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Tuning the interactions between chiral plasmonic
films and living cells
Xueli Zhao1,2, Liguang Xu1,2, Maozhong Sun1,2, Wei Ma1,2, Xiaoling Wu1,2, Chuanlai Xu 1,2 & Hua Kuang1,2

Designing chiral materials to manipulate the biological activities of cells has been an

important area not only in chemistry and material science, but also in cell biology and

biomedicine. Here, we introduce monolayer plasmonic chiral Au nanoparticle (NP) films

modified with L- or D-penicillamine (Pen) to be developed for cell growth, differentiation, and

retrieval. The monolayer films display high chiroptical activity, with circular dichroism values

of 3.5 mdeg at 550 nm and 26.8 mdeg at 775 nm. The L-Pen-NP films accelerate cell pro-

liferation, whereas the D-Pen-NP films have the opposite effect. Remote irradiation with light

is chosen to noninvasively collect the cells. The results demonstrate that left circularly

polarized light improves the efficiency of cell detachment up to 91.2% for L-Pen-NP films.

These findings will facilitate the development of cell culture in biomedical application and

help to understand natural homochirality.
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A
s one of the most typical biochemical signatures of life,
chirality1–3 has a remarkable influence on many biological
events4–7. For example, the high selectivity of biological

systems for chiral species (L-amino acids, D-sugars, and so on)
plays crucial roles in maintaining the normal functions of living
cells8, 9. Most cell functions, such as adhesion10–12, prolifera-
tion13, 14, and differentiation15–19, de-differentiation20, 21 are
affected by the interactions between the cells and the extracellular
matrix (ECM)22–30. Consequently, designing biomaterials with
distinct characteristics that mimic the native ECM for use in
tissue regeneration or injury recovery has drawn increasing
attention in biomedical research31–34. Adsorbing or grafting
chiral bioactive ligands to surfaces has been explored in pio-
neering research, to manipulate biocompatibility, cell adhesion,
and cell growth35–37. Bioactive supramolecular materials formed
through incorporation of chiral groups into building blocks
showed good potential as biocompatible scaffolds38–40. Ding’s
group previously investigated the adhesion and differentiation of
stem cells on gold coating (glass sputtered with gold) modified
with L- or D-cysteine36, and Kehr and colleagues reported cell
interactions with a chiral-amino-acid-functionalized zeolite
nanoparticle (NP) monolayer41. These studies have shown that
cells can interact with chiral surface molecules and display dif-
ferent behaviors on enantiomorphous surfaces. The cells were
found to adhere on the D-surface much less than that on the L-
surface42–44. The use of monolayer NPs instead of simple sub-
strate surfaces allows much higher functional group densities,
providing larger numbers of chiral contact points between the
cells and the ECM. However, monolayer film fabricated with
plasmonic NPs with strong chirality45–49, for using as an ECM,
has not yet been reported. As well as the chirality of the molecules
in the ultraviolet region, the chiral NP films with highly intense
circular dichroism (CD) peaks at 550 and 775 nm play a vital role
in cell–ECM interactions.

Neurite outgrowth is an important step preceding the
development of nerve systems50, 51; so much attention has been
paid to the relationship between neuronal behavior and the sur-
face topography52, 53. Recent research has demonstrated that
nanostructured surfaces can accelerate neurite outgrowth and the
polarization of neurons54–57. Choi and colleagues cultured
neurons on a silica-bead monolayer to explore the biological
relationships between environmental topographical features
and the morphogenesis of neurons58. The same group also
reported that neurons on vertical nanowires displayed axon-first
neuritogenesis59. However, the chiral effects of bioactive agents
on neurite outgrowth at the nanoscale have not yet been
examined. The chirality of an Au film has very noticeable effects.
Inducing directional cell differentiation and neurite outgrowth by
dictating the chirality of the ECM may provide an appropriate
strategy for the treatment of many neurological conditions and
traumas.

The controlled and noninvasive retrieval of cells from
responsive substrates is crucial in regenerative medicine and tis-
sue engineering60, 61. Compared with conventional procedures,
such as digestive enzymes, that might irreversibly damage the
cells, irradiation with light to trigger cell detachment has captured
the attention of investigators62. Qu’s group used a spiropyran-
conjugated upconversion NP as a photoswitch to control cell
detachment63. Liz-Marzan and coworkers recently designed a
plasmonic substrate for cell growth and detached the cells with
near-infrared (NIR) light64. However, considering the heating
effect of an NIR laser, its detrimental effect on cell viability cannot
be ignored. A plasmonic film that possesses chirality can strongly
rotate light, allowing the differential absorption of left- and right-
handed light3. Therefore, to improve the efficacy of light in cell
detachment and to introduce ECM protection for cells during the

detachment process, circularly polarized light (CPL) could be a
promising option.

In this text, bioactive films with high chirality are fabricated to
interact with cells and collect cells noninvasively. The chiral Au
NP film has deep influence on cell growth and differentiation.
Noticeably, CPL (808 nm laser) is adopted to significantly
improve the cell detachment efficacy and avoid cell damage.

Results
Monolayer chiral Au NP films design. Here, we designed
monolayer chiral Au NP films to promote in cell adhesion,
growth, differentiation, and to be easily removed without damage.
As illustrated in Fig. 1a, NG108-15 cells were seeded on L- or D-
Pen-NP (Au NPs modified with L- or D-penicillamine) films
supported by polydimethylsiloxane (PDMS), at the same initial
density. The cells on the L-Pen-NP film proliferated faster than
those on the D-Pen-NP film and stretched more efficiently. After
the addition of retinoic acid (RA) as the inducer, the stretched
cells differentiated into bipolar neurons, whereas the round cells
became multipolar neurons. According to previous studies, NPs
with diameters >20 nm usually deviate from a perfectly spherical
shape1. The distinct dihedral angle between the constituent NPs
contributes to the generation of the CD signal. Therefore, we
chose Au NP (47± 5 nm) as the building blocks for film pre-
paration. A seed-mediated growth strategy65 was used to syn-
thesize uniform Au NPs (Supplementary Figs. 1 and 2), using
trisodium citrate as the reducing agent and 13 nm Au NPs as the
seeds. After the Au NPs were functionalized with L- or D-peni-
cillamine (Pen, Supplementary Figs. 3 and 4), a large area of
monolayer Au NP film was formed at the water–hexane interface
(Supplementary Figs. 5 and 6a, Supporting Information). The
monolayer film was transferred to PDMS with the
Langmuir–Blodgett transfer technique66 (Supplementary Fig. 6b).
Transmission electron microscopy (TEM) and scanning electron
microscopy images confirmed the formation of uniform mono-
layer films with close packing (Fig. 2a, b), and atomic force
microscopy showed the vertical dimension to be 47± 5 nm
(Fig. 2c, d, Supplementary Fig. 7). X-ray photoelectron spectro-
scopy (XPS) characterization was carried out to confirm the
similar amounts of L-Pen and D-Pen grafted onto the Au NP films
(Supplementary Fig. 8). The localized surface plasmon resonance
was quite different after film formation. As shown in Fig. 2e, the
peak at 550 nm shifted from the single peak at 530 nm (Supple-
mentary Fig. 3), and a broad band at 700–900 nm emerged,
providing the opportunity to use NIR light for cell detachment.
This broad plasmon band might originate from extensive plas-
mon coupling at the small interparticle distance. The CD signals
(Fig. 2f) of the L-Pen-NP and D-Pen-NP films were equal in
intensity but opposite in sign. The CD intensity varied with the
change of angle between the film and the light, and was max-
imum when the angle was rotated to 45° (Supplementary Fig. 9).
As a control, PDMS sputtered with gold (Au coating) using a
sputter coater displayed no CD signal (Supplementary Figs. 10
and 11). However, the NP film acquired with no chiral Pen
modification showed a CD value of 1.4 at 775 nm (Fig. 2f). After
coupling with L- or D-Pen, a CD peak with a value of 0.23 at 630
nm appeared in the spectrum of the Au coating (Supplementary
Fig. 12). However, when the NP film was functionalized with Pen
after film formation, the CD value at 775 nm was 7.8 (Supple-
mentary Fig. 13), which is much higher than that for the Au
coating but lower than that for the L- or D-Pen-NP film. Therefore,
plasmonic chirogenesis may be ascribed to the following three
factors: (1) Au NPs (47± 5 nm) with an aspect ratio of 1.4± 0.2
(Supplementary Fig. 14) appear to be ellipsoids rather than
spheres, so the balance between electrostatic repulsion and Van
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der Waals forces contributes to the dihedral angle between adjacent
NPs in the monolayer film; (2) because Pen has a positive stereo-
configuration, the spatial conformation of the NPs was reconfi-
gured, enhancing the chiral configuration; and (3) the plasmonic
hotspot enhanced the near-field dipolar Pen-gold NPs interaction1,
67. According to electric field simulation (Supplementary Fig. 15),
with the gap of 1.5 nm, the electric field 43.6 V/m that indicates 10.7
times enhancement compared to single NP (4.06 V/m). Addition-
ally, CD and ultraviolet–visible (Vis) spectra of the chiral NP films
have been simulated as Supplementary Fig. 16 displayed, which was
in consistent with the experimental results.

Cells adhesion and growth on chiral substrates. Figure 3 shows
the growth of NG108-15 cells on chiral substrates. A confocal
image (Fig. 3a) illustrates the cellular morphology on different
surfaces. Compared with the PDMS substrate, the variation in the
cellular morphology on the Au NP film was quite small. However,
the state of the cells on the chiral NP films varied significantly.
Most adherent cells showed stretching when grown on the L-Pen-
NP film, whereas the cells on the D-Pen-NP film had a pre-
dominantly round morphology. The aspect ratio of the cells on
the L-Pen-NP film increased markedly, reaching a value as high as
5.3± 1.2, which was ~3.3 times higher than that on the D-Pen-NP
film (Fig. 3b). With the same seeding density of cells on the NP
film, L- and D-Pen-NP films, and PDMS surface, different cell
proliferation behaviors were observed. After 48 h, the quantity of

cells on the L-Pen-NP film was 2.2 times higher than that on the
D-Pen-NP film and 1.8 higher than that on the NP film (Fig. 3c,
Supplementary Fig. 17). However, these differences were quite
small when the cells were incubated on Pen-functionalized PDMS
or Au coating compared with the differences between cells cul-
tured on L- or D-Pen-NP films (Supplementary Figs. 18–20). These
data suggest that not only the surface molecular chirality but also
the molecule–substrate interaction play significant roles in cell
adhesion. To further investigate the stereospecific interaction
between cells and enantiomeric NP films, the adsorption behavior
of fibronectin (FN) (a well-known protein that promotes cell
adhesion) on experimental substrates was tested using an
enzyme-linked immunosorbent assay (ELISA) kit68. As the time-
dependent adsorption curves show (Supplementary Figs. 21 and
22), the quantity of FN adsorbed onto the L-Pen-NP film reached
200± 6.8 pg/cm2 after 60 min, which was 1.74 times greater than
that on the D-Pen-NP film and much higher than for previously
reported materials (114 pg/cm2)43. Therefore, the distinct cell
morphologies and proliferation behaviors of cells on enantio-
meric NP films might be attributable to the different signals
released from the stereospecific interactions between FN and the
chiral NP films (Fig. 1b). The higher density of FN adsorbed to
the L-Pen-NP film provided more anchoring points for cell
adsorption, resulting in stretched cell morphology and a high
aspect ratio. Furthermore, when the viability of the cells on
the L-Pen-NP film was analyzed with the Cell Counting Kit-8
(CCK-8), it exceeded 120% (Supplementary Fig. 23), which
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Fig. 1 Interactions between chiral NP films and NG108-15 cells. a Schematic representation of NG108-15 cells grown and differentiated on chiral plasmonic

films. b Schematic presentation of the regulation of NG108-15 cell adhesion by stereospecific interaction between fibronectin and chiral NP film
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confirmed the excellent biocompatibility of the film36.
The CD signals of the chiral NP film were also astonishingly
enhanced after cell adhesion and proliferation (Fig. 3d). A closer
look at the spectrum indicated that the enhancement of the CD
signal follow the same trend as the cell density change. To vali-
date this conjecture, the cells adhering to the chiral films were
treated with trypsin–EDTA solution. The resulting spectra
(Fig. 3e) showed that the CD signal reverted to the original
intensity in the Vis and NIR regions, confirming that the cells
adhering to an NP film influence the spectral features of the film
in the Vis–NIR region. The enhanced CD signals might be
ascribed to the induction of the intrinsic chirality of cells6, 69.
Cells could form invariant chiral alignment dependent on the cell
phenotype and actin function, indicating that all cells are
intrinsically chiral70. Herein, the chiral cells–plasmon dipolar
interaction and plasmonic hotspot resulted in the enhancement of
CD signals.

Distinct cells differentiation on the chiral films. Figure 4 shows
the distinct differentiation states of NG108-15 cells on the chiral
films. After equivalent cell seeding, RA was added to the nutrient
medium as an inducer71, 72. As the confocal images show (Fig. 4a,
Supplementary Figs. 24–28), increased neurite outgrowth of the
differentiated NG108-15 cells was observed after RA treatment.
The cell densities on the substrates also increased slightly (Sup-
plementary Fig. 29). Most cells on the L-Pen-NP film displayed
bipolar differentiation. In contrast, the cells on the D-Pen-NP film
showed multipolar neurite outgrowth. The cells grown on the
chiral films displayed faster neurite growth than the cells on
PDMS or NP film. In particular, the cells on the L-Pen-NP film
showed the longest neurites, in both mean length and maximum
length (Fig. 4c, d). These unique differentiation behaviors might
be explained as follows. First, the Pen on the surface of the NP
film can regulate multiple cellular functions73. Second, the ste-
reospecific interaction between FN and the chiral NP films caused
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the distinct cell morphologies on the L- and D-Pen-NP films with
different aspect ratio (shape) shown in Fig. 3b, which contributed
to vastly different neurite outgrowth after the addition of RA74, 75.
Third, the twisted spatial conformation of the NPs at the
nanoscale provided significant guidance for neurite outgrowth52,
54, developing the characteristic functions of the cells. Besides the

morphological differentiation, the expression of N-myc onco-
protein was proved to be deceased in NG108-15 cells. As shown
in Fig. 4b, cells differentiated on L-Pen-NP film exhibited lowest
N-myc protein expression, which was consistent with the neurite
outgrowth results. Besides the chiral penicillamine, we also
applied other chiral molecules such as L/D-cystine, L/D-
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phenylalanine to the preparation of chiral NP films, and similar
results were obtained (Supplementary Fig. 30). The experimental
data of distinct cells differentiation on the chiral films confirmed
that the cells interacted with the chiral plasmonic NP film and
responded to mechanical stimuli by converting them into bio-
chemical signals, which were probably transmitted through
integrin76. And the developed L-Pen-NP film might have great
potential utility in the repair of sensory damage as bipolar cells
could be specialized for the transmission of special senses, such as
smell, sight, and hearing.

Circularly polarized light triggered cell detachment. Because of
the strong plasmon absorption of the Au NP film in the 700–900
nm range, a laser at 808 nm was chosen for the NIR-triggered
detachment of the living cells, and NG108-15 cells were selected

as the model. An appropriate safe power level was chosen for the
experiment, based on thermal images of the irradiation of dif-
ferent substrates with an 808 nm laser (Supplementary Fig. 31).
With the same power density and exposure time (150 mW/cm2,
5 min), the cells detachment on the L-Pen-NP film exposed to left
circularly polarized (LCP) light was 91.2± 7.8% and the cells on
the D-Pen-NP film exposed to right circularly polarized light
displayed 80.7± 7.2% detachment (Fig. 5a, b). In contrast, the
control experiment on PDMS resulted in detachment efficiency
below 8% (Supplementary Figs. 32 and 33, Fig. 5b). The reason
why LCP light led to the high detachment efficiency for cells on L-
Pen-NP film was that LCP light activated a larger number of L-
Pen-NPs, which increased the number of photoejected hot elec-
trons of chiral film by adsorbing the related rotation of polarized
light67. Due to a highly efficient cell growth onto the L-Pen-NP
film (Figs. 3, 5, and 6, and Supplementary Fig. 17), the L-Pen-NP
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film was used as the chiral matrix model to evaluate the rela-
tionship between the cell density and detachment efficiencies.
This data set exhibited that the cell detachment efficiency was
almost independent with the cell density on L-Pen-NP film
(Supplementary Figs. 34 and 35). It is well known that NIR laser
irradiation can cause cell membrane damage64. Therefore, a live/
dead assay was conducted on the irradiated cells collected from
the substrates. The cells on the L-Pen-NP film retained a living
rate exceeding 95%, whereas the viability of the cells on the D-Pen-
NP film decreased to 40–60% (Fig. 5c, Supplementary Figs. 36
and 37). Although the cells on PDMS also remained in a good

state, the detachment effect was quite weak (Supplementary
Figs. 38 and 39, Fig. 5c). A flow-cytometric analysis (Supple-
mentary Figs. 40–43) was used to confirm the low apoptosis rate
(6–8%) of the cells on the L-Pen-NP film. The experiments on the
protein adhesion to L- and D-Pen-NP films were also carried out.
After 1 h incubation of the films in cell medium (10% fetal bovine
serum, FBS), N element was tested via XPS. The result was shown
on Supplementary Fig. 44, and the amounts of background N
element prior to protein adsorption were very low and similar
between L- and D-Pen-NP films. However, after protein adsorp-
tion, the amount of N element on L-Pen-NP film was higher than
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that on D-Pen-NP film. This point elucidated that more proteins
adsorbed on the L-Pen-NP film might work as a protecting layer.
Besides, cells on L-Pen-NP film displayed a comparatively larger
area than those on D-Pen-NP film. The localized photothermal
effect led to the highly efficient detachment of cells, simulta-
neously avoiding significant damages to cells. Furthermore, the
detached cell populations were stable (Supplementary Fig. 45)
and remained the ability to differentiate (Supplementary Fig. 46).
The cell detachment experiment was also performed on HeLa
cells (a typical cancer cell line) and PCS-460-010 cells (normal
human primary uterine fibroblasts). The plasmonic film could
also be applied to these cell lines (Fig. 6, Supplementary Figs. 47–
54), confirming that the L-Pen-NP film provides a highly efficient
and safe ECM for cell growth and gentle detachment. Moreover,
we detached the differentiated NG108-15 cells on L- or D-Pen-NP
film using CPL and then transferred them to the normal tissue
culture plate (24 h). The experimental data showed that the
detached cells still kept the fine differentiated state (Supplemen-
tary Figs. 55 and 56). This useful technique could be applied to
manipulate cells for therapy and tissue engineering in the culture
system.

In conclusion, the developed monolayer plasmonic NP films
with intense chirality remarkably affected cell adhesion, pro-
liferation, and directional differentiation. The different cell
behaviors on enantiomeric films were confirmed by the different
stereospecific interactions between FN and the films. With the
addition of an inducer, NG108 cells differentiated into completely
dissimilar neuron-like morphologies on the L- and D-Pen-NP
films. These insights could open up an avenue to reveal the chiral
self-sorting between the chiral molecules modified film surface
and cytomembrane proteins. Noninvasive cell retrieval was
achieved with NIR CPL, based on the potent light-polarizing
ability of the chiral substrate. It can be anticipated that the
application of these effects may speed up the cell culture and
engineering, including in the therapeutic use of stem cells. In-
depth studies may inspire the design of artificial prosthetic
devices and use the biomaterials to recapitulate biological or
natural phenomena.

Methods
Cell culture. NG108-15 cells were grown in RPMI-1640 medium supplemented
with 10% FBS and 1% penicillin–streptomycin. The cells were passaged by pipet-
ting. For the experiments, the cells were seeded on glass surfaces with or without
Au NP films, which were then placed in six-well culture plates. The cells were
allowed to grow and adhere to the substrates overnight.

Cell viability. NG108-15 cells (1.0 × 105) were seeded on PDMS or on PDMS
covered with Au NP film (NP film, L-Pen-NP film, or D-Pen-NP film), placed in the
wells of a six-well plate, and incubated for 48 h. CCK-8 solution (200 μL) was
added to each well and incubated for another 2 h. The absorbance of each well was
measured at 450 nm with an Epoch spectrophotometer (BioTek). Relative cell
viability (%) was calculated as (Atest /Acontrol) × 100.

FN adsorption. For the FN adsorption test, 1 mL of FN solution (1000 pg/mL) was
added to each well plated with substrate (1 × 1 cm2) in a 24-well culture plate, and
the plate was incubated at 37 °C in an atmosphere containing 5% CO2. After the
FN had adsorbed, the FN left in the supernatant was quantified with an ELISA kit
(Wuhan boster biological technology).

RA-induced cell differentiation. NG108-15 cells (1.0 × 105) were seeded on
PDMS or PDMS covered with Au NP film (NP film, L-Pen-NP film, or D-Pen-NP
film), placed in the wells of six-well plates, and incubated for 24 h. After the cells
were allowed to adhere to the substrates, RA was added to the cell medium to a
final concentration of 1 μM.

Western blot. NG108-15 cells (1.0 × 106) cultured with cell medium containing
RA for 6 days were collected, and protein was extracted by RIPA lysis buffer IV.
When the SDS-PAGE electrophoresis was completed, the proteins were transferred
to PVDF membrane and then develop the blot according to the protocol (western
blot kit, Sangon Biotech Co., Ltd.).

Fluorescent staining. NG108-15 cells were grown on PDMS (covered with or
without Au NP film), washed in DPBS, fixed with 4% paraformaldehyde for 15
min, treated with 0.25% Triton X-100 for 10 min, and rinsed with DPBS. The cells
were incubated with 1.2% bovine serum albumin for 2 h at 37 °C. To stain for
vinculin, the cells were incubated with 2 μg/mL anti-vinculin antibody in DPBS
with 1% bovine serum albumin for 3 h at room temperature. The samples were
then washed three times with ice-cold DPBS, and a goat anti-rabbit IgG (H + L)
secondary antibody (2 μg/mL) was added and incubated for 30 min at room
temperature. The samples were then washed with ice-cold DPBS. To stain for actin,
ActinRed™ 555 ReadyProbes® Reagent (diluted 10-fold in DPBS) was added. After
incubation for 30 min at room temperature, the samples were washed again with
ice-cold DPBS, stained with DAPI (1/100 in DPBS), and thoroughly washed.
Confocal imaging was performed with a Leica TCS SP8 confocal fluorescence
microscope. DAPI, green fluorescent protein, and red fluorescent protein filters
were used to detect the cell nuclei, vinculin, and actin, respectively.

Live/dead imaging. NG108-15 cells subjected to laser treatment were stained with
the LIVE/DEAD Cell Imaging Kit (diluted 1/2 in DPBS) for 20 min at room
temperature. After staining, the cells were washed three times with ice-cold DPBS.
Confocal images were taken with a Leica TCS SP8 confocal fluorescence micro-
scope, with excitation at 488 and 552 nm.

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files, or are
available from the authors upon request.
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