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Tuning Tempered Transitions 

Gundula Behrens∗, Nial Friel†and Merrilee Hurn‡ 

September 20, 2010 

Abstract 

The method of tempered transitions was proposed by Neal (1996) for tackling the difficulties arising 

when using Markov chain Monte Carlo to sample from multimodal distributions. In common with 

methods such as simulated tempering and Metropolis-coupled MCMC, the key idea is to utilise a series 

of successively easier to sample distributions to improve movement around the state space. Tempered 

transitions does this by incorporating moves through these less modal distributions into the MCMC 

proposals. Unfortunately the improved movement between modes comes at a high computational cost 

with a low acceptance rate of expensive proposals. We consider how the algorithm may be tuned to 

increase the acceptance rates for a given number of temperatures. We find that the commonly assumed 

geometric spacing of temperatures is reasonable in many but not all applications. 

Keywords: Markov Chain Monte Carlo, Multimodality, Tempering, Thermodynamic Integration. 

1 Introduction to tempering ideas in MCMC 

It is well known that standard Markov chain Monte Carlo (MCMC) methods, such as the Metropolis-

Hastings algorithm or the Gibbs sampler, often have difficulties in moving around their target distribution. 

When a chain mixes poorly in this way, there is a danger that modes have been missed or that modes are 

not represented in their right proportions, both of which may lead to bias in the statistical inference. To 

overcome such mixing problems, various more sophisticated MCMC methods have been devised based on 

a few key ideas. This paper concentrates on one of these key ideas, namely tempering. 

One way to motivate tempering is to think of using importance sampling to estimate some expectation 

Ep0 
[h(X)] with respect to the target distribution p0 by sampling from some less modal distribution p1. 
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One possibility for generating a less modal distribution than p0 on the same support is to “flatten” it by 

taking p1(x) ∝ p0(x)
β , ∀x, with β < 1. As β → 0, p1(x) becomes closer to a uniform distribution 

and consequently becomes more amenable to sampling. For β close to 1, there is far less benefit as p1 

may not be that much less modal than p0. Unfortunately as the two distributions become far enough apart 

that the difficulty with modality is overcome, they may also become far enough apart so that many of the 

importance weights will be very close to zero resulting in unstable estimates of Ep0 
[h(X)]. The basis of all 

the tempering methods is the introduction of a series of distributions bridging the gap between p0 and p1. 

The differences between the various approaches is in how these bridging distributions are included. We will 

describe various approaches to incorporating bridging distributions using the common form of tempering 

which involves powering up all or part of the unnormalised target distribution. The inclusion of other types 

of bridging distribution would also be possible, but the literature has generally restricted itself to this form. 

We assume that the target distribution can be written as 

p(x) ∝ π(x) exp(−β0 h(x)), (1) 

where h(x) may be known as the “energy” function and the parameter β0 as the target “inverse temperature”. 

Since we can write any positive function f(x) in exponential form f (x) = exp(−β0 h(x)) by setting 

h(x) = −β
1 

0 
log(f(x)) this class covers a wide range of applications. The tempered distributions are then 

defined by 

pi(x) ∝ π(x) exp(−βi h(x)), i = 0, 1, . . . , n, (2) 

where 0 ≤ βn ≤ . . . ≤ β1 ≤ β0, are the inverse temperatures characterising each distribution. The 

flexibility of potentially only tempering part of the target distribution is quite useful. In Bayesian problems 

it may be that one or other of the prior and likelihood contribute to the mixing problems. 

One of the earlier suggestions for incorporating tempering into MCMC is to run n +1 Markov chains in 

parallel, each sampling from one of the n + 1 tempered distributions. At each iteration, proposals are made 

to update each chain separately and additionally there is a proposal to swap the x values between chains 

thereby coupling them and giving rise to the name Metropolis-coupled MCMC (Geyer 1991). The state 

space is the enlarged set of (n + 1) values for x and the target distribution is p0 ⊗ p1 ⊗ . . . ⊗ pn. The idea is 

that large moves made under pn will filter back down to the lowest level p0. The normalising constants for 

the tempered distributions are not needed in this method as they appear only in the acceptance probabilities 

for the coupling move where they cancel out. However the tempered distributions do need to be close in 

order that the swaps between them are not too infrequent. This may mean that n will have to be large and 

there are then obvious consequences for storage and computational effort. 

A single chain alternative to Metropolis coupling is simulated tempering (Marinari and Parisi 1992, 
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Geyer and Thompson 1995) which runs a chain on the state space of x augmented by a variable i which takes 

the values i = 0, 1, . . . , n with probabilities determined by a “pseudo-prior”. The stationary distribution of 

x|i is pi(x), and updates are either of x|i or i|x with the latter effectively moving up or down the tempering 

sequence. Although again the normalising constants of the tempering distributions are not needed explicitly, 

in practice to get reasonable acceptance rates for the moves between temperatures, the pseudo-prior needs 

to be roughly proportional to these unknown normalising constants. 

Tempered transitions (Neal 1996) is another single chain method but without the need to guesstimate the 

relative normalising constants of the tempered distributions. It uses a deterministically ordered sweep up and 

down the tempering distributions as a way of generating proposals for the main chain in a way which will be 

described in more detail in the next section. The overwhelming cost of the algorithm is in the construction of 

the proposals and therefore it is imperative that these are tuned carefully to maximise acceptance rates. Neal 

(1996) finds tempered transitions and simulated tempering to be of roughly equal computational cost. He 

also compares tempered transitions, simulated tempering and Metropolis-coupled MCMC on other criteria 

such as storage requirements and the number of tempering levels required concluding that there is no overall 

winner and that the choice of method may be problem and goal specific. 

Closely related methods which aim to make fuller use of the sampling at all temperature levels via im-

portance sampling can be found in Neal (2001) and more recently in Gramacy, Samworth and King (2010). 

The former has links to tempered transitions, effectively using just the second half of the complex proposal 

mechanism. The latter has stronger connections with simulated tempering and Metropolis coupled MCMC 

where samples from the different temperatures are stored. Other instances of ideas involving populations of 

samples can be found in both the population-based MCMC and the Sequential Monte Carlo literature (see 

Jasra, Stephens and Holmes (2007) for an overview). 

A common question arising across the algorithms involving tempering is the choice of the bridging dis-

tributions given by Equation (2). The general recommendation is to space the βs geometrically, that is so 

that βi/βi+1 is a constant for all levels i (Neal 1996). Neal formulates this rule by considering sampling 

from a multivariate Gaussian using simulated tempering; the geometric spacing attempts to maximise the 

acceptance rates of swaps between neighbouring chains at all levels. Gelman and Meng (1998) also con-

sider choices of bridging distribution, although in the context of the closely related question of estimating 

normalising constants where they are trying to minimise the Monte Carlo error of path sampling estimates. 

Other work on rationales for choosing the βs can be found in Iba (2001) and Lefebvre, Steele and Vandal 

(2010). The former reviews the (largely physics) literature, comparing simulated tempering with exchange 

and ensemble Monte Carlo methods and aims to maximise the swapping rates between the bridging distribu-

tions using preliminary runs (to satisfy a theoretically derived optimality criterion). The latter is interested 
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in path sampling for estimating normalising constants and the related tuning of the bridging distributions; 

they derive an expression for the symmetrised Kullback-Leibler divergence between pairs of distributions 

and use the minimisation of this as their criterion. 

In this paper we consider tempered transitions with bridging distributions of the form given by Equa-

tion (2). Of the various tempering schemes, the choice of the {βi} seems to have been least well addressed 

for tempered transitions. Our approach is largely computational and tries to answer the question “For a given 

number n of tempering distributions, how best should they be spaced?”. We note that the question of how we 

should choose n, for fixed computational time, is beyond the scope of this article. The approach we take is 

to use a small number of preliminary short runs to assess whether geometric spacing is likely to be adequate 

and, if not, we propose an optimal way of spacing them. In Section 2 we describe tempered transitions in 

detail, building on many of the insights offered in Neal’s paper. We provide a theoretical analysis which 

outlines when geometric temperature spacing is optimal and give a motivating example where geometric 

spacing is sub-optimal. We also draw some parallels with some of the other theoretical approaches outlined 

above. In Section 3 we discuss the implementation details of applying our proposed approach to a slowly 

mixing MCMC application. 

2 How to tune tempered transitions? 

2.1 The tempered transitions algorithm 

We begin by describing the algorithmic details of the tempered transitions algorithm and setting up the 

reasoning behind our tuning approach. Suppose the chain is currently in state x, then the algorithm generates 

a proposal x ′ for the next state using a secondary chain which passes through all the auxiliary distributions 

{pi} first in ascending order of the βs (“heating-up”) and then in descending order (“cooling-down”) back 

to the target distribution p0. To do this, it uses n pairs of MCMC transition kernels with the ith pair, Ti and 

Ti 
′ satisfying detailed balance with respect to pi 

pi(x)Ti(x, x ′ ) = pi(x ′ )Ti
′ (x ′ , x) ∀x, x ′ , i = 1, . . . , n. 

Step 1 Set x0 = x. 

Step 2 Move up and down the tempered distributions using MCMC transitions 

Generate x1 from x0 using transition kernel T1. 

Generate x2 from x1 using transition kernel T2. 

. . . 

4 



∏ ∏ 

∑ 

∑ 

Generate xn from xn−1 using transition kernel Tn. 

Generate xn
′
−1 from xn using transition kernel Tn

′ . 

. . . 

Generate x1 
′ from x2 

′ using transition kernel T2
′ . 

Generate x0 
′ from x1 

′ using transition kernel T1
′ . 

Step 3 Accept x ′ = x0 
′ as the next state with probability 

{ [ ] [ ]} 
n−1 n−1 ′ 

α(x, x ′ |x0, x1, . . . , xn, x n
′
−1, . . . , x 1

′ , x 0
′ ) = min 1,

pi+1(xi) pi(xi) , (3) 
′ 

i=0 
pi(xi) i=0 

pi+1(xi) 

otherwise, remain at state x. 

There is no need for the normalising constants of the tempering distributions as they cancel in the acceptance 

probability. Neal (1996) demonstrates that the algorithm satisfies detailed balance with respect to the target 

p0. However it is perhaps clear that the proposal is potentially computationally costly and tricky to tune. 

There are two dependent aspects to the tuning. The first is that the {Ti, T i
′ } should have reasonable 

acceptance rates and, at the later stages of the tempering, be able to make large moves in the state space 

(otherwise this expensive proposal makes little change). This is not quite the usual tuning problem for 

MCMC in that each successive level has a different target distribution. During the first half, these distri-

butions are becoming progressively less modal, while in the second half the reverse is true. Obviously the 

closer the consecutive distributions, ie the closer the consecutive βs, the less of an effect this will be. 

Subject to the individual {Ti, T i
′ } working well, the second tuning aspect is that the overall acceptance 

rate of the entire tempered transition proposal should be as high as possible (although notice that if all the 

proposed changes in the tempering are rejected, the overall proposal will be accepted since x0 = x1 = . . . = 

x1 
′ = x0 

′ and so a high acceptance rate here can be slightly misleading if viewed in isolation). To gain more 

insight into tuning the tempered transition acceptance rate, we follow Neal’s lead and rewrite the acceptance 

probability, Equation (3), using the form of tempering defined by Equation (2). 

{ [ ] [ ]} 
n−1 n−1 ′ 

α(x, x ′ |x0, x1, . . . , x 1
′ , x 0

′ ) = min 1, 
∏ exp(−βi+1h(xi)) ∏ exp(−βih(xi)) 

′ exp(−βih(xi)) exp(−βi+1h(xi)) i=0 i=0 
{ 

′ 
} 

= min 1, exp(−(F − F )) (4) 

n−1 

where F = (βi − βi+1)h(xi) 
i=0 

n−1 
′ ′and F = (βi − βi+1)h(xi). 

i=0 

This expression has an interpretation related to estimating the ratio of normalising constants by thermody-

namic integration. Let Z(β) denote the normalising constant of the distribution defined by Equation (2), 
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where for the moment we assume that β takes continuous values in the interval [β0, βn]. 

∫ 

Z(β) = π(x) exp(−βh(x)) dx 
x 

then 
dZ(β) 

dβ 
= 

∫ 

x 
π(x) 

d exp(−βh(x)) 

dβ 
dx 

= 

∫ 

x 
(−h(x)) 

π(x) exp(−βh(x)) 

Z(β) 
Z(β) dx 

= −Z(β)Eβ[h(X)]. (5) 

Solving this differential equation for Z(β) gives the relation 

∫ β0 

log(Z(βn)) − log(Z(β0)) = Eβ[h(X)] dβ. (6) 
βn 

That is, the log of the ratio of the normalising constants at two values of β can be expressed as the area under 

the curve g(β) = Eβ[h(X)] between them. Recall that the sequences {x0, . . . xn−1} and {xn
′
−1, . . . x ′ 0} are 

drawn such that the xi have target distribution pi, while the x ′ i have target distribution pi+1. Figure 1 

illustrates a slightly idealised realisation of F (left) and F ′ (right) as the shaded areas constructed as the sum 

of rectangles with widths (βi−βi+1) and heights h(xi) (left) or h(xi
′ ) (right). Both areas are approximations 

of the integral of g(β) between βn and β0. Different realisations of {x0, x1, . . . , x 0
′ } will obviously give 

quite different and usually rather messier pictures, with correspondingly quite varied values of F ′ − F . 

(In fact, Figure 1 was constructed using the average of several realisations to reduce this variability for 

presentation purposes.) Those realisations of x0, x1, . . . , x 1
′ , x 0 

′ where the shaded area on the right (F ′ ) is 

smaller than that on the left (F ) will be accepted since in that case exp(−(F ′ − F )) > 1 in Equation (4). 

Those for which F ′ is slightly larger than F may be accepted, but we will almost certainly reject those for 

which (F ′ − F ) is large. We take this as a motivation for selecting the {βi} for fixed n. 

2.2 The proposed rationale for choosing {βi} 

Given the cost of each tempered transition proposal, our motivation is to increase the number of proposals 

accepted. The value of β0 is fixed by Equation (1), and we assume that the other extreme of the βs is also 

determined, possibly by the fact that it defines a distribution for which direct sampling is possible, certainly 

by the need to move around the state space freely under pn. What remains undetermined are n and the set 

{β1, . . . , βn−1}. 

Figure 1 showed the F and F ′ associated with a realisation {x0, x1, . . . , x 0
′ }. If at each stage the tran-

sitions were able to reach their equilibrium distributions in the one step available, then E[h(xi)] = g(βi) 

and E[h(xi
′ )] = g(βi+1); Figure 2 shows the corresponding approximations to the integral of g(β) (this is 

equivalent to Neal’s Figure 1(a)). Denote this difference between the areas of these two step functions as a 
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∫ 

Realisation of F Realisation of F’ 
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β β 

Figure 1: Two approximations to the integral of g(β). The breakpoints of the rectangles are given by 

≤ . . . ≤ β1 ≤ β0. The shaded area on the left is F = n−1(βi − βi+1)h(xi), while that on the right is βn i=0 

′ n−1 ′ F = 
∑

i=0 (βi − βi+1)h(xi). The overlaid curve is g(β) = Eβ [h(X)]. 

function of the β values 

n−1 n−1 

Sn(β0, . . . , βn) = (βi − βi+1)Ei+1[h(X)] − (βi − βi+1)Ei[h(X)] 
i=0 i=0 

n−1 n−1 

= (βi − βi+1)g(βi+1) − (βi − βi+1)g(βi). (7) 
i=0 i=0 

Some results are well known for g(β) = Eβ[h(X)]. Rewriting Equation (2) as 

pβ(x) = π(x) exp(−β h(x) −K(β)) (8) 

so that K(β) is the log of the normalising constant Z(β) and rearranging Equation (5), 

1 dZ(β) 
g(β) = − 

Z(β) dβ 

d log(Z(β)) 
= − 

dβ 

= −K ′ (β) (9) 

d
and g ′ (β) = h(x) pβ(x)dx 

dβ 
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∫ 

∫ 

Expected h(X) values Expected h(X’) values 
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∑n−1 ∑n−1Figure 2: The shaded area on the left is i=0 (βi − βi+1)g(βi), while that on the right is i=0 (βi − 

βi+1)g(βi+1). The difference between the two areas is Sn(β0, . . . , βn). 

= h(x)(−h(x) −K ′ (β))π(x) exp(−β h(x) −K(β))dx 

= (−h(x)2 + h(x)g(β))pβ(x)dx 

= −Varβ [h(X)] . (10) 

Therefore g ′ (β) < 0, for all β, showing that g(β) is a decreasing function of β. It is possible to examine 

g ′′ (β) similarly, showing that the curve may be convex, concave, or a mixture of the two. The main point 

here is that because g(β) is decreasing, we know that Sn(β0, . . . , βn) ≥ 0. 

We propose the minimisation of Sn(β0, . . . , βn) over {βi} as our rule for choosing the tempered transi-

tion parameters. Obviously increasing n immediately reduces Sn. However our primary motivation here is 

the most effective choice of the particular {β1, . . . , βn−1 for a fixed number of levels n and fixed values of 

β0 and βn. 

Note that minimising Sn = E[F ′ −F ] is not directly equivalent to maximising the expected value of the 

acceptance probability, α = min{1, exp(−(F ′ − F ))}, however 

E[(F ′ − F )2]′ 
E[exp(−(F − F ))] = 1 − Sn + − . . . (11) 

2! 

and so intuitively minimising Sn seems a reasonable start. Other possible criteria include, for example, 
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( ) 

maximising P(F ′ < F ) over the {βi} or, as suggested by one of the referees, examining the variance as 

well as the expectation of F ′ − F since a high variance could perhaps improve mixing by generating big 

moves more often than a low variance might. We have so far only considered looking at Sn. 

2.3 A motivating example 

To motivate the tuning procedure, we study the one-dimensional two-parameter simplified Witch’s Hat 

distribution used by Geyer and Thompson (1995). Although this is quite a straightforward example, we 

shall see that it is one for which geometric spacing of the temperatures is not optimal. Geyer and Thompson 

attribute this distribution to Matthews (1993) who introduced it as a problem case for the Gibbs sampler: 

p(x) ∝ 1 + bI[x≤a], 0 ≤ x ≤ 1 

where the parameters satisfy 0 < a < 1 and b ≥ 0. This apparently innocuous L-shaped distribution causes 

problems for standard Metropolis-Hastings moves if a is small but b is large as it can be difficult to move 

between the intervals [0, a] and (a, 1]. The distribution can be expressed in a form suitable for tempering 

pi(x) ∝ exp(βi log(1 + bI[x≤a])), i = 0, . . . , n 

where β0 = 1. In this case, g(β) = Eβ [− log(1 + bI[x≤a])] is available analytically as are its derivatives: 

−a(1 + b)β log(1 + b) 
g(β) = 

a(1 + b)β + (1 − a) 

g ′ (β) = 
a(a − 1)(1 + b)β(log(1 + b))2 

(a(1 + b)β + 1 − a)2 

g ′′ (β) = 
−a(a − 1)(1 + b)β(log(1 +

3 

b))3 

a(1 + b)β − (1 − a) (12) 
(a(1 + b)β + (1 − a))

The second derivative shows that for β ∈ [0, 1], the curve g(β) may be convex (if a ∈ [0.5, 1] and b ≥ 0), 

concave (if a ∈ (0, 0.5) and b ∈ (0, 1/a − 2]), or a mix of the two (otherwise). We propose to study one 

distribution for which g(β) is convex (taking a = 0.5 and b = 7.5 × 108) and one for which it is concave 

(taking a = 10−4 and b = 9.5 × 103). The latter distribution is hard to sample with roughly half the mass 

concentrated in the narrow [0, 9.5×103] peak. The former distribution does not present a sampling problem, 

but we are still interested in the effect of the shape of g(β) on tempering performance. 

Given g(β), β0, βn and n, how do we minimise Sn over {β1, . . . , βn−1}, Equation (7)? The (n − 1) 

partial derivatives are available, 

∂Sn 
= (g(βi−1) − 2g(βi) + g(βi+1)) + (βi−1 − 2βi + βi+1)g ′ (βi), i = 1, . . . , n − 1, (13) 

∂βi 

however, despite their relatively simple form, no analytic solution is readily available for the minimisation 

problem. As a result, we perform the minimisation numerically using the built-in quasi-Newton optim with 
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option L-BFGS-B in R incorporating derivative information and the constraints that βn < βi < β0 for 

i = 1, . . . , n − 1 and fixed β0 and βn. This function is not guaranteed to converge to a global maximum; 

in our experiments it was insensitive to starting points (we used geometric or uniform spacings) with the 

exception of occasional catastrophic convergence for large n to a non-ordered set of βs. In all cases we 

encountered, changing from geometric to uniform initial spacings, or vice versa, resolved this problem. 

Figure 3 illustrates the minimal Sn and the corresponding {βi} for the two examples of the Witch’s hat 

distribution when n = 4 and βn = 1/16, as well as the equivalent Sn for a geometric spacing of the {βi}. 

Unsurprisingly given the different shapes of the two curves, the change in the size of Sn achieved by the 

optimal scheme over the geometric one is more significant for the concave g(β) curve. However, even 

in the convex example it is clear that the values of the βs themselves, particularly β1, are quite different 

under geometric spacing and the minimal Sn scheme. Table 1 shows the minimum values of Sn and the 

geometric values of Sn for n = 2, 4, 8, 16, 32 and 64 and for both pairs of parameters a and b. For each 

n we performed 500000 iterations of tempered transitions where at each level i = 1, . . . , n we use direct 

sampling (by inversion) to draw from the tempered distribution pi. This direct sampling is only realistically 

possible, at least for values of β close to β0, in a test example such as this, but it does allow us to separate 

the effects of the different β choices from the effects of slow mixing of the transitions at levels 1 to n. Table 

1 gives observed average acceptance rates together with the estimated integrated autocorrelation time of the 

tempering calculated with respect to the known theoretical mean. The Witch’s Hat example is unusual in 

that only moves between the regions 0 ≤ x ≤ a and a < x ≤ 1 are problematic while all within-region 

moves are always accepted (giving rise to unusually high acceptance rates for a tempering problem). In 

addition, a high acceptance rate in tempered transitions can actually mask a lack of mixing and so integrated 

autocorrelation times are a useful diagnostic. 

For both distributions, decreasing Sn by optimising the {βi}, increases the observed acceptance rate and 

decreases the integrated autocorrelation time. These improvements are most noticeable when comparing the 

geometric and optimal schemes for the hard sampling problem, a = 10−4 and b = 9.5 × 103, where the 

changes in Sn are most dramatic. Concentrating on n = 4 to tie in with Figure 3, for the easier convex 

g(β), optimising the {βi} made a small difference to the overall Sn albeit with noticeable changes to the 

{βi} themselves. Here the tuning has made only marginal improvements in acceptance rates and integrated 

autocorrelation times (although as noted earlier, this distribution is not hard to sample and there is little 

scope for improvement anyway). In the harder sampling problem, where g(β) was concave, the benefits of 

tuning the {βi} are very clear. In this example, the additional computational cost of tuning comes only from 

the R optimisation stage. The benefits of tuning are greatest when n is small (as n increases, the geometric 

Sn anyway decreases to zero). 
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Figure 3: Sn for the Witch’s hat distribution when n = 4 using geometric {βi} spacing (left) or the optimal 

{βi} (right) overlaid by g(β) in black; on the top row, a = 0.5 and b = 7.5 × 108, on the bottom row 

a = 10−4 and b = 9.5 × 103 . 

2.3.1 When is the geometric temperature placement optimal? 

An interesting question raised by this example is under what circumstances will tuning of the {βi} be likely 

to make efficiency gains over the default geometric spacing for fixed n? Suppose the target distribution is 

the d-dimensional multivariate Gaussian with mean µ and variance Σ. Then, h(x) = 12 
(x −µ)T Σ−1(x −µ) 

and the tempered distributions are d-dimensional multivariate Gaussian with mean µ and variance βi 
−1Σ. 

More importantly, g(β) = 2
d
β and g ′ (β) = 2

−
β
d 
2 . As a result, when the {βi} are geometrically spaced, all 

the partial derivatives ∂Sn = 0 in Equation (13), and so geometric spacing is also the optimal minimum Sn∂βi 

spacing. In fact we can go further: suppose the set of ∂Sn are all zero for a general g and for all n when the ∂βi 
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( 

( ) 

a = 0.5 

b = 7.5 × 108 

(convex) 

a = 10−4 

b = 9.5 × 103 

(concave) 

Optimal 

Sn 

α 

τ 

Geometric 

Sn 

α 

τ 

Optimal 

Sn 

α 

τ 

Geometric 

Sn 

α 

τ 

n = 2 

0.83386 

0.78 

1.55 

0.90444 

0.78 

1.58 

1.46627 

0.55 

7.05 

3.34158 

0.51 

591.36 

n = 4 

0.30241 

0.80 

1.48 

0.38612 

0.79 

1.51 

0.63456 

0.63 

2.36 

2.20779 

0.51 

55.56 

n = 8 

0.13214 

0.84 

1.38 

0.18454 

0.82 

1.46 

0.29879 

0.72 

1.75 

1.25229 

0.55 

9.13 

n = 16 

0.06218 

0.87 

1.28 

0.09122 

0.85 

1.36 

0.14591 

0.80 

1.47 

0.64996 

0.61 

3.11 

n = 32 n = 64 

0.03023 0.01492 

0.91 0.93 

1.20 1.14 

0.04548 0.02272 

0.89 0.89 

1.26 1.26 

0.07234 0.03607 

0.85 0.90 

1.33 1.22 

0.32786 0.16428 

0.69 0.78 

1.91 1.54 

Table 1: Results for the Witch’s Hat problem under two settings of the parameters a and b and multiple 

choices of n, the number of tempering levels. The minimal sum of squares, observed acceptance rates and 

estimated integrated autocorrelation times are shown for the geometric scheme and for the optimal scheme. 

{βi} are geometrically spaced, i.e. when 
βi+1 = cn where cn = βn 

)1/n 
, βn 6= 0, then βi β0 

g βi − 2g(βi) + g(cnβi) 
g ′ (βi) = − 

cn 

βi − 2βi + cnβi 

, i = 1, . . . , n − 1. (14) 

cn 

As n → ∞ with fixed β0 and βn, cn → 1 and a repeated application of L’hôpital’s rule yields the equation 

βg ′ (β) = −(β2 g ′′ (β) + βg ′ (β)) (15) 

which has general solution g(β) = K
β 
1 + K2 for constants K1 and K2. In other words, geometric spacing 

only minimises Sn if the target distribution has this form of g(β). This is a wider class than just the Gaussian, 

for example the exponential distribution has g(β) = β
1 . The result ties in with Figure 3 and Table 1. 
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2.4 An alternative perspective on the optimisation problem 

In this section we provide an intuitive formalisation of what quantity Sn in Equation (7) represents. Since 

pi(x) = π(x) exp(−βih(x))/Z(βi), it follows that 

Z(βi+1) pi(x) exp(−βi+1h(x)) 
= 

Z(βi) exp(−βih(x)) pi+1(x) 

pi(x) 
= exp(−(βi+1 − βi)h(x)) 

pi+1(x) 

Taking logarithms, 

log 
Z(βi+1) 

= (βi − βi+1)h(x) − log 
pi+1(x) 

. (16) 
Z(βi) pi(x) 

Multiplying both sides of the equation by pi+1(x) and integrating with respect to pi+1(x) leads to 

log 
Z(βi+1) 

= (βi − βi+1)Ei+1[h(X)] −KL [pi+1, pi] , (17) 
Z(βi) 

where KL[pi+1, pi] = pi+1(x) log pi+1(x) 
, is the Kullback-Leibler divergence between distributions x pi(x) 

pi+1 and pi. Similarly, it can be shown, by multiplying both sides of Equation (16) by pi(x) and integrating 

with respect to x, that 

log 
Z(βi+1) 

= (βi − βi+1)Ei[h(X)] +KL[pi, pi+1]. (18) 
Z(βi) 

Summing both Equations (17) and (18) over i indices leads to 

Z(βn) ∑ ∑ 
log = (βi − βi+1)Ei+1[h(X)] − KL[pi+1, pi]

Z(β0) i i 

= (βi − βi+1)Ei[h(X)] + KL[pi, pi+1]. 
i i 

It now follows directly that 

n−11 ∑ 
Sn(β0, . . . , βn) = {KL[pi+1, pi] +KL[pi, pi+1]}

2 
i=0 

Thus our optimisation problem can be recast as one of finding temperatures {β1, . . . , βn−1} to minimise 

the sum of the symmetrised Kullback-Leibler distances between successive distributions pi and pi+1. This 

interpretation ties in with the recent work by Lefebvre, Steele and Vandal (2010) who consider this same 

symmetrised Kullback-Leibler divergence in picking optimal schemes for path sampling. A similar per-

spective, but in the context of marginal likelihood estimation using the power posterior method of Friel and 

Pettitt (2008), appears in Section 3.2 of that paper and also in Calderhead and Girolami (2009). 

13 



( ) 

∑ 

3 Application of the tuning to a non-toy problem 

3.1 A Bayesian mixture problem 

We now turn to Bayesian mixture modelling, an application where tempered transitions has been advocated 

in the past as a possible solution to sampling problems (see, for example, Celeux, Hurn and Robert (2000) 

and Jasra, Holmes and Stephens (2005)). The benchmark for good MCMC mixing here is label-switching: 

In the Bayesian treatment of a k−component mixture model, the likelihood is invariant to the labelling 

of the components. This invariance is inherited by the posterior if, as is quite natural in many cases, the 

priors do not impose identifiability. The logical conclusion of such invariance is that a well-mixing MCMC 

sampler should visit all k! labellings of the components. Label-switching could be achieved trivially by 

incorporating a move type which permutes the component labels, however this may mask more significant 

difficulties in moving around the state space. Certainly we can have greater confidence in the exploratory 

powers of a sampler which can swap component labels in the course of its other moves. 

We use the much-studied galaxy data set for illustration, see for example Richardson and Green (1997), 

which comprises measurements on the velocities of 82 galaxies (Figure 4). Unlike in that paper though, 

we fix the number of mixture components at three, the smallest number of components with non-negligible 

posterior probability according to Richardson and Green. Using a small number of components makes label 

switching harder as there is no “redundant” component to move freely around the state space exchanging 

identities with the less mobile components needed to explain the data if they pass sufficiently close. 

Denoting the 82 velocity measurements by y = {y1, . . . , y82}, we follow Richardson and Green (1997) 

in incorporating corresponding latent allocation variables z = {z1, . . . , z82}. Given zi = j, yi follows the 

jth of the three component Gaussian distributions of the mixture, 

f(yi|zi = j, µj , σ
2 = √ 

1 
exp 

−(yi − µj)
2 

i = 1, . . . , 82.j ) 2σ2 
2πσj 

2 j 

Further, conditional independence is assumed for the observations. We specify largely independent standard 

proper priors: 

3 

P(zi = j) = wj , where wj = 1 
j=1 

{w1, w2, w3} ∼ Dirichlet(1, 1, 1) 

µj ∼ N(0, 1000), j = 1, 2, 3 

σj 
2 ∼ InvGam(1, 1), j = 1, 2, 3. 
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Figure 4: The galaxy data used for as illustration of the mixture modelling. 

so that the posterior of interest is 

82 3 3 82 

f(z, {wj , µj , σj
2}3 

j=1|y) ∝ f(yi|zi, µzi 
, σz

2 
i 
)×f({wj})× f(µj)× f(σj

2)× f(zi|{wj}) (19) 
i=1 j=1 j=1 i=1 

We know that if label switching is taking place when sampling from Equation (19) that the marginal 

posterior distributions for the sets of parameters of the three Gaussian components should be identical. 

Figure 5 shows the output for the {µj} parameters using 100000 iterations of standard MCMC updates 

including a burn in of 10000 iterations (Gibbs updates for {wj}, {µj}, {σj
2} and a uniform Metropolis 

proposal to change the {zi} in turn); it is clear that label switching is not happening. Tempering the whole of 

the posterior defined by Equation (19) is problematic as there is no guarantee that the tempered distributions 

will remain proper. Instead, we follow Celeux, Hurn and Robert (2000) in tempering only the likelihood 

contribution leaving the priors untempered. This approach generates proper tempered distributions provided 

the priors are proper. In the notation of previous sections, we set β0 = 1 and βn = 1/16 while 

  

3 82 
∑

 1 ∑  
 h(x) = 
 
n

2 
j 

log(σj
2) + 

2σ2 
(yi − µj)

2 
 

j=1 j i=1 

zi =j 

where x = {z, {wj , µj , σj
2}j

3
=1} and nj = 

∑82 
i=1 I[zi =j], j = 1, 2, 3. Unlike in the motivating example 

of the previous section, the g(β) corresponding to this form of h(x) is not available analytically and so we 

must now address the question of approximating it before we can optimise the {βi}. 
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Figure 5: Histograms and trace plots of the {µj} chains indicating a lack of mode swapping when β = 1. 

3.2 Approximating g(β) 

The difficulty in estimating g(β) = Eβ[h(X)] and g ′ (β) = −(Eβ[h(X)2] − Eβ [h(X)]2) for βn ≤ β ≤ β0 

is that sampling under pβ is difficult for β close to β0 (hence the need for tempered transitions!). We 

propose instead to estimate g(β) and g ′ (β) using importance sampling. The obvious importance distribution 

to use is pβn 
since we have already made an assumption that we can sample from this distribution quite 

freely. However it may be a poor choice as an importance distribution for pβ when β is close to β0 because 

when the importance distribution is quite far from the target, the resulting estimates can be dominated 

by a handful of the samples (Robert and Casella 1999). As a compromise, we importance sample for 

expectations under pβ by sampling under pβ̃ for some β̃ where βn ≤ β̃ < β ≤ β0, in which case the 

unnormalised importance weights are exp(−(β̃ − β)h(x)). We note in passing that a standard result states 

that the importance distribution which minimises the variance of the importance estimate of some function 
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ψ(x) is 

f ∗ (x) ∝ |ψ(x)| pβ(x). 

We turn this statement around to ask for what function ψ(x) is pβ̃(x) the optimal importance distribution? 

|ψ(x)| ∝ 
pβ̃(x) 

pβ(x) 

= exp(−(β̃ − β)h(x)) 

= 1 − (β̃ − β)h(x) + ((β̃ − β)h(x))2/2 + . . . 

So using p̃β as an importance distribution would be optimal if we were trying to estimate exp(−(β̃ − 

β)h(x)). It is not optimal for estimating Eβ[h(X)] and Eβ [h(X)2], however it may be more reasonable for 

this goal when (β̃ − β) is small, than if we were, say, trying to estimate Eβ[X] or Eβ[X2]. 

We work with 20 uniformly spaced values of β̃ in the interval [βn, β0]. As a compromise between the 

inadequate sampling for large β and the risk of unreliable importance sampling for large β − β̃, we generate 

relatively small samples at each β̃ and use these samples to estimate g(β̃) and g ′ (β̃) both directly and indi-

rectly by importance sampling using the next smallest of the 20 chosen values (with obvious modifications 

at the end points). Figure 6 shows the results when using 10000 samples at each β̃ and discarding the first 

1000 iterations as burn in. We propose to use the average of the two estimates for g(β̃) and g ′ (β̃) at each 

point, with visual inspection recommended to check for major discrepancies. In this example, the estimated 

g(β) curve appears quite far from the geometric-friendly form g(β) = Kβ 
1 + K2. 

3.3 Results 

Given the importance sampling estimates of both curve g(β) and its derivative g ′ (β), we can minimise 

Sn(β0, . . . , βn) using Equation (13). As before, we use the R optimisation routine optim with linear inter-

′polation used to evaluate g and g between the 20 β̃ values. In order to assess the effects of the imperfect 

estimation of g(β) on the tuning procedure, we replicate the estimation process five times with each replicate 

being used to select {βi}. Figure 7 shows both the variability in estimated g and g ′ and how the optimised Sn 

decreases with n for the five sets of estimates. By letting n become sufficiently large, it would be possible to 

reduce Sn below any positive threshold. (An upper bound on the minimum Sn is n
1 (β0 −βn)(g(βn)−g(β0)), 

achieved either by uniformly spacing β1, . . . , βn−1 or by uniformly spacing g(β1), . . . , g(βn−1).) However 

as the computational cost of the tempering increases linearly in n, the curves show that costs grow quite 

rapidly for relatively small decreases in Sn. 

Turning to the tempered transitions themselves, we ran the algorithm for 100000 iterations including a 

burn-in of 10000 iterations. At each tempering stage, the same proposal types were used as in the importance 
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Figure 6: Estimating g(β) and g ′ (β): Symbols indicate the β̃ at which samples are generated; red circles 

and red lines segments indicate direct sampling; blue triangles and blue line segments indicate importance 

sampling estimates; black lines are linear interpolations. 

sampling. For each of the five sets of importance estimates, we temper using n = 64, 128, 256, 512 and 

compare the optimised β results with those of geometric spacing. We know that if switching is taking place, 

then the marginals for each component should be identical. This obviously implies that the three posterior 

expected µi should be equal, as should the expected weights and the expected variances. We propose to 

monitor the mixing using the usual tool of the integrated autocorrelation times, however in estimating these 

diagnostics we use the averages of each group of parameters over the three chains rather than the usual 

chain-wise average for each parameter. For example, if the labels swap regularly, the individual averages 

of each of the three µi chains will be close to their overall average, and the non-centred autocorrelations 

will not be much different from the standard centred ones. On the other hand, if the labels do not switch as 

was the case with standard MCMC illustrated in Figure 5, the autocorrelations calculated around the overall 

average will be greatly increased and this will be reflected in the modified integrated autocorrelation times. 

Table 2 summarises the results, showing the acceptance rates and the estimated integrated autocorrela-
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n = 64 

Geometric α=0.00013 

τ̂({wj}) ***, ***, *** 

τ̂({µj}) 96042, ***, *** 

j })
2τ̂({σ 

n = 128 

α=0.00065 

3253, 22910, 95995 

4505, 6938, 4552 

n = 256 

α=0.00187 

1649, 1382, 1916 

1003, 1457, 745 

n = 512 

α=0.00853 

256, 249, 257 

322, 322, 269 

***, 4970 5188 477, 768, 1137 710, 475, 799 140, 132, 163 

Tuned 1 α=0.00062 

τ̂({wj}) 9089, 4750, 5743 

τ̂({µj}) 6406, 3842, 2702 

j })
2τ̂({σ 

α=0.00316 

1137, 721, 1117 

781, 762, 952 

α=0.01366 

161, 148, 161 

134, 165, 160 

α=0.04105 

50, 51, 45 

45, 48, 49 

3071, 1323, 5498 321, 113, 441 78, 88, 90 31, 33, 28 

Tuned 2 α=0.00054 

τ̂({wj}) 5481, 10701, 17267 

τ̂({µj}) 13077, 6291, 20823 

j })
2τ̂({σ 

α=0.00346 

642, 1357, 952 

893, 1235, 1309 

α=0.01426 

134, 161, 148 

148, 123, 133 

α=0.04194 

51, 45, 49 

48, 54, 51 

6040, 8845, 2274 249, 250, 239 116, 72, 44 38, 34, 26 

Tuned 3 α=0.00053 

τ̂({wj}) 8610, 4050, 3609 

τ̂({µj}) 6826, 19664, 25232 

j })
2τ̂({σ 

α=0.00362 

774, 1244, 813 

1499, 827, 1133 

α=0.01395 

185, 166, 178 

185, 167, 149 

α=0.04467 

49, 50, 49 

46, 47, 51 

5967, 2569, 2283 268, 288, 156 83, 91, 56 34, 37, 23 

2 

Tuned 4 α=0.00054 

τ̂({wj}) 4668, 8875, 8538 

τ̂({µj}) 6335, 3805, 16416 

j })τ̂({σ 

α=0.00282 

960, 1043, 862 

2365, 751, 1928 

α=0.00923 

258, 253, 244 

250, 197, 209 

α=0.03884 

51, 50, 55 

51, 47, 53 

3266, 4463, 1782 411, 218, 376 91, 115, 117 43, 32, 39 

2 

Tuned 5 α=0.00062 

τ̂({wj}) 18057, 6343, 7629 

τ̂({µj}) 5513, 5965, 39982 

j })τ̂({σ 

α=0.00275 

1065, 763, 1353 

3743, 1671, 1966 

α=0.00928 

293, 261, 210 

221, 272, 287 

α=0.02518 

75, 77, 86 

91, 93, 87 

1423, 1496, 538 492, 506, 386 118, 149, 118 59, 48, 64 

Table 2: Results for the mixture problem using different numbers of tempering levels. Results are shown 

for geometric spacing of the {βi} and for the tuned spacing from the five replicates of importance sampling. 

*** indicates that the estimates of integrated autocorrelation times did not converge reliably. 
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Figure 7: Left: five replicates of the estimated g(β) in black and g ′ (β) in red line segments with {β̃} 

indicated by circles. Right: the five corresponding minimum Sn against the number of tempering levels n. 

tions times for the three sets of parameters. The first point to note is how large n needs to be in order to 

achieve even low acceptance rates. This is not unexpected; Jasra, Holmes and Stephens (2005) describe 

“huge rejection rates when sampling from the full posterior” using tempered transitions. Although temper-

ing moves may not be accepted very often, each one can make a large move in the state space and it is 

common practice to intersperse tempering moves with standard MCMC moves for improved local explo-

ration. The fact that acceptance rates can be so low highlights the importance of any tuning. The worst case 

is geometric spacing when n = 64; here the actual number of acceptances is so low, just 13, that the esti-

mates of integrated autocorrelation times fail to converge reliably (taken to mean that the estimate exceeded 

a tenth of the total run length). As n increases, acceptance rates improve and integrated autocorrelation 

times decrease for all runs. There is some variability between the five replicates of the tuned spacings of 

the {βi}, however at all of the n considered, all five outperform geometric spacing by some considerable 

margin in terms of the acceptance rates and consequently the integrated autocorrelation times. 

The cost of tuning the {βi} comprises the cost of the samples required to estimate g(β) and g ′ (β) using 

importance sampling plus the optimisation costs for minimising Sn. Here we used 20 relatively short runs, 
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Estimating g and g ′ 

Optimisation 

Tuned tempering 

Tuned total 

Geometric tempering 

Proportion increase 

n = 64 

8.35 

2.78 

879.81 

890.94 

874.12 

1.019 

n = 128 

8.35 

16.97 

1762.61 

1787.93 

1758.88 

1.017 

n = 256 

8.35 

52.02 

3507.79 

3568.16 

3494.94 

1.021 

n = 512 

8.35 

191.00 

7022.67 

7222.02 

7002.63 

1.031 

Table 3: Time in user CPU time seconds for the geometrically spaced temperatures and for the tuned tem-

peratures including a breakdown of the cost of tuning. 

each of only 10000 iterations, for the g(β) and g ′ (β) estimation; this stage is independent of n. The cost of 

the deterministic minimisation of Sn in R increases with n but is of the order of a few minutes for n = 512. 

This makes the cost of the tuning procedure a small fraction of the total cost. Full details are given in 

Table 3 showing that the additional cost of the tuning procedure, for this example, varied between 2% and 

4% extra CPU time compared to the untuned procedure. Combining this information with the integrated 

autocorrelation times in Table 2 indicates the tuned procedure gives substantial improvements in mixing 

compared to the geometric temperature placement. 

In this example, very little of the total computational effort was spent in estimating g(β) and g ′ (β). 

Although importance sampling cannot be guaranteed to be particularly good for this type of problem, we 

suggest that this is a sensible strategy. The associated risk is either that the importance sampling fails to 

identify a g(β) curve which is not suitable for geometric spacing or, conversely, that it identifies interesting 

features which are not in fact present. In the former case, a visual inspection of the roughly estimated g(β) 

may suggest that it is not worthwhile implementing any optimisation, reverting to the default geometric, 

and so the wasted CPU time is minimal. (The same argument is also reasonable when importance sampling 

works well for estimating g(β).) On the other hand, if the estimated g(β) looks to be of the form where 

tuning may help, more computational effort could be put into improving the accuracy of its estimation, 

especially if a discrepancy is noted between the values of the curve using direct and indirect sampling. 

4 Discussion 

In this paper we have explored how to tune the expensive tempered transitions algorithm to make best 

use of computational resources. We have shown that the geometric schedule will be optimal if the curve 
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g(β) = Eβ[h(X)] is of a particular form, where the target distribution is p(x) ∝ π(x) exp(−β0 h(x)). The 

tuning itself is relatively cheap and examples have demonstrated that it can make a significant difference. 

Although we have not explicitly considered the question of choosing the number of tempering levels, 

we have some purely anecdotal evidence that the tuning procedure may yield useful information regarding 

the minimum number of tempering levels required. In our experience, tempered transitions does not seem 

to perform at all well with a {βi} for which Sn > 1. For example, in our mixture example the geometric Sn 

is approximately of the order 2, 1, 0.5 and 0.25 for n = 64, 128, 256, 512 respectively, while for the tuned 

{βi} it is of the corresponding approximate value 1.2, 0.6, 0.3 and 0.15. It also seems feasible that the tuning 

approach proposed here may also be relevant to some of the other MCMC algorithms which incorporate an 

element of tempering. This is another topic for future research. 

Acknowledgements 

Gundula Behrens thanks the Engineering and Physical Sciences Research Council and Evangelisches Stu-

dienwerk for financial support. Nial Friel was supported in a visit to Bath by the Bath Institute for Complex 

Systems (EPSRC grant GR/S86525/01). We are grateful to the Associate Editor and the referees for their 

insightful and helpful comments and to Dr Jey Sivaloganathan for advice on Equations (14) and (15). 

References 

[1] B. Calderhead and M. Girolami. Estimating Bayes factors via thermodynamic integration and popula-

tion MCMC. Computational Statistics and Data Analysis, 53(12):4028–4045, 2009. 

[2] G. Celeux, M. Hurn, and C.P. Robert. Computational and inferential difficulties with mixture posterior 

distributions. Journal of the American Statistical Association, 95(451):957–970, 2000. 

[3] N. Friel and A.N. Pettitt. Marginal likelihood estimation via power posteriors. Journal of the Royal 

Statistical Society, Series B, 70:589–607, 2008. 

[4] A. Gelman and X-L. Meng. Simulating normalizing constants: From importance sampling to bridge 

sampling to path sampling. Statistical Science, 13(2):163–185, 1998. 

[5] C.J. Geyer. Markov chain Monte Carlo maximum likelihood. Computer Science and Statistics, 

23:156–163, 1991. 

[6] C.J. Geyer and E.A. Thompson. Annealing Markov chain Monte Carlo with applications to ancestral 

inference. Journal of the American Statistical Association, 90(431):909–920, 1995. 

22 



[7] R. Gramacy, R. Samworth, and R. King. Importance tempering. Statistics and Computing, 20:1–7, 

2010. 

[8] Y. Iba. Extended ensemble Monte Carlo. International Journal of Modern Physics C, 12(5):623–656, 

2001. 

[9] A. Jasra, C.C. Holmes, and D.A. Stephens. Markov chain Monte Carlo methods and the label switching 

problem in Bayesian mixture modelling. Statistical Science, 17(1):50–67, 2005. 

[10] A. Jasra, D.A. Stephens, and C.C. Holmes. On population-based simulation for static inference. Statis-

tics and Computing, 17(3):263–279, 2007. 

[11] G. Lefebvre, R.J. Steele, and A.C. Vandal. A path sampling identity for computing the Kullback-

Leibler and J-divergences. Computational Statistics and Data Analysis, 54(7):1719–1731, 2010. 

[12] E. Marinari and G. Parisi. Simulated tempering: a new Monte Carlo scheme. Europhysics Letters, 

19(6):451–458, 1992. 

[13] P. Matthews. A slowly mixing Markov chain with implications for Gibbs sampling. Statistics and 

Probability Letters, 17:231–236, 1993. 

[14] R.M. Neal. Sampling from multimodal distributions using tempered transitions. Statistics and Com-

puting, 6:353–366, 1996. 

[15] R.M. Neal. Annealed importance sampling. Statistics and Computing, 11:125–139, 2001. 

[16] S. Richardson and P.J. Green. On Bayesian analysis of mixtures with an unknown number of compo-

nents (with discussion). Journal of the Royal Statistical Society B, 59(4):731–792, 1997. 

[17] C.P. Robert and G. Casella. Monte Carlo statistical methods. Springer, New York, 1999. 

23 


