sense, some results were presented in [14] based on the shape of the describing function of the SSOD
sampler, however, as commented earlier, the filtering hypothesis that this technique assumes as true is not fulfilled
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Figure 22: MT and ∆MT for the considered systems.

for FOPTD systems. Thus, the study of multi-level oscillation (m > 1) must follow the same ideas as that for
m = 1, which was presented in section 3.

As commented in section 3, the complexity of the calculation based on Tsypkin’s conditions for oscillation raises
significantly with m. As an example, let us consider the case m = 2, whose oscillation conditions derived from
equation (6) are:

ECp|m=2
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∣

∣
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∣

∣
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δ for p = 3
0 for p = 4

(25)

Evaluating equation (5) for m = 2 it can be obtained that:
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Using the equation (26) and the constraints presented in (25), four oscillation conditions are obtained, equation
(27). In order to facilitate the lecture of these equations, we have denoted as Crep and Cimp

the coefficients that
multiply the real and imaginary parts of Gol respectively for each value of p. These coefficients only depend on the
values of ρp.

∑∞
nodd

(

1
n (ℑ{Gol(nω0)}Cim1

−ℜ{Gol(nω0)}Cre1)
)

− π
4 = 0

∑∞
nodd

(

1
n (ℑ{Gol(nω0)}Cim2

−ℜ{Gol(nω0)}Cre2)
)

− π
2 = 0

∑∞
nodd

(

1
n (ℑ{Gol(nω0)}Cim3

−ℜ{Gol(nω0)}Cre3)
)

− π
4 = 0

∑∞
nodd

(

1
n (ℑ{Gol(nω0)}Cim4

−ℜ{Gol(nω0)}Cre4)
)

= 0

(27)

From equation (27) it can be seen that, unlike the case of conditions for m = 1 given by equations (8), it is
impossible to isolate the terms ℜ{Gol(jωo)} and ℑ{Gol(jωo)}, thus a robustness measure as MT with direct visual
representation in the Nyquist plane can not be obtained when m > 1. Then, in order to compare the robustness
to oscillations with different m we need to define a more general robustness measure. To this aim, in the case
of equation (27), we can use the minimal Euclidean distance between the origin (0,0,0,0) and the points with
coordinates given by the left hand members when evaluated in ρp ∈]0, 1[, p = 1, 2, 3, 4 and ω ∈ [

ωcg

200 , ωcg]. Denoting
R2 the minimal Euclidean distance for m = 2, and Lp the left hand members of equation (27) for each p, the
expression for the computation of R2 is:

R2 = min
ω,ρ1,··· ,ρ4

√

√

√

√

4
∑

p=1

Lp(ω, ρ1, ρ2, ρ3, ρ4)2 (28)

Taking into account that for any value of m the conditions in (3) can be written as a system of equations similar
to (27) but with 2m equations, the general expression for Rm is as follows:

Rm = min
ω,ρ1,··· ,ρ2m

√

√

√

√

2m
∑

p=1

Lp(ω, ρ1, · · · , ρ2m)2 (29)

When Rm = 0, the oscillation requirements are fulfilled, and thus, oscillations with m levels could appear. On
the other hand, if Rm > 0, m-leveled oscillation will not occur. Obviously, the complexity of the calculus and the
computation time needed to obtain Rm increases with the number of oscillation levels m because more combinations
of the time fractions ρp appear than in the case of m = 1.

Using Rm it is possible to compare the robustness of a system to different m-leveled oscillations. With this
aim, the cases of R1, R2 and R3 have been obtained for the batch of 95 models presented in equation (24) with its
respective controllers. These robustness measures have been represented in Figure 23. As can be seen, for all these
models the value of Rm increases with m. This shows that in general, by avoiding oscillations for m = 1 with the
proposed tuning method, the system will not present steady state oscillations for higher values of m.

7. Conclusions

The paper presents a PID tuning procedure for FOPTD systems with Symmetric Send on Delta sampling, that
allows to minimize the disturbance IAE while fulfilling constraints on the robustness to oscillations and on the
control action changes.

The robustness to avoid limit cycle oscillations due to the SSOD sampling has been taken into account by
defining a new robustness measure, MT , based on Tsypkin method, that does not require the system to filter out
the high order harmonics (as it is required by methods based on the describing function). Therefore, the proposed
approach is valid for systems with insufficient filtering characteristics (where the describing function can not be
applied).

A set of precomputed controllers has been obtained for dimensionless FOPTD models with different values of
L/τ , using a grid on phase margin and on derivative filter parameter N . For each controller in the set, the value
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Figure 23: R1, R2 and R3 for the batch of models with their respective controller obtained in the previous section.

of MT and C(∞) has been computed. The tuning procedure consists on selecting from this set the controller that
minimizes the IAE and fulfills the required MT and C(∞) constraints.

In order to simplify the application of the tuning procedure, a Java application has been developed (freely
available at https://sites.google.com/a/uji.es/freepidtools/ssodTsypkinPid), that computes the controller
parameters for the required MT and C(∞). If the system model is not FOPTD, the applicacion first computes
a FOPTD approximation, and calculates de PID controller using that approximated model. Alternatively to this
application, a table for tuning controllers with MT > 0.2 and restrictions on C(∞) is also provided.

An extensive study with a batch of models has shown that when the system is not FOPTD, the controller
obtained with the FOPTD approximation results in higher values of MT than initially required, therefore, the
procedure guarantees the robustness to limit cycle oscillations for any system model.

The tuning procedure shows that the derivative filter coefficient, N is a crucial tuning parameter for SSOD
PID, because it allows to reach a reasonable compromise between performance (in terms of IAE for example) and
control action bumps due to the SSOD sampling.
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Appendix A. Tsypkin method calculations

Consider that the sampled error signal ē(t) follows a ladder-type form as shown in Figure 5, then the expression
of ē(t) can be obtained through Fourier series expansion:

ē(t) =
a0
2

+

∞
∑

n=1

(an cos(ωnt) + bn sin(ωnt)) (A.1)

As the error signal is supposed centered around 0 and symmetric the coefficient a0 is equal to 0. For the other
coefficients:
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an =
2

To

ρ2
To
2

∫

ρ1
To
2

δ cos(ωnt)dt+
2

To

ρ3
To
2

∫

ρ2
To
2

2δ cos(ωnt)dt+ ...+
2

To

ρm+1
To
2

∫

ρm
To
2

mδ cos(ωnt)dt+

+
2

To

ρm+2
To
2

∫

ρm+1
To
2

(m− 1)δ cos(ωnt)dt+ ...+
2

T0

ρ2m
To
2

∫

ρ2m−1
T0
2

δ cos(ωnt)dt+

+
2

To

To
2
+ρ2

To
2

∫

To
2
+ρ1

To
2

−δ cos(ωnt)dt+ ...+
2

To

To
2
+ρm+1

To
2

∫

To
2
+ρm

To
2

−mδ cos(ωnt)dt+

+
2

To

To
2
+ρm+2

To
2

∫

To
2
+ρm+1

To
2

−(m− 1)δ cos(ωnt)dt+ ...+
2

To

To
2
+ρ2m

To
2

∫

To
2
+ρ2m−1

To
2

−δ cos(ωnt)dt

Solving and arranging the equation, the first Fourier coefficient is obtained:

an =







0 if n is even
2δ
nπ

(

m
∑

i=1

i(sin(nπρi+1)− sin(nπρi)) +
2m−1
∑

i=m+1

(2m− i)(sin(nπρi+1)− sin(nπρi))

)

if n is odd

In a similar way, the second coefficient is obtained:

bn =







0 if n is even
2δ
nπ

(

m
∑

i=1

i(cos(nπρi)− cos(nπρi+1)) +
2m−1
∑

i=m+1

(2m− i)(cos(nπρi)− cos(nπρi+1))

)

if n is odd

Substituting a0, an and bn in equation (A.1), ē(t) is obtained. Taking into account that e = −Lē, and knowing
that L is the open-loop transfer function of the system (L = Gol(jω)), the general expression for e(t) results in:

e

(

ρp
To

2

)

= −
4δ

π

∞
∑

nodd

1

n

(

ℜ{Gol(jnωo)}

(

m
∑

i=1

i sin
(nπ

2
(ρi+1 − ρi)

)

cos

(

nπ

(

ρi+1 + ρi
2

− ρp

))

+

2m−1
∑

i=m+1

(2m− i) sin
(nπ

2
(ρi+1 − ρi)

)

cos

(

nπ

(

ρi+1 + ρi
2

− ρp

))

))

−
4δ

π

∞
∑

nodd

1

n

(

ℑ{Gol(jnωo)}

(

m
∑

i=1

i sin
(nπ

2
(ρi+1 − ρi)

)

sin

(

nπ

(

ρi+1 + ρi
2

− ρp

))

+
2m−1
∑

i=m+1

(2m− i) sin
(nπ

2
(ρi+1 − ρi)

)

sin

(

nπ

(

ρi+1 + ρi
2

− ρp

))

))

Appendix B. Dimensionless Indexes calculations

Considering a SISO closed loop with input disturbance, the relation between the dimensionless error Ē(s̄) and
the load disturbance P̄ (s̄) is:

Ē(s̄)

P̄ (s̄)
=

Ḡ(s̄)

1 + Ḡ(s̄)C̄(s̄)
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which substituting with the given expressions for Ḡ(s̄) and C̄(s̄):

Ē(s̄)

P̄ (s̄)
=

e−s̄

[

τ

L
s̄+ 1 + φ1

(

1 +
1

φ2s̄
+

Nφ3s̄

N + φ3s̄

)

e−s̄

]

similarly, for a system with dimensions:

E(s)

P (s)
=

Ke−sL

[

τs+ 1 + φ1

(

1 +
1

Lφ2s
+

NLφ3s

N + Lφ3s

)

e−sL

]

then, the relationship between those two expressions is:

E(s)

P (s)
= K

Ē(s̄ = sL)

P̄ (s̄ = sL)

From this expression it can be obtained the effect of a step disturbance of magnitude 1 on P (s) from a dimen-
sionless step of magnitude 1 on P̄ (s̄):

E(s) = K
Ē(sL)

P̄ (sL)
P (s) = K

Ē(sL)
1

sL

1

s
= KLĒ(sL)

applying over this expression the linearity property of the Laplace transform, the gain K can be extracted. Then,
applying the change of scale of the Laplace transform for dealing with the delay:

L
−1 {E(s)} = Kē(t/L) (B.1)

where
ē(t) := L

−1
{

Ē(s̄)
}

Being IAE the IAE obtained for the dimensionless model:

IAE :=

∞
∫

0

|ē(t)|dt

Using the expression (B.1) to calculate the index for a generic system:

IAE =

∞
∫

0

|Kē(t/L)|dt

Extracting the gain from the integral and performing a variable change t′ = t/L for solving the integral:

IAE = |K|LIAE

Appendix C. Tuning table

See Table C.3.
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L/τ
C(∞) < 1 C(∞) < 2 C(∞) < 5 C(∞) < 10 ∀C(∞)

Kp Ti N Kp Ti N Kp Ti N Kp Ti N Kp Ti N

0.1 3.97 7.54 ∗ ∗ ∗ ∗

0.2 2.44 3.22 0.5 2.7 3.0 2.0 2.9 3.13 20.0
0.3 1.97 2.97 2.01 2.39 1.0 2.17 2.34 3.0 2.46 2.37 20.0
0.4 1.64 2.34 1.66 1.9 1.0 1.87 2.0 4.0 2.07 2.05 20.0
0.5 1.41 2.01 1.55 1.65 2.0 1.68 1.69 4.0 1.78 1.79 12.0
0.6 1.15 1.38 0.5 1.36 1.43 2.0 1.45 1.59 5.0 1.48 1.6 6.0
0.7 1.06 1.28 0.5 1.24 1.4 2.0 1.35 1.51 5.0 ∗ ∗ ∗

0.8 1.0 1.9 0.96 1.18 0.5 1.14 1.31 2.0 1.25 1.47 7.0 1.26 1.48 8.0
0.9 0.94 1.36 0.95 1.12 1.0 1.08 1.28 3.0 ∗ ∗ ∗ ∗ ∗ ∗

1.0 0.9 1.35 0.91 1.07 1.0 0.98 1.2 2.0 1.05 1.29 4.0 1.1 1.37 12.0
1.1 0.83 1.23 0.85 1.05 1.0 0.99 1.22 4.0 ∗ ∗ ∗ ∗ ∗ ∗

1.2 0.79 1.22 0.81 1.0 1.0 0.89 1.09 2.0 ∗ ∗ ∗ ∗ ∗ ∗

1.3 0.74 1.13 0.77 0.96 1.0 0.87 1.1 3.0 ∗ ∗ ∗ ∗ ∗ ∗

1.4 0.72 1.13 0.74 0.95 1.0 0.84 1.06 3.0 ∗ ∗ ∗ ∗ ∗ ∗

1.5 0.65 0.87 0.5 0.71 0.91 1.0 0.83 1.07 5.0 ∗ ∗ ∗ ∗ ∗ ∗

1.6 0.62 0.84 0.5 0.68 0.88 1.0 0.8 1.04 5.0 ∗ ∗ ∗ ∗ ∗ ∗

1.7 0.61 0.81 0.5 0.67 0.86 1.0 0.78 1.01 5.0 ∗ ∗ ∗ ∗ ∗ ∗

1.8 0.6 0.83 0.5 0.65 0.83 1.0 0.71 0.91 2.0 ∗ ∗ ∗ ∗ ∗ ∗

1.9 0.58 0.8 0.5 0.63 0.84 1.0 0.69 0.88 2.0 ∗ ∗ ∗ ∗ ∗ ∗

2.0 0.57 0.78 0.5 0.62 0.82 1.0 0.71 0.93 4.0 ∗ ∗ ∗ ∗ ∗ ∗

2.1 0.56 0.76 0.5 0.66 0.84 2.0 0.7 0.9 4.0 ∗ ∗ ∗ ∗ ∗ ∗

2.2 0.55 0.75 0.5 0.64 0.86 2.0 0.67 0.87 3.0 ∗ ∗ ∗ ∗ ∗ ∗

2.3 0.54 0.73 0.5 0.63 0.84 2.0 0.67 0.86 4.0 ∗ ∗ ∗ ∗ ∗ ∗

2.4 0.53 0.72 0.5 0.62 0.82 2.0 0.65 0.84 3.0 ∗ ∗ ∗ ∗ ∗ ∗

2.5 0.52 0.7 0.5 0.61 0.81 2.0 0.64 0.83 3.0 ∗ ∗ ∗ ∗ ∗ ∗

2.6 0.51 0.69 0.5 0.6 0.8 2.0 0.62 0.81 3.0 0.67 0.87 10.0 ∗ ∗ ∗

2.7 0.5 0.67 0.5 0.6 0.78 2.0 0.62 0.8 3.0 0.66 0.86 10.0 ∗ ∗ ∗

2.8 0.5 0.67 0.5 0.59 0.77 2.0 0.61 0.79 3.0 0.65 0.85 10.0 ∗ ∗ ∗

2.9 0.49 0.66 0.5 0.58 0.76 2.0 0.6 0.77 3.0 0.64 0.83 10.0 ∗ ∗ ∗

3.0 0.49 0.65 0.5 0.58 0.75 2.0 0.59 0.76 3.0 0.63 0.83 10.0 ∗ ∗ ∗

Table C.3: Tuning table for MTr
> 0.2. (∗): Take the parameters for the precedent case of C(∞).
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