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Abstract Synchronization transparency offered by Software Transactional Mem-
ory (STM) must not come at the expense of run-time efficiency, thus demanding
from the STM-designer the inclusion of mechanisms properly oriented to perfor-
mance and other quality indexes. Particularly, one core issue to cope with in STM
is related to exploiting parallelism while also avoiding thrashing phenomena due
to excessive transaction rollbacks, caused by excessively high levels of contention
on logical resources, namely concurrently accessed data portions. A means to ad-
dress run-time efficiency consists in dynamically determining the best-suited level
of concurrency (number of threads) to be employed for running the application (or
specific application phases) on top of the STM layer. For too low levels of concur-
rency, parallelism can be hampered. Conversely, over-dimensioning the concurrency
level may give rise to the aforementioned thrashing phenomena caused by exces-
sive data contention—an aspect which has reflections also on the side of reduced
energy-efficiency. In this chapter we overview a set of recent techniques aimed at
building “application-specific” performance models that can be exploited to dynam-
ically tune the level of concurrency to the best-suited value. Although they share
some base concepts while modeling the system performance vs the degree of con-
currency, these techniques rely on disparate methods, such as machine learning or
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analytic methods (or combinations of the two), and achieve different tradeoffs in
terms of the relation between the precision of the performance model and the latency
for model instantiation. Implications of the different tradeoffs in real-life scenarios
are also discussed.

1 Introduction

As mentioned earlier in this book, the TM paradigm has been conceived to ease the
burden of developing concurrent applications, which is a major achievement when
considering that, nowadays, even entry-level computing platforms rely on hardware
parallelism, in the form of, e.g., multi-core chips. By simply encapsulating code
that is known to access shared data within transactions, the programmer can pro-
duce a parallel application which is guaranteed to be correct, without incurring the
complexities related to, e.g., lock-based programming.

The achievement of optimized run-time efficiency is clearly another core objec-
tive, given that the TM paradigm is not meant to achieve synchronization trans-
parency while (excessively) sacrificing, e.g., performance. For STM systems, syn-
chronization is demanded to an STM-library whose (run-time) configuration is cru-
cial to achieve efficient runs of the overlying applications. This requires proper tech-
niques to be put in place in order to effectively exploit the computing power offered
by modern parallel architectures. Particularly, the central problem to be addressed
by these techniques is related to exploiting parallelism while also avoiding thrashing
phenomena due to excessive transaction rollbacks, caused by excessive contention
on logical resources, namely concurrently-accessed data portions. We note that this
aspect has reflections also on the side of resource provisioning in the Cloud, and
associated costs, since thrashing leads to suboptimal usage of resources (including
energy) by, e.g., PaaS providers offering STM based platforms to customers (see,
e.g., [1]).

In order to cope with this issue, a plethora of solutions have been proposed,
which can be framed into two different sets of orthogonal approaches. On one
side, we find optimized schemes for transaction conflict detection and management
[7, 12, 16, 17, 25]. These include proposals aimed at dynamically determining which
threads need to execute specific transactions, so as to allow transactions that are ex-
pected to access the same data to run along a same thread in order to sequentialize
and spare them from incurring the risk of being aborted with high probability. Other
proposals rely instead on pro-active transaction scheduling [2, 26] where the reduc-
tion of performance degradation due to transaction aborts is achieved by avoiding to
schedule (hence delaying the scheduling of) transactions whose associated conflict
probability is estimated to be high.

On the other side we find solutions aimed at supporting performance optimiza-
tion via the determination of the best-suited level of concurrency (i.e., number of
threads) to be exploited for running the application on top of the STM layer (see,
e.g., [5, 9, 15]). These solutions are clearly orthogonal to the aforementioned ones,
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being potentially usable in combination with them. We can further distinguish these
approaches depending on whether they cope with dynamic or static application exe-
cution profiles, and on the type of methodology that is used to predict the well-suited
level of concurrency for a specific application (or application phase). Approaches
coping with static workload profiles are not able to predict the optimal level of con-
currency for applications where typical parameters expressing proper dynamics of
the applications (such as the average number of data objects touched by a transac-
tional code block) can vary over time.

The focus of this chapter is exactly on approaches for the (dynamic) tuning of
the level of concurrency. Particularly, we will overview the STM-suited solutions
we recently provided in [6, 21, 22]. The reason for selecting and focusing on these
works in this comparative overview is twofold:

• They share the same basic model describing the level of performance as a func-
tion of the level of concurrency, which leads them to exhibit some kind of ho-
mogeneity; this will help drawing reliable conclusions while comparing them,
which are likely to generalize. Also, the exploited basic model is able to capture
scenarios where the application profile can vary over time, hence they appear as
solutions whose usage is not limited to contexts with static profiles.

• They rely on alternative techniques to instantiate “application-specific” perfor-
mance models, which range from analytical approaches to machine learning to a
mix of the two. However, all of them are based on model-instantiation schemes
exploiting training samples coming from the observation of the real application
behavior during an (early) phase of deploy, which do not require stringent as-
sumptions to be met by the real STM application in order for its dynamics to
be reliably captured by the model. This further widens their usability in real life
contexts.

Nonetheless, we will also provide a comparative discussion with literature ap-
proaches that stand as valuable alternatives for predicting the level of performance
vs the degree of concurrency and/or for dynamically regulating the concurrency
level to suited values.

We will initially start by discussing common points to all the overseen ap-
proaches, then we will enter details of each of them. Successively, we will pro-
vide hints on the organization of associated concurrency regulation architectures and
present experimental data for an assessment of the different alternatives. A compar-
ative discussion with literature alternatives ends the chapter.

2 The Common Base-ground

We overview concurrency-regulation approaches targeted at STM systems where
the execution flow of each thread is characterized by the interleaving of transac-
tional and non-transactional code blocks. During the execution of a transaction, the
thread can perform read/write operations on a set of shared data objects and can run
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code blocks where it does not access shared data objects (e.g. it accesses variables
within its own stack). Read (written) data objects by a transaction are included in
its read-set (write-set). If a data conflict between concurrent transactions occurs,
one of the conflicting transactions is aborted and is subsequently re-started. A non-
transactional code block starts right after the thread executes the commit operation
of a transaction, and ends right before the execution of the begin operation of the
subsequent transaction along the same thread.

Typical STM-oriented concurrency-control algorithms [8] rely on approaches
where the execution flow of a transaction never traps into operating system block-
ing services. Rather, spin-locks are exploited to support synchronization activities
across the threads. In such a scenario, the primary index having an impact on the
throughput achievable by the STM system (which also impacts how energy is used
for productive work) is the so called transaction wasted time, namely the amount of
CPU time spent by a thread for executing transaction instances that are eventually
aborted. The ability to predict the transaction wasted time for a given application
profile (namely for a specific data access profile) while varying the degree of par-
allelism in the execution is the fulcrum of the concurrency regulation techniques
presented in [6, 21, 22], which we are overseeing in this chapter.

In more details, these proposals aim at computing pairs of values ⟨wtime,i, i⟩
where i indicates the level of concurrency, namely the number of threads which are
supposed to be used for executing the application, and wtime,i is the expected trans-
action wasted time (when running with degree of concurrency equal to the value i).
Denoting with t the average transaction execution time (namely the expected CPU
time required for running an instance of transaction that is not eventually aborted)
and with ntc the average time required for running a non-transactional code block
(which is interleaved between two subsequent transactional code blocks in the target
system model), the system throughput when running with i threads can be computed
as

thri =
i

wtime,i + t +ntc
(1)

By exploiting Equation (1), the objective of the concurrency regulation proposals
in [6, 21, 22] is to identify the value of i, in the reference interval [1,max threads],
such that thri is maximized1.

As we will see, wtime,i is expressed in the different considered approaches as a
function of t and ntc. However, these quantities may depend, in their turn, on the
value of i due to different thread-contention dynamics on system-level resources
when changing the number of threads. As an example, per-thread cache efficiency
may change depending on the number of STM threads operating on a given shared

1 Approaches to regulate concurrency typically rely on setting max threads to the maximum num-
ber of CPU-cores available for hosting the STM application. This choice is motivated by the
fact that using more threads than the available CPU-cores is typically unfavorable since the over-
head caused by context-switches among the threads may become predominant [11]. Also, thread-
reschedule latencies may further unfavor performance due to secondary effects related to increasing
the so-called transaction vulnerability-window, namely the interval of time along which actions by
concurrent transactions can ultimately lead to the abort of some ongoing transaction [18].
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cache level, thus impacting the CPU time required for a specific code block, either
transactional or non-transactional. To cope with this issue, once the value of t (or
ntc) when running with k threads—which we denote as tk and ntck respectively—is
known, analytic correction functions are typically employed to predict the corre-
sponding values when supposing a different number of threads. This yields the final
throughput prediction (vs the concurrency level) to be expressed as:

thri =
i

wtime,i(ti,ntci)+ ti +ntci
(2)

where for wtime,i we only point out the dependence on ti and ntci, while we inten-
tionally delay to the next sections the presentation of the other parameters playing a
role in its expression. Overall, the finally achieved performance model in Equation
(2) has the ability to determine the expected transaction wasted time when also con-
sidering contention on system-level resources (not only logical resources, namely
shared data) while varying the number of threads in the system.

As already pointed out, one core objective of the concurrency-regulation propos-
als that we are overseeing consists in modeling the system performance so as to
capture the effects of variations of the application execution profile. This has been
achieved by relying on a model of wtime,i that has the ability to capture changes
in the transaction wasted time not only in relation to variations of the number of
threads running the application, but also in relation to changes in the run-time be-
havior of transactional code blocks (such as variations of the amount of shared-data
accessed in read/write mode by the transaction). In fact, the latter type of variation
may require changing the number of threads to be used in a given phase of the ap-
plication execution (exhibiting a specific execution profile) in order to re-optimize
performance. The proposals in [6, 21, 22] all share the common view that capturing
the combined effects of concurrency degree and execution profile on the transaction
wasted time can be achieved in case wtime,i is expressed as a function f depending
on a proper set of input parameters, namely

wtime,i = f (rs,ws,rw,ww, t,ntc, i) (3)

where t, ntc and i have the meaning explained above, while the other input parame-
ters are explained in what follows:

• rs is the average read-set size of transactions;
• ws is the average write-set size of transactions;
• rw (read-write conflict affinity) is an index providing an estimation of the like-

lihood for an object read by some transaction to be also written by some other
transaction;

• ww (write-write conflict affinity) is an index providing an estimation of the like-
lihood for an object written by some transaction to be also written by another
transaction.

We note that the above parameters cover the set of workload-characterizing pa-
rameters that have been typically accounted for by performance studies of concur-
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rency control protocols for traditional transactional systems, such as database sys-
tems (see, e.g., [24, 27]). In other words, the idea behind the above model is to
exploit a knowledge base (provided by the literature) related to workload aspects
that can, more or less relevantly, impact the performance provided by concurrency-
control protocols.

The objective of the modeling approaches in [6, 21, 22] is to provide approxima-
tions of the function f via proper estimators. The first estimator we discuss, which
we refer to as fA, has been presented in [6] and is based on an analytic approach.
The second one, which we refer to as fML, has been presented in [21] and relies on a
pure Machine Learning (ML) approach. Finally, the third estimator, which we refer
to as fAML, has been presented in [22] and is based on a mixed approach combining
analytic and ML techniques.

We refer the reader to the technical articles in [6, 21, 22] for all the details related
to the derivation of these estimators, so that the following presentation is intended
as an overview of each of the approaches, and as a means to discuss virtues and
limitations of each individual solution. The discussion will be then backed by ex-
perimental data we shall report later on in this chapter.

3 The fA Estimator

The solution presented in [6] tackles the issue of predicting the optimal concur-
rency level (and hence regulating concurrency) in STM via an analytic approach
that differentiates from classical ones. Particularly, it relies on a parametric analytic
expression capturing the expected trend in the transaction abort probability (versus
the degree of concurrency) as a function of a set of features associated with the
actual workload profile. The parameters appearing in the model exactly aim at cap-
turing execution dynamics and effects that are hard to be expressed through classical
(non-parametric) analytic modeling approaches (such as [5]), which typically make
the latter reliable only in case the modeled system conforms the specific assump-
tions that underlie the analytic expressions.

Further, the parametric analytic model is thought to be easily customizable for
a specific STM system by calculating the values to be assigned to the parameters
(hence by instantiating the parameters) via regression analysis. One relevant virtue
of this kind of solution is that the actual sampling phase, needed to provide the
knowledge base for regression, can be very lightweight. Specifically, a very lim-
ited number of profiling samples, related to few different concurrency levels for the
STM system, likely suffices for successful instantiation of the model parameters via
regression.

The core analytical expression provided by the study in [6] is the one encapsu-
lating the probability for a transaction to be aborted, namely pa, which is built as a
function of the parameters appearing in input to Equation (3). Particularly, the abort
probability is expressed as:
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pa = β (rs,ws,rw,ww, t,ntc, i) (4)

More precisely:
pa = 1− e−ρ·ω·ϕ (5)

where the function ρ is assumed to depend on the input parameters rs, ws, rw and
ww, the function ω is assumed to depend on the parameter i (number of concurrent
threads), and the function ϕ is assumed to depend on the parameters t and ntc. For
the reader’s convenience, we report below the final shape of each of these functions
as determined in [6]:

ρ =[c · (ln(b ·ws+1)) · ln(a ·ww+1)]d

+[e · (ln( f · rw+1)) · ln(g · rs+1) ·ws]z
(6)

ω = h · (ln(l · (k−1)+1) (7)

ϕ = m · ln(n · t
t +ntc

+1) (8)

where m, n, h, l, e, f , g, z, c, b, a, d are all fitting parameters to be instantiated
via regression. In more details, regression analysis is performed by exploiting a set
of sampling data gathered through run-time observations of the STM application.
Each sample includes the average values of all the input parameters (independent
variables) and of the abort probability (dependent variable) in Equation (4), mea-
sured over different time slices. Hence, Equation (5) is used as regression function,
whose fitting parameters’ values are estimated to be the ones that minimize the sum
of squared residuals [3].

The abort probability expression, as provided by relying on Equations (4)–(8),
has been exploited in order to analytically express the expected transaction wasted
time (when running with i threads), namely to instantiate the function fA, as

wtime,i = fA =
pa

1− pa
· tr (9)

where tr is the average CPU time for a single aborted run of the transaction, and
pa/(1− pa) is the expected number of aborted transaction runs (per successful trans-
action commit).

4 The fML Estimator

The solution presented in [21] addresses the issue of concurrency regulation by a
perspective that stands as different from the one in [6]. Particularly, this solution is
based on a pure ML approach, whose general virtue is to provide an extremely pre-
cise representation of the target system behavior, provided that the training process
is based on a sufficiently wide set of configurations, spanning many of the param-
eters potentially impacting this behavior. Generally speaking, good coverage of the
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domain typically guarantees higher accuracy of ML based models when compared
to their analytic counterpart [20].

The exploited ML method in [21] is a Neural Network (NN) [20], which pro-
vides the ability to approximate various kinds of functions, including real-valued
ones. Inspired by the neural structure of the human brain, a NN consists of a set of
interconnected processing elements which cooperate to compute a specific function,
so that, provided a given input, the NN can be used to calculate the output of the
function. By relying on a learning algorithm, the NN can be trained to approximate
an unknown function f exploiting a data set {(i,o)} (training set), which is assumed
to be a statistical representation of the function f such that, for each element (i,o),
o = f{i}+ δ , where δ is a random variable (also said noise). In [21], the training
set is formed by samples (input,output), with input = {rs,ws,rw,ww, t,ntc, i} and
output = wtime,i, which are collected during real executions of the STM application.

On the other hand, significant coverage of the domain of values for the above
input parameters may require long training phases, imposing a delay in the opti-
mization of the actual run-time behavior of the STM application. Overall, this ML
based scheme might not fully fit scenarios where fast construction of application-
specific performance models needs to be actuated in order to promptly optimize
performance and resource usage (including energy). An example case is the one of
dynamic deploy of applications in Cloud Computing environments.

5 The fAML Estimator

The proposal in [22] is based on mixing analytic and ML techniques (hence AML)
according to a scheme aimed at providing a performance prediction model fAML
showing the same capabilities (in terms of precision) as the ones offered by the ML
approach, namely fML, but offering a reduced training latency, comparable to the
one allowed by the pure parametric-analytic based approach fA. In other words, the
attempt in this proposal is to get the best of the two worlds, which is operatively
achieved by a sequence of algorithmic steps performing the combination of fA and
fML.

A core aspect in this combination is the introduction of a new type of training
set for the machine learning component fML, which has been referred to as Virtual
Training Set (denoted as VTS). Particularly, VTS is a set of virtual (inputv,outputv)
training samples where:

• inputv is the set {rsv,rsv,rwv,wwv, tv,ntcv, iv} formed by stochastically selecting
the value of each individual parameter belonging to the set;

• outputv is the output value computed as fA(inputv), namely the estimation of
wtime,iv actuated by fA on the basis of the stochastically selected input values.

In other word, VTS becomes a representation of how the STM system behaves, in
terms of the relation between the expected transaction wasted time and the value of
configuration or behavioral parameters (such as the degree of concurrency), which
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is built without the need for actually sampling the real system behavior. Rather, the
representation provided by VTS is built by sampling Equation (9), namely fA. We
note that the latency of such sampling process is independent of the actual speed of
execution of the STM application, which determines in its turn the speed accord-
ing to which individual (input,output) samples, referring to real executions of the
application, would be taken. Particularly, the sampling process of fA is expected
to be much faster, especially because the stochastic computation (e.g. the random
computation) of any of its input parameters, which needs to be actuated at each
sampling-step of fA, is a trivial operation with negligible CPU requirements. On the
other hand, the building the VTS requires the previous instantiation of the fA model.
However, as said before, this can be achieved via a very short profiling phase, requir-
ing the collection of a few samples of the actual behavior of the STM application.
Overall, we list below the algorithmic steps required for building the application
specific VTS, to be used for finalizing the construction of the fAML model:

(A) A number Z of different values of i are randomly selected in the domain
[1,max threads], and for each selected value of i, the application run-time behav-
ior is observed by taking δ real-samples, each one including the set of parameters
{rs,ws,rw,ww, t,ntc, i}∪{tr}.

(B) Via regression all the fitting parameters requested by Equations (6)–(8) are in-
stantiated. Hence, at this stage an instantiation of Equation (5), namely the model
instance for pa, has been achieved.

(C) The instantiated model for pa is filled in input to Equation (9), together with the
average value of tr sampled in step A, and then the VTS is generated. This is done
by generating δ ′ virtual samples (inputv,outputv) where, for each of these samples,
inputv = {rsv,wsv,rwv,wwv, tv,ntcv, iv} and outputv = wtime,iv as computed by the
model in Equation (9). Each inputv sample is instantiated by randomly selecting the
values of the parameters that compose it2. For the parameter i the random selection
is in the interval [1,max threads], while for the other parameters the randomization
needs to take into account a plausible domain, as determined by observing the ac-
tual application behavior in step A (recall that all these parameters have anyhow
non-negative values). Particularly, for each of these parameters, its randomization
domain is defined by setting the lower extreme of the domain to the minimum value
that was observed while sampling that same parameter in step A. On the other hand,
the upper extreme for the randomization domain is calculated as the value guarantee-
ing the 90-percentile coverage of the whole set of values sampled for that parameter
in step A, which is done in order to reduce the effects due to spikes.

After having generated the VTS, the proposal in [22] uses it in order to train
the machine learning component fML of the modelling approach. However, training
fML by only relying on VTS would give rise to the scenario where the curve learned
by fML would correspond to the one modelled by fA. Hence, in order to improve
the quality of the machine learning based estimator, the actual combination of the

2 Generally speaking, this step could take advantage of a selection algorithm providing minimal
chances of collision.
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analytical and machine learning methods presented in [6, 21] relies on additional al-
gorithmic steps where VTS is used as the base for the construction of an additional
training set called Virtual-Real Mixed Training Set (denoted as VRMTS). This set
represents a variation of VTS where some virtual samples are replaced with real
samples taken by observing the real behavior of the STM application (according
to proper rules aimed at avoiding clustering phenomena leading the final VRMTS
image to contain training samples whose distribution within the whole domain sig-
nificantly differs from the original distribution determined by the random selection
process used for the construction of VTS). The rationale behind the construction of
VRMTS is to improve the quality of the final training set to be used to build the
machine learning model by complementing the virtual samples originally appearing
in VTS with real data related to the execution of the application.

Once achieved the final VRMTS image, it is used to train fML in order to deter-
mine the final AML estimator. Overall, fAML is defined in [22] as the instance of
fML trained via VRMTS.

6 Correcting Functions

As pointed out, the instantiation of the different estimators of the function f in Equa-
tion (3), which are ultimately aimed at predicting wtime,i, needs to be complemented
with a predictor of how t and ntc are expected to vary vs the degree of parallelism i.
In fact, wtime,i is expressed in the various modeling approaches as a function of t and
ntc. Further, the final equation establishing the system throughput, namely Equa-
tion (2), which is used for evaluating the optimal concurrency level by all the over-
seen proposals, also relies on the ability to determine how t and ntc change when
changing the level of parallelism (due to contention on hardware resources). To cope
with this issue, one can rely on correcting functions aimed at determining (predict-
ing) the values ti and ntci once known the values of these same parameters when
running with parallelism level k ̸= i. To achieve this goal, the early samples taken in
all the approaches for instantiating the performance models can be used to build, via
regression, the function expressing the variation of the number of clock-cycles the
CPU-core spends waiting for data or instructions to come-in from the RAM storage
system. The expectation is that the number of clock-cycles spent in waiting phases
scales (almost) linearly vs the number of concurrent threads used for running the
application. Hence, even if applied on a very limited number of samples, regression
should suffice for reliable instantiation of the correction functions. To support this
claim, we report in Figure 1 and in Figure 2 the variation of the clock-cycles spent
while waiting for data to come from RAM for two different STM applications of
the STAMP benchmark suite [19], namely intruder and vacation3, while varying
the number of threads running the benchmarks between 1 and 16. These data have
been gathered on top of a 16-core HP ProLiant machine, equipped with 2 AMD

3 The description of these (and other) STAMP benchmarks exploited in this chapter is postponed
to Section 8.
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OpteronTM6128 Series Processor, each one having eight hardware cores, and 32 GB
RAM, running a Linux Debian distribution with kernel version 2.6.32-5-amd64. By
the curves, the close-to-linear scaling is fairly evident, hence, once determined the
scaling curve via regression, which we denote as sc, we let:

ti = tk ·
sc(i)
sc(k)

ntci = ntck ·
sc(i)
sc(k)

(10)

where:

• ti is the estimated expected CPU time (once known/estimated tk) for a committed
transaction in case the application runs with level of concurrency i;

• ntci is the estimated expected CPU time (once known/estimated ntck) for a non-
transactional code block in case the application runs with level of concurrency
i;

• sc(i) (resp. sc(k)) is the value of the correction function for level of concurrency
i (resp. k).
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Fig. 1 Stalled cycles for the intruder benchmark

7 The Concurrency Regulation Architecture

Beyond providing the performance models and the concurrency regulation schemes,
the works in [6, 21, 22] also provide guidelines for integrating concurrency regula-
tion capabilities within operating STM environments. In this section we provide an
overview of how the concurrency regulation architecture based on fAML, selected as
a reference instance, has been integrated with a native STM layer. Given that fAML is
the combination of the other two approaches, the architectures relying on the corre-
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Fig. 2 Stalled cycles for the vacation benchmark

sponding two estimators fA and fML can be simply derived by removing functional
blocks from the one presented here.

The organization of the reference instance4, which we name AML-STM, is
shown in Figure 3. AML-STM is composed of the following three building blocks:

• A Statistics Collector (SC);
• A Model Instantiation Component (MIC);
• A Concurrency Regulator (CR).

The MIC module initially interacts with CR in order to induce variations of the
number of running-threads i so that the SC module is allowed to perform the sam-
pling process requested to support the instantiation of the AML model5. After the
initial sampling phase, the MIC module instantiates fA (and the correction function
sc) and computes VTS. It then interacts again with CR in order to induce variations
of the concurrency level i that are requested to support the sampling process (still
actuated via SC) used for building VRMTS. It then instantiates fAML by relying on a
neural network implementation of the fML predictor, which is trained via VRMTS.
Once the fAML model is built, MIC continues to gather statistical data from SC, and
depending on the values of wtime,i that are predicted by fAML (as a function of the
average values of the sampled parameters rs, ws, rw, ww, ti, and ntci), it determines
the value of i providing the optimal throughput by relying on Equation (2). This
value is filled in input to CR (via queries by CR to MIC), which in its turn switches

4 The source code of the actual implementation is freely available at
http://www.dis.uniroma1.it/˜hpdcs/AML-STM.zip. It exploits TinySTM [13] as
the core STM layer.
5 As for the parameters to be monitored via SC, rw can be calculated as the dot product between
the distribution of read operations and the distribution of write operations (both expressed in terms
of relative frequency of accesses to shared data objects). Similarly, ww can be calculated as the dot
product between the distribution of write operations and itself. This can be achieved by relying on
histograms of relative read/write access frequencies.
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Fig. 3 System architecture

off or activates threads depending on whether the level of concurrency needs to be
decreased or increased for the next observation period.

As noted above, in case the concurrency regulation architecture would have been
based on fA or fML, then the initial training set TS would have been directly used
to instantiate fA (as already shown in the picture), or fML (which could be achieved
by simply collapsing VRMTS onto TS in the architectural organization). On the
other hand, the training phase, namely the phase along which real samples of the
application behavior are collected in order to instantiate the different estimators,
would be of different length. We will provide data for a quantitative assessment of
this aspect in the next section. We recall again that the shorter such a length, the more
promptly the final performance model (based on a given estimator) to be used for
concurrency regulation is available. Hence, a reduction in the length of this phase,
while still guaranteing accuracy of the finally built performance model, will allow
more prompt optimization of the run-time behavior of the STM-based application.

8 Experimental Assessment

In this section we provide experimental data for a comparative assessment of the
concurrency regulation techniques (and of the associated performance prediction
models) we have overseen in this chapter. The experimentation has been based on
applications belonging to the STAMP benchmark suite [19], which have been run
on top of the aforementioned 16-cores HP ProLiant machine. Particularly, we focus
the discussion on the results achieved with kmeans, yada, vacation, and intruder,
which have been selected from the STAMP suite as representatives of a mix of
applications with very different transactional profiles, as we shall describe below.

kmeans is a transactional implementation of a partition-based clustering algo-
rithm [4]. A cluster is represented by the mean value of all the objects it contains, and
during the execution of this benchmark the mean points are updated by assigning
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each object to its nearest cluster center, based on Euclidean distance. This bench-
mark relies on threads working on separate subsets of the data and uses transactions
in order to assign portions of the workload and to store final results concerning
the new centroid updates. The peculiarity of this benchmark lies in a very reduced
amount of shared data structures being updated by transactions.

yada implements Ruppert’s algorithm for Delaunay mesh refinement [23], which
is a key step used for rendering graphics or to solve partial differential equations
using the finite-element method. This benchmark discretizes a given domain of in-
terest using triangles or thetraedra, by iteratively refining a coarse initial mesh. In
particular, elements not satisfying quality constraints are identified, and replaced
with new ones, which in turn might not satisfy the constraints as well, so that a new
replacement phase must be undertaken. This benchmark shows a high level of in-
trinsic parallelism, due to the fact that elements which are distant in the mesh do
not interfere with each other, and operations enclosed by transactions involve only
updates of the shared mesh representation and cavity expansion. Also, transactions
are relatively long.

intruder is an application which implements a signature-based network intrusion
detection systems (NIDS) that scans network packets for matches against a known
set of intrusion signatures. In particular, it emulates Design 5 of the NIDS described
in [14]. Three analysis phases are carried on in parallel: capture, reassembly, and
detection. The capture and reassembly phases are both enclosed by transactions,
which are relatively short and show a contention level which is either moderate or
high, depending on how often the reassembly phase re-balances its tree.

vacation implements a travel reservation system supported by a single-instance
database, where tables are implemented as red-black trees. In the database, there
are four different tables, each one representing cars, rooms, flights, and customers,
respectively. The customers’ table is used to keep track of the reservations made by
each customer, along with the total price of the reservations they made. The other
tables have relations with fields representing, e.g., reserved quantity, total available
quantity, and price. In this benchmark several clients (concurrently) interact with the
database, making actual reservations. Each client session is enclosed in a coarse-
grain transaction to ensure validity of the database. Additionally, the amount of
shared data touched by transactions is (on average) non-negligible.

Fixed the above applications as the test-bed, we initially focus on assessing the
quality of the different performance prediction models we have overseen, hence of
the different estimators of the function f in Equation (3). This is done by reporting
how the error in predicting wtime,i changes for the different estimators ( fA, fML and
fAML) with respect to the length of the sampling phase used to gather training data to
instantiate each individual performance model. In other words, the focus is initially
on determining how fast we can build a “reliable” model for performance estimation
vs the level of concurrency in STM systems when considering the three different
target methodologies (analytical, machine learning and mixed) in comparison with
each other. To this end, we have performed the following experiments. We have
profiled STAMP applications by running them with different levels of concurrency,
which have been varied between 1 and the maximum amount of available CPU-
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cores in the underlying computing platform, namely 16. All the samples collected
up to a point in time have been used either to instantiate fA via regression, or to
train fML in the pure machine learning approach. On the other hand, for the case of
fAML they have been used according to the following rule. The 10% of the initially
taken samples in the observation interval are used to instantiate fA (see steps A and
B in Section 5), which is then used to build VTS, while the remaining 90% are used
to derive VRMTS. Each real sample taken during the execution of the application
aggregates the statistics related to 4000 committed transactions, and the samples
are taken in all the scenarios along a single thread, thus leading to similar rate of
production of profiling data independently of the actual level of concurrency while
running the application. Hence, the knowledge base on top of which the models are
instantiated is populated with similar rates in all the scenarios.

Table 1 Comparison of error by different
predictors/sampling times

A ML AML

1
m

in

intruder 15.79% 80.04% 15.91%
kmeans 5.82% 9.63% 2.66%
vacation 6.08% 99.43% 6.19%
yada 41.25% 99,82% 41.48%

5
m

in
s intruder 15.79% 80.04% 15.85%

kmeans 5.90% 2.66% 2.59%
vacation 4.93% 71.58% 5.01%
yada 4.20% 13.24% 1.15%

10
m

in
s intruder 12.57% 45.01% 12.45%

vacation 3.77% 3.31% 3.26%
yada 4.20% 1.15% 1.16%

15
m

in
s

intruder 11.46% 14.13% 8.84%

25
m

in
s

intruder 10.00% 5.36% 5.35%

Then, for different lengths of the initial sampling phase (namely for different
amounts of samples coming from the real execution of the application), we instanti-
ated the three different performance models and compared the errors they provide in
predicting wtime,i. These error values are reported in Table 1, and refer to the average
error while comparing predicted values with real execution values achieved while
varying the number of threads running the applications between 1 and the maximum
value 16. Hence, they are average values over the different possible configurations
of the concurrency degree for which predictions are carried out.

By the data we can draw the following main conclusions. We cannot avoid rely-
ing on machine learning if extremely precise predictions of the level of performance
vs the degree of concurrency are required. In fact, considering the asymptotic vari-
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ation of the prediction error of wtime,i (while increasing the length of the sampling
phase used to build the knowledge base for instantiating the performance prediction
models), the fA estimator gives rise to an error which is on the order of 100% (or
more) greater than the one provided by the other two estimators fML and fAML. The
machine learning technique would therefore look adequate for scenarios where the
error in predicting the level of performance may have a severe impact on, e.g., some
business process built on top of the STM system, such as when the need for guar-
anteeing predetermined Quality-of-Service levels by the transactional applications
arises. However, we note that the sampling times reported in Table 1 for instantiating
performance models offering specific levels of reliability have all been achieved for
the case of pre-specified transactional profiles (e.g. a pre-specified mix of transac-
tional operations), for which the domain of values for the parameters characterizing
the actual workload are essentially known (or easily determinable). This has led
to building adequate training sets allowing, e.g., good coverage of the whole do-
main along the sampling period, which would lead to kinds of best-case latencies
for instantiating machine learning based schemes. On the other hand, in case the
transactional profile of the application is not predetermined (as it may occur when
deploying new applications, whose actual profile can be determined a-posteriori
of the real usage by its clients), the length of the sampling phase for building the
reliable machine learning based model can be significantly stretched, which may
also negatively impact the overlying business process (e.g. because the application
can be forced to run with sub-optimal concurrency levels for longer time due to
the need for longer latencies for materializing good approximation and coverage
of the actual domain during some on-line operated sampling phase). The role of
the analytical component in coping with the reduction of the number of samples
(hence the reduction of the coverage of the domain of values for the parameters
determining the actual application workload) for the achievement of reliable pre-
dictions is clearly evident by the reported data. In particular, the fAML estimator
provides non-asymptotic results which outperform both the analytic approach and
the pure machine learning approach (see, e.g., kmeans—5 minutes, yada–5 min-
utes, vacation–10 minutes, or intruder–15 minutes). This is exactly related to the
fact that fAML is able to get benefits from both prediction methods, and is therefore
able to provide a faster convergence to the “optimal” estimator.

As a second assessment, we provide experimental data related to the runtime per-
formance that can be achieved when relying on concurrency regulation architectures
based on the different performance models we are comparing (which we refer to as
A-STM, ML-STM and AML-STM). As a matter of fact, this part of the assessment
provides hints on whether (and to what extent) concurrency regulation, operated ac-
cording to each of the discussed approaches, can be effective. Also, we study the ac-
tual performance delivered by the different solutions while again varying the length
of the sampling phase along which the knowledge base for instantiating the differ-
ent performance models is built, which we refer to as model instantiation time in the
reported graphs. The concurrency regulation architectures here considered adhere to
the architectural organization depicted in Section 7 and all rely on TinySTM as their
core STM layer. The experimental data we provide refer again to the four STAMP
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benchmark applications as before, namely intruder, kmeans, vacation, and yada.
In Figures 4–7 we report plots showing how the throughput provided by the dif-
ferent solutions (which is expressed in terms of committed transactions/second, on
the average run) varies vs the model instantiation time. We also report the through-
put values obtained when running with plain TinySTM (i.e. with no concurrency
regulation scheme) or sequentially, which will be used as baselines in the discus-
sion. Clearly, these data appear as flat curves, given that they do not depend on any
performance model to be instantiated along time via application sampling.

By the data we can draw the following main conclusions. First, (dynamically)
controlling the level of concurrency is a first class approach to achieve speedup as
compared to the case where all the operations are processed sequentially along a
single thread. In fact, settings where the level of concurrency is simply determined
by the number of available CPU-cores (namely by deploying a single thread per
CPU-core), as for the case of plain TinySTM, do not provide significant speedup,
and may even give rise to significant slow down in the execution speed (of commit-
ted work), as for the case of yada (see Figure 7). Further, a machine learning based
performance model gives rise to the asymptotically optimal approach for concur-
rency regulation, while analytical techniques provide the orthogonal advantage of
allowing faster instantiation of an “adequate” performance model to be employed
for concurrency regulation purposes. However, the additional information convoyed
by the reported plots is the quantification of the final (asymptotic) performance gain
achievable thanks to the increased precision by machine learning based approaches
(such as ML-STM or AML-STM), which is on the order of up to 30% as compared
to the analytical approach (say A-STM).

0

1.0⋅105

2.0⋅105

3.0⋅105

4.0⋅105

5.0⋅105

6.0⋅105

7.0⋅105

8.0⋅105

9.0⋅105

1.0⋅106

 0  10  20  30  40  50  60

th
ro

ug
hp

ut
 (

tr
an

s.
/s

ec
.)

Model instantiation time (minutes)

A-STM
ML-STM

AML-STM
TinySTM

Sequential
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Fig. 5 Throughput – kmeans
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Fig. 7 Throughput – yada

The last aspect we would like to point in this experimental assessment relates to
energy efficiency, and its improvement thanks to concurrency regulation. As for this
aspect, we focus on kmeans given that it is more likely to incur logical contention
(hence transaction aborts and unfruitful usage of energy for rolled back work) when
a larger number of threads is used. Hence, the energy saving via concurrency regu-
lation (e.g. vs the TinySTM baseline) with this benchmark likely represents a kind
of lower bound on the saving that we may expect with the other benchmarks.

In Figure 8 we report measurements related to per-transaction energy consump-
tion (in Joule/Transaction)—which is an index of how much power is required by
the application to successfully complete the execution of a single transaction—again
while varying the model instantiation time. By the results we note first of all that the
configuration exhibiting the lowest energy consumption is the sequential one. This
is clearly due to the fact that in a sequential execution no operation is aborted, and
therefore the amount of energy used on average per each operation is exactly the
one strictly required for carrying on the associated work. Nevertheless, this config-
uration exploits no parallelism at all. On the other hand, AML-STM and ML-STM
asymptotically show the same energy consumption. At the same time, we note that
AML-STM and A-STM give rise to comparable (but non-minimal) energy con-
sumption in case of very reduced model instantiation times (say on the order of 20
secs).

To provide more insights into the relation between speed and usage of energy, we
report in Figure 9 the curves showing the variation of the ratio between the speedup
provided by any specific configuration (again while varying the performance model
instantiation time) and the energy scaling per committed transaction (namely the
ratio between the energy used in a given configuration and the one used in the
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sequential run of the application). Essentially, the curves in Figure 9 express the
speedup per unit of energy, when considering that the unit of energy for committing
a transaction is the one employed by the sequential run. Hence they express a kind
of iso-energy speedup. Clearly, for the sequential run this curve has constant value
equal to 1. By the data we see how AML-STM achieves the peak observed iso-
energy speedup for a significant reduction of the performance model instantiation
time. On the other hand, the pure analytical approach does not achieve such a peak
value even in case of significantly stretched application sampling phases, used to
build the model knowledge-base. Also, the configuration with concurrency degree
set to 16, namely TinySTM, further shows how not relying on smart (and promptly
optimized) concurrency regulation may degrade both performance and energy effi-
ciency.

9 A Look at Literature Alternatives

Other studies exist in literature coping with predicting/identifying the optimal level
of concurrency in STM systems and (possibly) dynamically regulating this level
while the application is in progress. We can classify them in two categories, for
each of which recent achievements are described in what follows.

Model-Based Approaches. In this category we include all the solutions where the
prediction of how the STM system performance scales vs the level of concurrency
(and thus the identification of the optimal level of concurrency) is based on the a-
priori construction of a performance model. Along this path we find the work in [5],
where an analytical model has been proposed to evaluate the performance of STM
applications as a function of the number of concurrent threads and other workload
configuration parameters. The actual target of this proposal is to build mathematical
tools allowing the analysis of the effects of the contention management scheme on
performance while the concurrency level varies. For this reason a detailed knowl-
edge of the specific conflict detection and management scheme used by the target
STM is required, and needs to be dealt with by a specialized modeling scheme cap-
turing its dynamics. The proposed analytical model is in fact build up by coupling
two building block sub-models: one independent of the actual concurrency control
scheme, and another one which is instead specific to a given concurrency control
algorithm. The latter has been instantiated in the work in [5] for the case of the
Commit-Time-Locking (CTL) algorithm, and cannot be directly reused for algo-
rithms based on different rules. Further, the model globally relies on assumptions to
be met by the real STM system (e.g. in terms of data access pattern) in order for it to
provide reliable predictions. In other words, this solution stands as kind of scenario
specific approach.

The work in [15] presents an analytical model taking in input a workload char-
acterization of the application expressed in terms of transaction profiles, contention
probability and hardware resources consumption. This model is able to predict the
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application execution time as function of the number of concurrent threads sustain-
ing the application. However the prediction only accounts for the average system
behavior over the whole lifetime of the application (as expressed by the workload
characterization). In other words, given an application, a unique “optimal” concur-
rency level can be identified via this approach, the most suited one for coping with
situations where the application would behave according to expected values of the
parameters determining the actual workload. In case of employment of this model
in a real concurrency regulation architecture, the binding to the average system be-
havior would reduce the ability to capture the need for readapting the concurrency
level on the basis of run-time variations of the application transactional profile in
the different phases of its execution.

The proposal in [10] is targeted at evaluating scalability aspects of STM systems.
It relies on the usage of different types of functions (e.g. polynomial and logarithmic
functions) to approximate the application performance when considering different
numbers of concurrent threads. The approximation process is based on measuring
the speed-up of the application over a set of runs, each one executed with a different
number of concurrent threads, and then on calculating the proper function parame-
ters by interpolating the measurements, so as to generate the final function (namely
the performance model) used to predict the speed-up of the application vs the num-
ber of threads. In this approach the workload profile of the application is not taken
into account, hence the prediction may prove unreliable when the profile changes
wrt the one characterizing the behavior of the application during measurement and
interpolation phases. Variance, or shifts, in the profile due to changes in the data-set
content (possibly giving rise to, e.g., changes in the read/write set size) are therefore
not captured by this kind of approach, and hence cannot be dealt with in terms of
dynamic re-tuning of the level of concurrency in case of their materialization.

Heuristic Methods. In this category we find solutions that do not rely on a-priori
constructing any model expressing the variation of performance vs the level of con-
currency. The idea underlying these proposals is to try to push the system to its “op-
timal” performance level without building/relying on any knowledge base on how
the level of performance would actually vary when chancing the number of threads.
In this category we find the proposal in [2], which presents a control algorithm that
dynamically changes the number of threads concurrently executing transactions on
the basis of the observed transaction conflict rate. It is decreased when the rate
exceeds some threshold value while it is increased when the rate is lower than an-
other threshold. Another proposal along this direction can be found in [9], where
a concurrency regulation approach is provided, based on the hill-climbing heuris-
tic scheme. The approach determines whether the trend of increasing/decresing the
concurrency level has positive effects on the STM throughput, in which case the
trend is maintained. These works do not directly attempt to capture the relation be-
tween the actual transaction profile and the achievable performance (depending on
the level of parallelism). This leads them to be mostly suited for static application
profiles.
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We also report in Table 2 a summary comparison of the approaches we have over-
seen in this chapter with literature alternatives. It is based on five indexes we identify
as relevant, which are related to either the extent to which each approach is widely
applicable, or its operating mode.

Table 2 Comparison of the different approaches

Approach Suitable for
any conflict
manager

Bound to a
given Tx
profile

Explicitly
captures
variations of
Tx profiles

Initial
training
required

Reduced
training
latency

fA / A-STM 3 7 3 3 3
fML / ML-STM 3 7 3 3 7
fAML / AML-STM 3 7 3 3 3

[5] 7 3 7 3 7
[15] 3 7 7 3 3
[10] 3 7 7 3 3
[2] 3 7 7 7 –
[9] 3 7 7 7 –
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