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Abstract

The identification of functional elements encoded in plant genomes is necessary to understand gene regulation. Although
much attention has been paid to model species like Arabidopsis (Arabidopsis thaliana), little is known about regulatory motifs
in other plants. Here, we describe a bottom-up approach for de novo motif discovery using peach (Prunus persica) as an exam-
ple. These predictions require pre-computed gene clusters grouped by their expression similarity. After optimizing the bound-
aries of proximal promoter regions, two motif discovery algorithms from RSAT::Plants (http://plants.rsat.eu) were tested (oligo
and dyad analysis). Overall, 18 out of 45 co-expressed modules were enriched in motifs typical of well-known transcription fac-
tor (TF) families (bHLH, bZip, BZR, CAMTA, DOF, E2FE, AP2-ERF, Myb-like, NAC, TCP, and WRKY) and a few uncharacterized
motifs. Our results indicate that small modules and promoter window of [–500 bp, + 200 bp] relative to the transcription start
site (TSS) maximize the number of motifs found and reduce low-complexity signals in peach. The distribution of discovered
regulatory sites was unbalanced, as they accumulated around the TSS. This approach was benchmarked by testing two different
expression-based clustering algorithms (network-based and hierarchical) and, as control, genes grouped for harboring ChIPseq
peaks of the same Arabidopsis TF. The method was also verified on maize (Zea mays), a species with a large genome. In sum-
mary, this article presents a glimpse of the peach regulatory components at genome scale and provides a general protocol that
can be applied to other species. A Docker software container is released to facilitate the reproduction of these analyses.
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Introduction

Peach (Prunus persica [L.] Batsch), a member of Prunus ge-
nus, is one of the best genetically characterized species

within the Rosaceae family. With a small diploid genome
(’260 Mbp), and relatively short generation time (2–3
years), peach has become a model species for fruit genetic
studies (Abbott et al., 2002). Obtaining elite genotypes with
broad environmental adaptations and good fruit quality are
the fundamental targets of all Prunus breeding programs
(Gogorcena et al., 2020). To cope with environmental stim-

uli and ensure edible fruit development, a complex re-
arrangement of the gene expression network is required.
The modulation of gene expression is a complex process

occurring at various levels, of which the transcriptional regu-
lation is the core control code (Petrillo et al., 2014). The
transcription machinery works as an interplay between
DNA-binding proteins called transcription factors (TFs) and
cis-regulatory elements (CREs). TFs bind short sequences
known as TF-binding sites (TFBSs) located at CREs (e.g. pro-
moters, enhancers, silencers). The different sites recognized

by a TF are usually summarized as motifs or matrices. TFs
may act as either activators or repressors of gene expression,
leading to dynamic changes of the cellular pathways. For
peach, annotation of TFs is available in resources such as
the database plantTFDB (Tian et al., 2019).
As of November 2020, plantTFDB v5.0 stored 2,780 peach

TFs classified into 58 families (http://planttfdb.cbi.pku.edu.
cn). However, while much is known about TF families, most
TFBSs and motifs are yet to be characterized. Deciphering
the cis-regulatory network has become a prerequisite toward

scoping out the foundations of transcriptional regulation in
peach and other plants. The computational exploration of
DNA motifs has been greatly stimulated by the availability
of genomic data and the release of whole genome sequence
assemblies (Verde et al., 2013, 2017). In this context, a vari-
ety of plant motif finders has emerged. Notwithstanding
their value, they are hampered by certain limitations such as

a restricted range of species (Promzea for maize [Zea mays]
(Liseron-Monfils et al., 2013) and AthaMap for Arabidopsis
[Arabidopsis thaliana] (Steffens et al., 2005)]; out-of-date
databases (PlantCare, last updated in 2002; Lescot et al.,
2002) or platforms allowing only the recovery of experimen-
tally defined motifs (PlantPAN; Chang et al., 2008). Thereby,
to circumvent these pitfalls, we have adopted a plant-

customized tool for de novo motif discovery, Regulatory se-
quence analysis tools (RSAT)::Plants (http://plants.rsat.eu).
RSAT has both a friendly user interface and command-line
tools for versatile analyses in a wide collection of plants
(Nguyen et al., 2018).
Cis-regulatory sequences have been studied in species

such as Arabidopsis (Korkuc et al., 2014; Cherenkov et al.,
2018), rice (Oryza sativa; Tonnessen et al., 2019), and maize
(Yu et al., 2015; GalLi et al., 2018). In P. persica, there have
been so far two motif discovery experiments: (1) a set of

350 dehydrin promoter sequences (Zolotarov and Strömvik,
2015) and (2) 30 heat responsive genes (Gismondi et al.,

2020). In contrast to these case studies, we propose a struc-

tured bottom-up framework to identify statistically over-

represented motifs on a genome scale. Our probabilistic ap-

proach relies on the hypothesis that genes within co-

expressed modules are likely co-regulated by the same TFs.

This approach has been successfully tested in many studies,

for example, in Arabidopsis (Koschmann et al., 2012; Ma

et al., 2013) and maize (Yu et al., 2015). According to

Bianchi et al., 2015, an arbitrary defined segment of 1,500-bp

upstream of the transcription start site (TSS) can be consid-

ered as the proximal promoter in peach. However, recent

studies about the genomic delimitation of proximal pro-

moters in P. persica effectively reduced this region to a win-

dow of approximately 500 nt (Montardit-Tarda, 2018).
The proposed pipeline, summarized on Figure 1, relies on

four key ideas:

(1) an accurate definition of co-expressed gene modules;
(2) the identification of over-represented motifs as com-

pared with a biologically meaningful background

model;
(3) an assessment of the effect of upstream region length

regarding the effectiveness of motif discovery; and
(4) disclosing the effect of splitting the analysis around the

TSS site in discovering potential cis-elements.

All together, we demonstrated the utility of our strategy

in analyzing genome-wide data to provide insights on gene

regulation dynamics across tissues and specific conditions. In

addition, the motifs predicted in this study can be browsed

at https://eead-csic-compbio.github.io/coexpression_motif_

discovery, where we provide readers with direct links to the

results, a source code repository and a Docker software con-

tainer to reproduce the analysis on any other plant species.

A step-by-step tutorial for Web users is also available at

https://github.com/RSAT-doc/motif_discovery_clusters.

Results

Identification of differentially expressed transcripts
and module definition using weighted co-expression
networks
After quality assessment and pseudo-alignment, an expres-

sion matrix was generated from eight published peach tran-

scriptomes, including treated and control samples with their

corresponding biological replicates. Differential analysis

yielded 11,335 altered transcripts using Q 5 0.01 and jbj 4
1 thresholds. The number of differentially expressed tran-

scripts (DETs) identified in each RNA-seq experiment is

given in Table 1. Detailed information about quality control,

pseudo-alignment and differential expression analyses is

available on Table S1.
Expression values of 11,335 stress-related transcripts and

64 samples were used to construct the co-expression mod-

ules using the weighted gene co-expression network analysis

(WGCNA) package. All samples and DETs were considered

in the network construction, as neither outliers nor
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transcripts with missing values were detected (Supplemental

Figure S1A). Using a dynamic tree cut algorithm, 45 co-

expression modules were retained with size ranging from 29

to 1,795 transcripts per module (Supplemental Figure S1B).

The inter-connectivity of genes among modules was

visualized using the topological overlap measure (TOM).

Highly connected genes are highlighted in red color in

Supplemental Figure S1C. Moreover, relatedness between

the identified modules was also computed as the module

eigengene (ME) measure, also known as the first principal

Figure 1 Bottom-up framework for de novo motif discovery. Step 1: differential expression analysis for transcript detection and extraction of

co-expressed modules. Step 2: de novo motif detection using the peak-motifs tool from RSAT::Plants. Numbers correspond to the different tested

upstream tracts, with TSSs anchored on position 0 bp, while letters represent tools within peak-motifs. Green and orange boxes label software

used and RSAT tools, respectively.
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component of the module. The resulting plots are
Supplemental Figure S1, D and E, where modules exhibiting
high inter-connectedness are marked by progressively satu-
rated blue and red colors. These findings, together with the
membership analyses in Supplemental Figure S2, provide evi-
dence that the resulting modules are consistent and might
be biologically meaningful.

Prediction of CREs
Effect of proximal promoter length on prediction accuracy

As a first step toward extracting regulatory signatures, up-
stream region boundaries were defined from –1,500 to
+ 200 bp relative to TSS (Up 1). Six out of 45 modules con-
tained motifs with higher statistical significance than those
detected in random clusters. Upstream regions of modules
(M9, M10, M11, M18, M21, and M41) matched known core
DNA-binding elements corresponding to Myb-like, BZR,
CAMTA, bZip, and E2FE TF families. Modules with their cor-
responding regulatory elements are represented in Figure 2
and further information is provided in Supplemental Table
S2. Motifs resulting from both oligo and dyad analysis corre-
spond to signatures with strong confidence estimation. Note
that while oligos are oligonucleotides of 6–8 bp, dyads are
pairs of trinucleotides (monads) separated by a spacer of 0–
20 bp. Moreover, eight poly (AT)-rich signals were discarded
from M1, M2, M3, M4, and M6 due to their low complexity
(Supplemental Table S2). Curiously, these (AT) patterns
were also detected in the random clusters and their occur-
rence seemed to be associated with the size of the module
(Supplemental Table S3). For instance, M1 is the largest
module with 1,795 sequences, and (AT)-repetitive signals
were detected in 40 out of the corresponding 50 random
clusters of the same size.
When we restricted the motif discovery to the region

with [–500 bp, + 200 bp] boundaries (Up 2), 15 modules
were found with statistically significant motifs. These were
then grouped into 10 TF families as illustrated in Figure 2:
TCP (Teosinte branched 1 (tb1, Zea mays (Maize)), [1]
cycloidea (cyc; Antirrhinum majus; Garden snapdragon) [2]
and PCF in rice (Oryza sativa)), bHLH (Basic helix-loop-he-
lix), BZR (Brassinazole resistant), bZip (Basic Leucine Zipper),
NAC (Derived from NAM (no apical meristem)), WRKY
(conserved amino acid sequence at the N-terminus of the
DNA-binding domain (DBDs)), AP2-ERF (APETALA2-
Ethylene Responsive factor), Myb-like (V-myb avian

myeloblastosis viral oncogene homolog), CAMTA
(Calmodulin binding), and E2FE (Transcription factor E2FE).
Inspection of the major changes occurring when trimming

the upstream segments to 500 bp resulted in interesting
observations, summarized as follows. Spurious (AT)-rich
sequences, considered as low-quality predictions, were limited
to M2 and were replaced by relevant regulatory elements in
M1, M3, M4, and M6 (Supplemental Table S2). Significant sig-
nals buried in the long upstream region (Up 1) were inferred
in modules M5, M7, M24, M28, and M43 (Figure 2 and
Supplemental Table S2). Besides, shortening the upstream
promoter region size to 500 bp enhanced the statistical rele-
vance of the predicted motifs, compared with the negative
controls, regardless of the algorithm applied.
Overall, these findings suggest that shortening the up-

stream region increases the signal-to-noise ratio to detect
biologically relevant motifs and, at the same time, reduces
the occurrence of low complexity AT-rich motifs. In
Figure 3, we illustrate a clear example of this observation.
Indeed, with both oligo and dyad analysis, the statistical
significance of motif E2FE found in Module M41 (black
bars) noticeably increased compared with those identified
in random clusters (gray bars). Hence, more significant
motif discovery was accomplished in the window of
[–500 bp, + 200 bp].

Effect of splitting the promoter region around the TSS on

motif prediction

Next, due to the difference in nucleotide composition in
coding and noncoding regions, we subdivided the proximal
promoter region in two segments around the TSS, with
each interval examined separately: upstream, from –500 to 0
bp (Up 3), and downstream, from 0 to + 200 bp (Up 4). By
doing so, motifs of two additional TF families were discov-
ered: BCP in module M1, and DNA-binding with one finger
(DOF) in modules M7, M9, and M21. In contrast to BCP
sites laying downstream the TSS (Up 4), DOF sites were
found across both intervals (Figure 2 and Supplemental
Table S2). Intriguingly, an uncharacterized motif was over-
represented in Up 4—of module M25 requiring further
research.
In total, 77 TF binding motifs were revealed from the scru-

tinized promoter regions (Supplemental Table S2). Modules
with candidate predicted motifs can be classified in two
types depending on their potentially matching TF. Indeed,

Table 1 Summary of RNA-seq data used as input and the number of DETs identified in each RNA-seq experiment

Project IDs References Experiments Tissues Conditions DETs

PRJNA271307 (Li et al., 2015) Ripening stage Fruit 6 2,601

PRJNA288567 (Sanhueza et al., 2015) Cold storage Fruit 6 6,447

PRJNA248711 (Bakir et al., 2016) Hyper hydricity Leaf 2 15

PRJEB12334 (Ksouri et al., 2016) Drought Root/Leaf 4 350

PRJNA252780 (Jiao et al., 2017) Low T� Stigma 2 406

PRJNA323761 Unpublished Drought Root 2 1,118

PRJNA328435 Unpublished Cold storage Fruit 2 2,963

PRJNA397885 Unpublished Chilling injury Fruit 4 2,429
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across the four examined upstream tracts, using both algo-
rithms, we recognized those with motifs bound by a single
TF family, considered as single TF-driven modules (e.g. M6,
M11, M18, M28, and M41). Conversely, modules having
multiple TFBS for several distinct TFs suggest a possible
combinatorial regulation under particular circumstances.
However, more evidence is needed to address this issue.
Moreover, we observed that proximal region Up 2, defined
from –500 to + 200 bp, yielded the highest number of sig-
nificant CREs discovered in this study (Figure 2 and
Supplemental Table S2).

Gene ontology enrichment analysis in modules of
interest
Gene ontology (GO) analysis was conducted to interpret co-
expression modules. For convenience, we present the top
enriched biological terms in Table 2, and we provide details

about cellular and molecular ontologies in Figure S3.
Enriched processes in M1, M3, and M6 are the most infor-
mative. Indeed, transcripts in M1 were mostly over-
represented in leaf tissue under drought, which is in line
with the “photosynthesis” enrichment. Perturbations of ion
effluxes are known to be stress-related, likely explaining the
enrichment on “potassium ion transport” and “oxidation-re-
duction process” terms in M3 and M6, respectively.
Conversely, “RNA processing,” “translation,” and “DNA met-
abolic process” terms, inferred, respectively, in modules M9,
M24, and M41, are general terms that indicate a wide range
of responses.

TFs annotation and prediction of their TFBS using
footprintDB
To verify whether modules with predicted motifs might con-
tain their potential binding TFs, gene-encoding TFs were

Figure 2 Position-specific scoring matrix (PSSM) representation of top scored discovered motifs per modules along different upstream lengths.

The x-axis corresponds to the four intervals: Up 1: [–1,500 bp, + 200 bp], Up 2: [–500 bp, + 200 bp], Up 3: [–500 bp, 0 bp] and Up 4 [0 bp, + 200

bp]. The y-axis informs about the motif family revealed per module. Cell colors indicate the statistical significance of the identified motifs while

cell sizes represent the Ncor. Larger squares indicate high Ncor and thus high confidence annotations. Number of sites corresponds to the number

of sites used to build the PSSM. When motifs from the same family are identified with both algorithms (oligo and dyad analysis), or in different

upstream tracts (Up 1, Up 2, Up 3, and Up 4), only the most significant one is represented in the heatmap. Further details are provided in

Supplemental Table S2. An interactive report with source code is accessible at https://eead-csic-compbio.github.io/coexpression_motif_discovery/

peach/.
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annotated and shortlisted in Figure 4. Subsequently, they
were individually examined for their potential DNA motifs

using footprintDB, and the results were compared with
those obtained with RSAT. For consistency, control subsets
of 50 random TFs selected from outside each module were
additionally assessed. Motif-to-motif similarities between

footprintDB and RSAT predicted matrices were computed
using the Ncor score. Note this is an independent analysis,

which does not use the clustered sequences; instead, it uses
protein sequence of TFs. Our results revealed that consensus

sequences predicted from the module corresponding TFs
showed higher similarity to consensus sequences enriched in
modules than those predicted from random TFs (Table 3
and Supplemental Figure S4). For instance, the binding motif

tTTGGCGGGAAA enriched in module M41 is almost identi-
cal to E2FE-predicted site TTTTGGCGGGAAAA for the E2FE

Figure 3 Illustrative comparison between predicted motif DEL2 (corresponding to E2FE transcription factor) along Up 1 and Up 2 upstream

regions. A, Up 1: [–1,500 bp to + 200 bp]. B, Up 2: [–500 bp to + 200 bp] relative to the TSS. The name of the best match among plant motifs in

footprintDB is labeled in red, next to its Ncor value labeled in blue. The x-axis corresponds to the module of interest (M41) and random clusters

ranked by the most significant motifs. The y-axis corresponds to the statistical significance –log10 (P-value). Number of sites corresponds to the

occurrence number of a single motif. The evidence supporting the putative motifs is Ncor (in blue) and the significance (black bars) when com-

pared with negative controls (gray bars).

Table 2 Gene ontology enrichment in co-expression modules using PlantRegMap/PlantTFDB portal v5.0 and the adjusted P-value (FDR 5 0.05)

Enriched modules Biological GO IDs GO terms FDR values Significance

M1 (1795) GO:0015979 Photosynthesis 4.9e–27 26.3

M2 (1224) GO:0050896 Response to stimulus 5.3e–04 3.3

M3 (864) GO:0071804 Potassium ion transport 5.4e–04 3.3

M6 (560) GO:0055114 Oxidation reduction process 3.5e–03 2.5

M9 (320) GO:0006396 RNA processing 5.8e–08 7.2

M11 (269) GO:0010200 Response to chitin 2.4e–10 9.6

M21 (151) GO:1901700 Response to oxygen-compound 4.0e–02 1.4

M24 (137) GO:0006412 Translation 2.7e–12 11.6

M41 (47) GO:0006259 DNA metabolic process 3.8e–14 13.4

Here, we only present the top enriched biological processes. More details about cellular and molecular ontologies are provided in Figure S3. Numbers in parenthesis indicate

the number of genes per modules.
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Figure 4 List of transcription factors within relevant modules. Blue and red squares indicate the abundance level of TPMs, while bottom color

bars correspond to the tissue types and different experiments, respectively (see the legend at the right side of the figure). TFs showing sequence

similarity between their footprintDB and RSAT predicted motifs are labeled with a star (Table 3). See Supplemental Table S6 for the

abbreviations.

Table 3 Similarity comparison between RSAT and footprintDB DNA-binding motif predictions (matrix similarities were computed using cor 5
0.7 and Ncor 5 0.5)

Modules RSAT Consensus TFs TF IDs FootprintDB consensus STAMP E-value

M41 tTTGGCGGGAAA E2FE Prupe.5G180000 tTTTTGGCGGGAAAA 6e–119

M21 GACACGTGTC bZip Prupe.1G455300 ACGTGgc 3e–20

M18 GCCACGTGGC bZip Prupe.1G419700 TGACGTGGC 1e–16

M18 GCCACGTGGC bZip Prupe.1G434500 ACGTGGCa 3e–19

M18 GCCACGTGGC bZip Prupe.2G182800 ACGTGKC 4e–41

M7 GCCGACA AP2-ERF Prupe.3G157100 CCGaC 2e–35

M7 GCCGACA AP2-ERF Prupe.5G090000 CCGACAT 2e–64

M7 GCCGACA AP2-ERF Prupe.7G222700 CACCGACA 1e–47

M7 CACGTGk bHLH Prupe.6G303500 CACGTGg 7e–34

M7 aAAAGTc DOF Prupe.6G092600 AwAAAG 1e–34

M6 GAAAAGTCAAAa WRKY Prupe.4G075400 aAAAGTCAA 4e–63

M6 GAAAAGTCAAAa WRKY Prupe.5G106700 aAAAGTCAAC 7e–49

The best predictions in footprintDB were selected in Arabidopsis. The TFs grouped in this table are the same labeled with a star in Figure 4.
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TF in that module. This suggests that TF Prupe.5G180000

may modulate gene expression of M41 and that motif could

be the bona fide binding site of this TF.

Motif scanning
To identify the position of regulatory sites (TFBSs) within

proximal promoters of P. persica genes, position-specific

scoring matrices of all candidate motifs (77) were scanned

along Up 1 upstream intervals [–1,500 bp, + 200 bp]. We

observed a clear positional bias of TFBSs close to the TSS in

the interval [–500 bp, + 200 bp], progressively declining to-

ward the 50-end (Figure 5). For motifs detected, respectively,

in Up 1 (yellow color), Up 2 (green), and Up 3 (blue), sites

were notably concentrated upstream the TSS showing a

bell-shaped distribution from –500 to + 0 bp with a maxi-

mum of density around –250 bp. Conversely, the positional

distribution of motifs predicted along Up 4 was biased

toward downstream the TSS, with the flatter peak reaching

its limit at the TSS (Up 4, purple). Detailed scanning results

can be accessed at https://eead-csic-compbio.github.io/coex

pression_motif_discovery/peach. Repetitive (AT) elements

were also scanned to check their relevance, for example,

whether they correspond to the TATA box. The underlying

data included in Supplemental Figure S5 showed that TFBSs

of these motifs were remarkably distant to the TSS and

were distributed across the complete proximal region.

The performance of motif discovery using
hierarchical clustering
To demonstrate the efficiency of our methodology, we

reproduced the analyses described above with conventional

clustering approaches within the clValid R package. After

testing nine algorithms, hierarchical clustering (HC) with

k = 26 gave the best score and was thus selected (see

Figure 5 Positional distribution of the detected oligo motifs in promoters of P. persica. Four density distributions were derived from four assessed

upstream regions. Up 1: from –1,500 bp to + 200 bp, Up 2: from –500 bp to + 200 bp, Up 3: from –500 bp to 0 bp and Up 4 from 0 bp to + 200

bp. The x-axis corresponds to upstream length in base pairs (bp). The y-axis corresponds to the density of captured sites with P-value 510 e–4.

Only oligo motifs are presented here; dyads are provided in the report at https://eead-csic-compbio.github.io/coexpression_motif_discovery/

peach.
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Supplemental Figure S6). Of these, we could match 14 clus-

ters to previously discussed network-based modules having

similar expression profile and sharing at least 15% of genes.

In Figure 6, we present as an example the comparison of

the motifs discovered in module M4 and hierarchical cluster

C2, sharing 57.9% of genes. As expected, in this example and

in 11/14 of the cases (see Supplemental Figure S7 and

Supplemental Table S4), we were able to predict the same

motif family in both network and HC strategies, which sup-

ports the robustness of the protocol proposed. In most

cases, motifs identified in network-based modules were sup-

ported by a larger number of sites than those of hierarchical

clusters (Supplemental Table S4). Note that a large module

(M5) was divided in two clusters (C7 and C20), and in both

cases a bZip motif was identified. In modules M25, M28,

and M32, the differences in predicted motifs were due to

the imbalance in gene numbers between clusters and their

respective clusters (see Supplemental Table S4). More details

of the hierarchical cluster benchmark can be found in the

GitHub repository.

The performance of motif discovery using
ChIPseq-based clusters
As a positive control, we tested whether our motif discovery

protocol was able to identify the cognate regulatory sequen-

ces of genes tagged in ChIPseq experiments. Thus, in this

section, we deal with superior quality clusters, as all genes in

each considered study are known to be physically bound by

a TF. As this type of data is not available in peach, we used

public Arabidopsis datasets from 10 different TF families.

Using curated data from the JASPAR database, we observed

that the experimental motifs were successfully discovered

by at least one algorithm in all datasets. The results are

summarized in Figure 7A and Supplemental Table S5,

where normalized similarity scores (Ncor) were used to

compute the similarity between JASPAR and de novo motifs.

In 8/10 cases Ncor values 50.7 were obtained, despite the

fact that proximal regions of variable length were used in-

stead of ChIPseq peaks. Moreover, the most likely motifs

recognized by the ChIPped TFs were estimated from their

amino acid sequence with footprintDB (Figure 7A). The ob-

served similarity between the different motifs underlines the

predictive performance of the proposed methodology.

The performance of motif discovery on monocots
The goal of this section was to check the efficiency of our

protocol on larger genome species. Four clusters of maize

co-expressed genes with experimentally confirmed TFBSs

were extracted from (Yu et al., 2015) and used to reproduce

the analysis (ABI4, E2F1, Myb59, and WRI). Motifs among

the first three modules were successfully detected “de novo.”

As shown in Figure 7B, the motifs discovered by RSAT

Figure 6 Comparison of putative DNA motifs identified from network-based module M4 and hierarchical cluster C2 along four different upstream

regions. Up 1: [–1,500 bp, + 200 bp], Up 2: [–500 bp, + 200 bp], Up 3: [–500 bp, 0 bp], Up 4: [0 bp, + 200 bp]. Motifs are represented by their

logo. The name of the best match among plant motifs in footprintDB is labeled in red, next to its Ncor value in blue. Numbers in parenthesis indi-

cate the number of genes in each module/cluster. The percentages correspond to shared genes, calculated using the number of genes in each

module as denominator. For each paired network-based module and HC clusters, the gene expression profile is provided. TPMs refer to transcripts

per million.
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showed higher significance within the Up 2 upstream region.
Moreover, their logos were similar to those reported by Yu
et al. (2015) with better matching scores within Up 2 win-
dows (Ncor). Note that the WRI1 motif was also discovered
but was not significant in the context of the negative
controls.

Discussion

In this study, transcriptional profiling of eight independent

data sets was conducted to decipher the intricate process of

gene regulation in peach and to reveal meaningful biological

signatures. DETs were grouped into 45 co-expression mod-

ules undergoing similar changes in their expression patterns.

Figure 7 Similarity between experimentally validated motifs and de novo predicted oligo-motifs found along four different upstream regions in

two different species. A, JASPAR motifs of Arabidopsis (considered as positive controls) were compared with RSAT-predicted motifs. Similarities

between JASPAR and RSAT motifs were computed using the Ncor score. When motifs were identified in different upstream tracts (Up 1, Up 2,

Up 3, and Up 4), only the most significant one was represented. TF-footprintDB sequence logos correspond to motifs predicted based on the pro-

tein sequence of the ChIPped TFs. B, Experimentally validated motifs in Zea mays were compared with RSAT predicted motifs. The x-axis corre-

sponds to the four intervals: Up 1: [–1,500 bp, + 200 bp], Up 2: [–500 bp, + 200 bp], Up 3: [–500 bp, 0 bp], and Up 4 [0 bp, + 200 bp]. The y-axis

informs about the modules tested. Circle colors indicate the statistical significance of the identified motifs while the sizes represent the Ncor.

Larger circles indicate high confidence annotations. NS stands for nonsignificant signal when compared with the 50 random clusters used as nega-

tive control.
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Unlike conventional clustering methods (such as k-means

and HC), which are based on geometric distances, WGCNA

is a graph-based approach relying on network topology

as inferred from the correlation among expression values

(Li et al., 2018). In our hands, the WGCNA algorithm ro-

bustly and accurately defined modules within a complex

multi-condition dataset.
Discerning regulatory signals from blocks of co-expressed

genes is a common presumption used to identify functional

genomic elements. It has been successfully applied and

approved in various plant species like Arabidopsis

(Koschmann et al., 2012; Ma et al., 2013), maize (Yu et al.,

2015), and barley (Hordeum vulgare; Cantalapiedra et al.,

2017). However, little is known about its applicability to

woody species.
For each predicted module, two-motif discovery algo-

rithms (oligo and dyad analysis) were run to discover signifi-

cant motifs in proximal promoter regions. As suggested by

Bianchi et al., we initially defined the promoter as an interval

of [–1,500 bp to + 200 bp] relative to the TSS (Bianchi

et al., 2015). Discovered motifs with significant poly-(AT)

sites were discarded due to their low complexity and scar-

city of information concerning their specific regulatory func-

tion. We reasoned that low complexity sequences might be

linked to repetitive stretches of DNA, extensively present in

plant genomes (Yu et al., 2015). Interestingly, when tuning

the promoter upstream length to a tract of [–500 bp, + 200

bp] relative to the TSS, these low complexity motifs were

limited to module M2. It would seem that long upstream

promoter regions unbalance the signal-to-noise ratio, exacer-

bating the identification of such AT motifs. Along the same

lines, we observed a dependence of (AT)-rich sites on the

dataset size. Indeed, AT-low-complexity motifs were only

detected in the first six modules, which contained upstream

regions from 560 to 1,795 genes. In light of these considera-

tions, we believe that in our study case, they may result in

part due to the properties of DNA sequences (upstream re-

gion length, cluster size) rather than the performance of the

chosen algorithm. In fact, our results (Supplemental Table

S3) revealed that AT-rich occurrence in random clusters

increases in parallel with the module size.
To check whether the AT-rich patterns overlap the TATA

boxes, a positional scanning experiment was done. It is well

documented in plants that a TATA box region lays between

–30 and + 35 bp with respect to the TSS (Zhu Qun et al.,

1995; Smale, 2001). However, the scanning results portrayed

that peaks were located far from this interval, confirming

that they are distinct signals (Supplemental Figure S5).
Defining the promoter length has been a controversial is-

sue for different reasons (Kristiansson et al., 2009). If the in-

terval is too short or too long, the motif of interest may not

be captured. Therefore, we reason that an analysis on

regions of variable length would yield a more comprehensive

picture of the complex regulatory code. By limiting the pro-

moter length to a window of –500 bp, new regulatory

motifs were recovered. Additionally, splitting the proximal

promoter region into two intervals around the TSS enabled

the discovery of further hidden candidate TF motifs

(Figure 2 and Supplemental Table S2). Such observations

may strengthen our hypothesis that shorter upstream

regions improve the sensitivity of motif discovery (from 11

motif sequences identified within Up1 to 58 sequences iden-

tified in Up 3 and Up 4 assessed separately).
The spatial distribution of the occurrences of the 77 in-

ferred motifs along the promoter region is crucial to under-

stand gene regulation in P. persica. Our findings revealed

that regulatory sites are not uniformly dispersed across the

promoter but they exhibit a strikingly mixture of two den-

sity profiles: while the majority showed bell-shaped distribu-

tion at the interval of [–500 bp, 0 bp], others diverged

downstream of the TSS [0 bp, + 200 bp] (Figure 5). These

findings are similar to those described in Arabidopsis, with

nearly two-thirds of the examined TFBSs within the region

from –400 to + 200 bp (Yu et al., 2016). TFBSs of bHLH,

BZR, TCP, and WRKY were particularly concentrated within

the interval –500 to 0 bp. This denotes a positional binding

preference within this proximal region, which is in agree-

ment with (Yu et al., 2016) reporting that their positional

preference is between –200 and 0 bp. On the other hand,

bZip, CAMTA, E2FE, and Myb-like exhibited a dual binding

distribution with central peaks upstream and downstream

of the TSS. A possible explanation of this is that some TFs

may display different binding preferences depending on their

TF-specific structure, biological functions, or combinations

with other TFs. The degree to which the arrangement of

regulatory sites is associated to their function needs to be

further investigated, especially since that kind of data is

mostly limited to Arabidopsis (Zou et al., 2011; Yu et al.,

2016). According to our findings, we may consider that the

boundary from –500 to 0 bp is an adequate region to look

for the majority of TFBS laying in the proximal promoter

regions in peach. This region roughly overlaps the window

with most potential binding sites predicted on Arabidopsis

and rice by (Weirauch et al., 2014), although using de novo

discovery instead of motif scanning. However, we should

keep in mind that proximal TFBSs could also occur down-

stream the TSS. Thus, we suggest defining the peach proxi-

mal promoter length as a tract of [–500 bp to + 200 bp],

analyzing separately the two regions around the TSS for a

better motif coverage. In fact, according to Montardit

(2018), differences in the nucleotide composition are ob-

served upstream and downstream the TSS. At this point, we

should mention that gene regulation involves a complex in-

terplay between the proximal (promoter) and distal regula-

tory regions located thousands of base pairs away from the

TSS (e.g. enhancers; Li et al., 2019a). Our workflow sheds

light mainly on sequence signatures extracted from the

proximal promoter. Thus, it might not be adequate to study

distal genomic elements.
Furthermore, rather than only returning a list of significant

motifs, our methodology assigned them to different modules

to help shape a clear overview of the peach regulatory code.
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Overall, we were able to distinguish 18 modules harboring

77 motifs from 11 TF families: bHLH, bZip, BZR, CAMTA,

DOF, E2FE, AP2-ERF, Myb-like, NAC, TCP, and WRKY.

Although some modules, such as M6, M11, M28, and M41,

seem to be driven by a single TF (WRKY, CAMTA, and

E2FE, respectively), motifs from different families were anno-

tated in the rest. This can be explained by the fact that

some promoter sequences may encompass multiple TFBSs

of perhaps interacting TFs. Indeed, TFs have been reported

to frequently operate in combination (Guo et al., 2018).

According to Reiter et al. (2017), cooperative binding of

multiple TFs enables high-binding specificity and fine-tuning

in gene regulation. Cooperative interactions between TFs in

peach probably deserve further investigations.
From the inferred list of motifs (Figure 2), we found simi-

lar binding sequences potentially perceived by different clas-

ses of TFs. For example, motifs tGaCACGTGtc and

GaCACGTGkCGg in module M5 are distinct but can be

aligned despite different nucleotide frequencies in some

positions. We presume that TFs from related families may

have similar DNA recognition sequences, as reported for in-

stance by Franco-Zorrilla et al. (2014) for Myb and AP2 TFs.
TFs from gene modules and their expression profile were

analyzed. Transcript abundance of Myb TFs annotated in

M1 and M2 was variable across the different conditions.

This is consistent with MYBs playing various roles in plant

development and metabolism (Li et al., 2019b). Regarding

bHLH TFs, they were found in four modules with overall

low abundance. However, in module M5, Prupe.6G311800

seems to be expressed in the fruit, leaf, and root. On the

contrary, Prupe.1G271700 in module M3 is found expressed

only in the stigma.
Gene encoding WRKYs were exclusively annotated in M6,

and transcripts of (Prupe 5G.106700) were activated in leaf

tissue under hyper-hydricity (HH) stress (Figure 4). It is well

known that HH leads to morphological abnormalities, such

as brittle leaves (Carrillo Bermejo et al., 2017). We speculate

that WRKY may be involved in HH damage. In module M7,

transcripts of a particularly AP2-ERF factor

(Prupe.5G090000), were mainly over-represented in fruit tis-

sue under cold stress. As described by Wang et al., (2017),

low temperature leads to higher rate of ethylene production

in peach, which triggers the AP2-ERF transcription machin-

ery. Hence, we hypothesize that Prupe.5G090000 could effec-

tively be implicated in peach adaptation to cold by acting as

a key regulator of ethylene signaling.
Finally, bZip factors found in both M18 and M21 modules

were highly expressed in most conditions, indicating that

they may be involved in responses to various environmental

cues.
Curiously, Prupe.4G075400 and Prupe.5G106700 (encoding

WRKYs in Module M6), Prupe.6G092600 and Prupe.

5G09000 (encoding, respectively, DOF and AP2-ERF in M7)

and Prupe.5G180000 (corresponding to E2FE in M41) por-

trayed a great similarity between their individually predicted

motif and those inferred in gene modules (Table 3). In other

words, the regulatory elements detected are likely the bona

fide target sites of those TFs. Experimental assays are needed

to confirm these predictions.
Although the main contribution of this study is the opti-

mization of promoter intervals for motif discovery, our pro-

tocol nonetheless depends on having pre-computed gene

clusters on which to carry out the analyses. For this reason,

we also tested it with clusters from different sources, not

just network-based modules. First, we validated the protocol

using a more conventional (HC) approach. The results indi-

cated that in most cases where HC clusters matched net-

work modules the same regulatory signatures were found

(Supplemental Figure S7). These findings demonstrate that

independently of the adopted clustering algorithm our pipe-

line performs consistently. In three notable exceptions (M25,

M28, M32), we observed that although paired modules and

HC clusters shared high percentages of genes, 30.4, 64.7, and

74.1%, respectively, predicted motifs were from distinct fami-

lies. These results indicate that combining distinct clustering

algorithms might improve the ability to detect regulatory

signatures.
Nonetheless, we consider that modules derived from co-

expression network analyses are ideally suited to the task of

de novo motif finding in variable upstream region size. In

most of the cases, putative motifs identified in gene mod-

ules have more sites than those identified in classical hierar-

chical clusters, indicating high confidence predictions.

Concerning the sensitivity, we were able to detect 18 signifi-

cant elements in modules while only 15 were revealed in

HC clusters (Supplemental Table S4). Moreover, for 11,335

DETs, the clValid function required a longer execution time

(nearly 48 h) to reveal the best clustering algorithm and the

optimum number of clusters. In contrast, only a few

minutes were needed to generate 45 modules using the

WGCNA R package.
A second validation experiment was a positive control in

which we analyzed ideal gene clusters that group genes

tagged in 10 different Arabidopsis ChIPseq experiments.

Comparing the de novo predicted motifs to the correspond-

ing curated motifs in JASPAR we observed a high similarity

in terms of Ncor scores (Figure 7A and Supplemental Table

S5). Note, however, that the motifs were not identical, as in-

stead of symmetrical chromatin peaks we analyzed proximal

promoters of variable length, a setup that is more challeng-

ing than standard ChIPseq analysis. In fact, we observed that

the choice of upstream region length affects the perfor-

mance. In some cases, particularly Up 1 and Up 3, the

expected motif was not even found. Unlike the results

found in peach, examining four upstream tracts only

returned motifs from the same query families, probably as a

consequence of the JASPAR TFBSs profiles being curated.
Finally, we broadened the validation by including gene

clusters from maize. The results in Figure 7B indicate that

analysis of Up 2 yielded motifs which were more significant

and matched better the experimentally verified motifs

reported by Yu et al. (2015). This is consistent with our
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findings in dicot species (peach and Arabidopsis) reporting a
clear dependence between promoter length and prediction
accuracy. Although Yu and colleagues cut promoter sequen-

ces in the range –1,000 to + 200 bp, by applying our proto-
col we were able to define Up 2 as the most informative
interval. Overall, these results suggest that our methodology
is robust and can be extended to other plant species.

Conclusion

DNA motif discovery is a primary step for studying gene
regulation, however, the in silico prediction of regulatory
motifs is not straightforward. In contrast to the previous

surveys that usually assume a fixed promoter length right at
the start, this work reports regulatory elements while testing
different upstream sequence intervals. It provides also a
comprehensive collection of P. persica motifs without prior
knowledge. By coupling modules definition and promoter
analysis, we were able to extract interpretable information
from a large set of noisy data and to reveal primary candi-

date TF target-binding sites responding to specific condi-
tions. These results offer a more complete view of the
proximal regulatory signatures in peach, and we believe that
it may contribute to address the knowledge gap about the
transcriptional regulatory code in nonmodel species.

Materials and methods

Input data and processing
Eight peach (P. persica) RNA-sequencing datasets were
downloaded from the European Nucleotide Archive (https://

www.ebi.ac.uk/ena) and were used as raw reads for this proj-
ect. This comprehensive dataset includes data of various
peach cultivars under different stress conditions and from
various tissues: root ((Ksouri et al., 2016) and PRJNA323761),
leaf (Ksouri et al., 2016; Bakir et al., 2016)), stigma (Jiao et al.,
2017), and fruit ((Li et al., 2015; Sanhueza et al., 2015),
PRJNA328435 and PRJNA397885). A detailed list of the proj-

ect IDs and metadata are provided, respectively, in Table 1
and Supplemental Table S6. The obtained reads were
quality-processed and trimmed using FASTQC v.0.11.5 and
Trimmomatic v.0.36 (Bolger et al., 2014), to discard adaptors
and low-quality sequences with mean Phred score (Q5 30)
and window size of 4:15. The first nucleotides were then
head-cropped to ensure a per-position A, C, G, T frequency

near to 0.25. Following the trimming, only sequences longer
than 36 bp were retained for further analysis. An overview
of our complete workflow is shown in Figure 1 (see Step 1).
The high-quality reads from each RNA-seq project were

quantified separately using the pseudo-aligner kallisto
v.0.43.1 for fast and accurate transcripts count and abun-
dance (Bray et al., 2016). Kallisto was run in two steps: (1) a
transcriptome index was built from all cDNA transcripts of
P. persica v2, from Ensembl Plants release 39 (Verde et al.,
2017; Howe et al., 2020) and (2) each sample was pseudo-

aligned against the index. Transcript-level abundance was es-
timated and normalized to transcripts per million (TPM) us-
ing 100 bootstraps (–b 100) to ascertain the technical

variation. For single-end read mode, average fragment length
and standard deviation were, respectively, set to (–l 200)
and (–s 50).

Transcript-level profiling
Differential expression analysis was conducted with Sleuth R
package v.0.29.0 (Pimentel et al., 2017) for each RNA data
set separately. The Wald test was applied to the output
abundance files to retain the significant expressed transcripts
from each experiment. Samples and their biological repli-
cates from each experiment were compared with their cor-
responding control. To reduce the false positives, only
transcripts passing an FDR cutoff Q-value 5 0.01 and beta
statistic (approximation of the Log2 Fold Change between
two tested conditions) jbj 4 1 were retained. Transcripts
from all RNA-seq projects were normalized together using
Sleuth function and then merged into a single list with an
assigned mean TPM value for each treatment. These values
were used in Figure 4. The Sleuth script is available in the
GitHub repository.

Network-based detection of co-expressed modules
Based on the assumption that co-expressed genes may share
the same biological signature, WGCNA v.1.61 was performed
to extract clusters of densely interconnected genes named
modules (Langfelder and Horvath, 2008). Transcripts were
clustered to remove sample outliers and transcripts with
missing entries. A similarity matrix was constructed by per-
forming pairwise Pearson correlation across all targets. Then
an adjacency matrix was built raising the similarity matrix to
a soft power (b). Here b was set to 7 reaching thus 83% of
the scale free topology fitting index (R2). To minimize the ef-
fect of noise, matrix adjacency was transformed to topologi-
cal overlap measure (TOM). Modules were defined as gene
sets with high topological overlap with a minimum module
size of 20 targets. Compared with standard HC, this ap-
proach solves the issue of setting the final number of clus-
ters and arranges the genes based on their topological
overlap to eliminate spurious associations resulting from the
correlation matrix. Three diagnostic module functions were
evaluated: The ME, intra-connectivity (Kwithin), and Module
membership (MM). ME is considered as a representation of
gene expression profiles and defined as the first principal
component of a given module. Kwithin measures how con-
nected a given gene is with respect to others of the same
module, and MM calculates the correlation between gene
expression values and ME (Langfelder and Horvath, 2008).
MM values close to 1 or –1 indicate genes highly connected
to the module.

De novo cis-regulatory sequences discovery using
RSAT::Plants
Gene modules resulting from network analysis were sub-
jected to de novo motif discovery pipeline using the
RSAT::Plants standalone (Figure 1, Step 2). In our tests, this
protocol required clusters with at least 15 sequences, as
reported by Contreras-Moreira et al. (2016). For each
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module, 50 random clusters with the same size were gener-
ated and used as a negative control as described previously
(Contreras-Moreira et al., 2016). Sequences with four differ-
ent boundaries around the TSS were retrieved from the
genes in the co-expressed modules, random clusters and P.
persica genome v2. The upstream sequences were defined as
intervals of (1) –1.5 kb to + 200 bp, (2) –500 to + 200 bp,
and (3) two segments around the TSS: –500 to 0 bp and 0
to + 200 bp. Note that the 0 to + 200 bp interval corre-
sponds to the 30UTR region, which is already downstream.
RSAT peak-motifs was run under the differential analysis
mode, where module’s upstream sequences served as the
test set and all upstream sequences from the peach genome
were used to estimate the background model (Thomas-
Chollier et al., 2012). A background model was created for
each upstream stretch. Two discovery algorithms were used:
(1) oligo analysis, which is based on the over-representation
of k-mers in upstream regions (Helden et al., 1998) and (2)
dyad analysis, which looks for over-represented spaced pairs
of oligonucleotides (Helden et al., 2000). For each run, up to
five motifs were returned per algorithm and were retained
to compare their statistical significance with the 50 random
clusters considered as negative control.
Candidate motifs were chosen based on their significance

(log E-value) compared with negative control and were sub-
sequently annotated by comparison to the FootprintDB col-
lection of plant motifs (http://floresta.eead.csic.es/
footprintdb; Sebastian and Contreras-Moreira, 2014) using
the compare-matrix tool in RSAT (Nguyen et al., 2018).
A normalized correlation score Ncor 5 0.4 was set to retain
the best match.
Finally, selected motifs were scanned along the stretch

[–1,500 bp, + 200 bp] to predict their corresponding bind-
ing site positions, using as background model a Markov
chain of order 1 (m = 1) and a cutoff P 41E–4.

TF prediction and GO analysis
Hereafter, the analysis was restricted to modules with signifi-
cant detected signals. First, genes encoding TFs were pre-
dicted using the iTAK database (http://itak.feilab.net/cgi-bin/
itak/index.cgi, last accessed September 2020). Their protein
sequences were subsequently submitted to footprintDB to
predict their putative target DNA-binding site (https://
github.com/eead-csic-compbio/footprintDBclient). GO func-
tional enrichment analysis was conducted using
PlantRegMap/PlantTFDB portal v5.0 (http://planttfdb.cbi.
pku.edu.cn, last accessed September 2020) and the adjusted
P-value (FDR 50.05; Tian et al., 2019).

Conventional clustering of genes from expression
data
To demonstrate that the proposed protocol is not strictly
dependent on co-expression network analyses, we also gen-
erated gene clusters with conventional clustering methods
in the clValid R package (Brock et al., 2008). Indeed, clValid
allows the simultaneous comparison of multiple algorithms
in a single function call. Furthermore, it can determine the

best clustering method and the optimal number of clusters

(k). K_min and K_max were, respectively, set up to 3 and

50. Hereafter, we use the term “module” to refer to a group

of interconnected genes derived from network analysis and

the term “cluster” to group of genes resulting from classical

clustering. We paired clusters to network modules having

similar expression profile and sharing at least 15% of the

genes in the module. Clusters below that 15% cutoff were

used as a negative control.

Positive control: gene clusters based on ChIPseq
peaks
Peak sequences of 10 ChIPseq datasets from A. thaliana

were downloaded from JASPAR database (Fornes et al.,

2020). They were locally aligned with BLASTN against the

Arabidopsis TAIR10.42 genome from Ensembl Plants to ob-

tain the closest neighbor genes. The Blast parameters were

as follows: E-value 4 1e–5, max_target_seqs = 1, max_hsps

= 1 query-coverage of 80% and percentage of identity 98%.

Similarity between references (JASPAR) and de novo discov-

ered motifs was computed with the normalized Ncor score

(see above). Additionally, motif predictions based on the

protein sequences of the ChIPped TFs were done using

footprintDB.

Validation in monocot species
To study the reliability of this methodology on larger

genomes, the analysis was widened to maize (Z. mays), a

monocot with a genome one order of magnitude larger

than peach. Four gene clusters with Electrophoretic mobility

shift assay (EMSA)-confirmed motifs were retrieved from Yu

et al.’s (2015) study (ABI4, E2F1, Myb59, and WRI1). Besides

being strongly co-expressed, genes in each set shared com-

mon GO terms, indicating that may be involved in the

same biological function. According to Yu et al. (2015), to

reveal the basis of leaf regulatory network, maize clusters

were defined from 22 leaf transcriptomes with developmen-

tal time series (from dry seeds to 192 h post imbibition).

Putative motifs were predicted within [–1,000 bp, + 200 bp]

upstream sequences, and TF-TFBS interactions were verified

using EMSAs. Among the defined clusters in the original

work, herein ABI4, E2F1, Myb59, and WRI1 were selected

based on their size. Indeed, to get reliable results, using clus-

ters of at least 15 sequences is recommended. To convert

genes from version Zea_mays.B73RefGen_v3 to the current

Zea_mays.B73RefGen_v4.46 the gene ID history converter

from Ensembl Plants was used (see Table S7).

Accession numbers
Genes referenced in this article can be found at the NCBI

web page, under the genome section (https://www.ncbi.nlm.

nih.gov/genome/?term=prunus+ persica), and were re-

trieved from the Prunus_persica_NCBIv2 assembly (GCA_

000346465.2).
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Supplemental Figure S2. Module membership (MM)
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Supplemental Figure S3. Gene ontology (GO) analysis of

co-expression modules.
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tering algorithms.
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