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Abstract: We study the effect of a DC magnetic field on the phase

sensitivity of a double-lambda system coupled by two laser fields, a probe

and a pump. It is demonstrated that the gain and the refractive index of the

probe can be controlled by either the magnetic field or the relative phase

between the two laser fields. More interestingly, when the system reduces

to a single-lambda system, turning on the magnetic field transforms the

system from a phase-insensitive process to a phase-sensitive one. In the

pulsed-probe regime, we observed switching between slow and fast light

when the magnetic field or the relative phase was adjusted. Experiments

using a coated 87Rb vapor cell produced results in good agreement with

our numerical simulation. This work provides a novel and simple means

to manipulate phase sensitive electromagnetically-induced-transparency or

four-wave mixing, and could be useful for applications in quantum optics,

nonlinear optics and magnetometery based on such systems.

© 2022 Optical Society of America

OCIS codes: (020.1670) Atomic and molecular physics : Coherent optical effects;

(300.2570) Spectroscopy : Four-wave mixing;

(270.1670) Quantum optics : Coherent optical effects.

References and links

1. K. J. Boiler, A. Imamoglu, and S. E. Harris, “Observation of Electromagnetically Induced Transparency,” Phys.

Rev. Lett. 66, 2593–2596 (1991).

2. M. D. Lukin, “Colloquium: Trapping and manipulating photon states in atomic ensembles,” Rev. Mod. Phys. 75,

457–472 (2003).

3. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coher-

ent media,” Rev. Mod. Phys. 77, 633–673 (2005).

4. Y. Zhang and M. Xiao, Multi-Wave Mixing Processes (Springer, Berlin, 2009).

5. S. J. Buckle, S. M. Barnett, P. L. Knigt, M. A. Lauder, and D. T. Pegg, “Atomic interferometers: Phase-

dependence in multilevel atomic transitions,” Opt. Acta 33, 1129–1140 (1986).

6. S. P. Krinitzky and D. T. Pegg, “Coherent irradiation of multilevel atoms in branched and cyclic configurations,”

Phys. Rev. A 33, 403–406 (1986).

7. E. A. Korsunsky, N. Leinfellner, A. Huss, S. Baluschev, and L. Windholz, “Phase-dependent electromagnetically

induced transparency,” Phys. Rev. A 59, 2302–2305 (1999).

8. M. Sahrai, A. Maleki, R. Hemmati, and M. Mahmoudi, “Transient dispersion and absorption in a V-shaped

atomic system,” Eur. Phys. J. D 56, 105–112 (2010).

9. T. M. Preethi, M. Manukumara, K. Asha, J. Vijay, D. A. Roshi, and A. Narayanan, “Phase-sensitive microwave

optical double resonance in an N system,” Euro. Phys. Lett. 95, 34005 (2011).
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1. Introduction

Quantum interference between different excitation path ways is an intriguing phenomenon in

quantum optics, laser and atomic physics. Notable examples are electromagnetically induced

transparency (EIT) [1–3], multi-wave mixing [4] etc. Among these, an interesting category is

the phase-sensitive process formed by closed-loop interactions, where the phases of the optical

fields can dramatically change the steady state of the atoms and the optical susceptibility. There

has been a large amount of work in this field since the 1980s [5, 6], and the interests boosted

after the experimental demonstration of phase-sensitive EIT [7]. Applications of phase sensitive

processes include large nonlinearity [8–10], slow and fast light [11–13], and optical switch [14]

etc. To the best of our knowledge, it is a tradition to use oscillating electromagnetic fields,

i.e., either all optical fields [7, 15–18], or a combination of microwave fields and optical fields

[19–21], to form a closed loop.

In this paper, we propose to use a static magnetic field to close the interaction loop. This



approach is suitable as long as the ground states can be coupled by the magnetic field. For

example, ground states formed by superpositions of Zeeman sublevels can be mixed if their

spin orientations are not parallel to the external magnetic field. In this case, the magnetic field

can in effect coherently couple the two ground states through Larmor precession. For instance,

as we will show below, in a lambda system, without the magnetic field the system is a normal

EIT configuration, whose steady state susceptibility is not influenced by the optical phases;

with the magnetic field, a closed loop is formed and the field absorption becomes dependent

on the relative phase. Similar idea also applies to a double-lambda system. Although its level

configuration naturally allows a closed-cycle four-wave-mixing (FWM) which is already phase

sensitive, applying a magnetic field can still alter the degree of phase sensitivity, as also shown

below both theoretically and experimentally.

Adding a magnetic field as a new knob to the double-lambda system with Zeeman sub-

level ground states might be particularly useful, since such a system has attracted considerable

amount of interests recently for use in light squeezing [22, 23], light entanglement [24] and

amplified slow and stored light [25]. The following advantages of this double-lambda system

are probably responsible for its popularity: (1) It corresponds to the energy configuration of

the D1 line of the alkali atoms, and can be easily implemented by experiments. (2) Its rel-

evance to magnetic fields allows various magnetometer schemes to be realized [26, 27]. (3)

Laser fields with only one frequency are sufficient to address this system due to the Zeeman

ground states, which greatly simplifies experiments. (4) The long lifetime of the ground states

enables coherence-enhanced nonlinear optics [3].

This paper is organized as follows. In section 2, we introduce the system theoretically, and

lay out key steps in our numerical simulation. Then in section 3, we describe our experimental

setup and measurement methods. In section 4, we present the experiment results along with

corresponding numerical results, which mainly include: (i) The presence of a magnetic field

increases the dependence of the optical absorption on the relative phase between laser fields;

(ii) When the magnetic field reverses and the relative phase changes by π, the optical responses

remain the same; (iii) In the dynamical regime, the probe pulse can experience either slow light

or fast light depending on the magnetic field and the relative phase. Finally in section 5, we

conclude.

2. Theory

The double-lambda system under consideration is shown in Fig. 1, where (a) and (b) use dif-

ferent ground state basis. |3〉 and |4〉 are degenerate Zeeman sublevels (with opposite magnetic

quantum numbers) and are eigenstates of the atomic angular momentum component along the

direction of the static magnetic field. |1〉 and |2〉 are the two hyperfine excited states sepa-

rated by ∆. The optical fields are nearly resonant with the lower excited state. We assume

that the selection rules and C-G coefficients determine that a sigma plus (minus) field E1 (E2)

can couple |3〉 (|4〉) to both |1〉 and |2〉, with Rabi frequency Ω1 (−Ω2) and Ω1 (Ω2) respec-

tively. Since in the experiment we use two orthogonally linearly polarized laser fields, a weak

probe Ep and a strong control Ec, it is more convenient to use the linear basis in Fig. 1 (b),

where |X〉 = (|3〉+ |4〉)/
√

2, and |Y 〉 = (|3〉− |4〉)/
√

2. In this basis, the probe field couples

|Y 〉 → |2〉 and |X〉 → |1〉 transitions with the same Rabi frequency Ωp = (Ω1 −Ω2)/
√

2, and

the control field couples |X〉 → |2〉 and |Y 〉 → |1〉 transitions with the same Rabi frequency

Ωc = (Ω1 +Ω2)/
√

2. When a magnetic field along the light propagation direction is applied,

|3〉 and |4〉 have zeeman shift δB/2, −δB/2 respectively; and in the linear basis, |X〉 and |Y 〉 are

coherently coupled by the magnetic field with an effective Rabi frequency equal to δB. Here,

δB = gµBmB/h with µB the Bohr magneton, g the Landé g factor, and m the magnetic quantum

number.
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Fig. 1. Level configurations for a double-lambda system coupled by two orthogonally po-

larized laser fields resonant with the lower excited state, represented (a) in the circular

basis where the two circularly polarized fields are E1 and E2, and (b) in the linear ba-

sis where the two linearly polarized fields are Ec and Ep. Here, |X〉 = (|3〉+ |4〉)/
√

2,

|Y 〉 = (|3〉− |4〉)/
√

2. Due to the selection rules and C-G coefficients of Rb, E1 couples

|3〉 → |2〉, |1〉 both with Rabi frequency Ω1, and E2 couples |4〉 → |2〉, |1〉 with Rabi fre-

quency Ω2, −Ω2 respectively. Similarly, Ep couples |Y 〉 → |2〉, |X〉 → |1〉 both with Rabi

frequency Ωp, and Ec couples |X〉 → |2〉, |Y 〉 → |1〉 both with Rabi frequency Ωc.

The Hamiltonian of the system takes the following form in the circular basis (Fig. 1 (a)):

Ĥ = 2πδB(|3〉〈3|− |4〉〈4|)/2+∆|1〉〈1|+Ω1|2〉〈3|+Ω2|2〉〈4| (1)

+Ω1|1〉〈3|−Ω2|1〉〈4|+H.c..

Here, Ω1 = ℘ 32E1/h̄ and Ω2 = ℘ 42E2/h̄, with ℘ i j the transition dipole moment between level i

and j. The two circularly polarized laser fields E1 and E2 are connected to the linearly polarized

fields Ep and Ec by
(

E1

E2

)

=
1√
2

(

1 i

1 −i

)(

Ec

Ep

)

(2)

Various decay channels can be taken into account by the master equation

˙̂ρ =
1

ih̄
[Ĥ, ρ̂]+ Γ̂exc − Γ̂rel (3)

where Γ̂exc and Γ̂rel are excitation matrix and relaxation matrix. We assume that both excited

states have a decay rate Γ, and in the circular basis, the ground states population difference

decay rate is γ1 and the coherence decay rate is γ2. In our model, when cold atoms are consid-

ered, we set Γ/2π= 6 MHz, and when a warm atomic vapor is considered, we set Γ/2π= 500

MHz to take into account of Doppler broadening. We consider the steady state of the atoms by

setting ˙̂ρ = 0, and then the propagation of the two circular polarized fields are described by the

Maxwell equation in the slowly varying amplitude approximation:

∂Ω1

∂ z
= iκ (ρ23 +ρ13) (4)

∂Ω2

∂ z
= iκ (ρ24 −ρ14) (5)

where κ = νN℘ 2/2ε0ch̄ is the coupling constant, with ν the laser frequency, ℘ the dipole

moment of the transitions |2〉 → |3〉 and |2〉 → |4〉 (assumed to be equal), and N the atomic



density. Numerically, we can solve for the fields’ complex amplitudes Ω1(L) and Ω2(L) at the

vapor cell output (L the cell length), and then have the probe field’s output power as:

Wp ∝ |Ωp(L)|2 = (|Ω1(L)|2 + |Ω2(L)|2 − 2|Ω1(L)||Ω2(L)|× cosθ)/2 (6)

where θ is the relative phase between Ω1(L) and Ω2(L). It can be seen that the probe field’s

transmission is related to both the amplitudes and relative phase of Ω1 and Ω2 at the output.

3. Experimental Setup

We performed experiments (schematically shown in Fig. 2) using a cylindrical paraffin coated

vapor cell containing isotropically enriched 87Rb. The cell (2.5 cm diameter, 7.5 cm length)

was heated by a blown-air oven residing in a solenoid for magnetic field control, all within a

four-layer magnetic shield. Tuned close to the 87Rb D1 line F = 2 → F ′ = 1 transition, the laser

passed through a polarized beam splitter (PBS) to generate the linearly polarized pump and the

probe field. Then they each went through an acoustic-optical modulator (AOM) for independent

power control and pulse shaping. The two identical AOMs shifted the laser frequency by 80

MHz, and the two 80 MHz RF sources were phase locked to ensure the nearly perfect phase

coherence between the probe and the control. The first order beams from the AOMs were then

combined by another PBS and directed into the vapor cell. At the cell output, a high quality

PBS separated the probe and the pump, and they were independently detected by two photo-

detectors (PD) with tunable gains.

One of the key elements of this experiment was to have good control on the relative phase

between the control and the probe, which was tuned by varying the voltage on the piezoelectric

transducer (PZT) attached to the mount of a mirror right before the combining PBS. To reduce

fluctuations of the relative phase, the splitting and combining optics were covered by a box

to minimize air flow. The maximal phase change the PZT could provide was about 4π. To

measure the relative phase at the cell input, we used a flip mirror to direct the beam to a half

wave plate followed by a PBS to interfere the control and the probe. Also, it was ensured that

this calibration optics at the side gave the same phase with a temporary calibration optics at

the cell output (added a half wave plate before the detection PBS) while the entire shield was

pushed aside. To check the phase stability, the interference signal was taken before and after

each absorption measurement for a particular phase.

In all the experiments reported below, the control field and probe field power were about

225 µW and 15 µW respectively (unless otherwise stated), and both of them were 3.5 mm

in diameter. We used a single mode fiber at the laser output to ensure good beam profile. The

Diode Laser

✌/2 ✍/2

✎/2

PBS AOM

AOM
PBS

Coated 87Rb Cell inside 

Magnetic Shield

PBS

PD

PD

PZT 

Mirror

Interference

Detection

Flip Mirror

Fig. 2. Schematics of the experimental setup. AOM: acoustic-optical modulator, PZT:

piezoelectric transducer, PBS: polarization beam splitter, PD: photo-detector.



overlap of the two beams after combination were checked by a beam profiler at several locations

along the light stream. The temperature of the cell was about 55 ◦C, corresponding to an atomic

density of about 2× 1011 cm−3 and an optical depth about 15 [28].

4. Results and Discussions

4.1. Effect of the magnetic field on phase sensitivity

In this section, we discuss the effect of the magnetic field on the phase sensitivity of the double-

lambda system as shown in Fig. 1(b).

Let’s start from a simpler case which we call the cold atom regime, where the spacing (∼ 800

MHz) between the two excited states is much larger than the linewidth (∼ 6 MHz) of the excited

states. Fig. 3 shows the calculated probe transmission (normalized to the input value) vs the

relative phase between the probe and control, for three magnetic field values (represented by

δB). Since these curves have a period of 2π, only one period is plotted. It can be seen that, when

the magnetic field is off, the probe transmission is insensitive to the phase. This is because the

negligible effect of the upper excited state effectively reduces the system to a normal lambda

system, which is not a closed loop without the magnetic field. When the magnetic field is on,

the loop is formed. Indeed, when δB increases to 10 Hz and then to 80 Hz, the transmission

becomes increasingly sensitive to the phase.

(a) (b)

Fig. 3. Calculated probe transmission (normalized to the input) vs the relative phase be-

tween the probe and the pump for different δB in the cold atom regime, where the excited

state decay rate Γ/2π= 6 MHz. (a) The black solid, red dashdotted and blue dash curves

are for δB = 0 Hz, 10 Hz and 80 Hz respectively. (b) The black solid, red dashdotted and

blue dash curves are for δB = 0 Hz, −10 Hz and −80 Hz respectively. Simulation parame-

ters: Ωc/2π= 20 kHz, Ωp/2π= 5 kHz, γ1/2π= γ2/2π= 10 Hz, and the optical depth was

0.15. Changes in the optical depth do not affect the main features of the curves as described

in the text.

Fig. 3(b) shows the calculated probe transmission for magnetic fields opposite to that in

Fig. 3(a). It was found that two curves with opposite δB values coincide if we translate one of

them by π on the x-axis. This phenomenon can be explained using the linear basis (Fig. 1(b)).

In each lambda loop, for example, in the cycle of |2〉 → |X〉 → |Y 〉 → |2〉, the coherence term

ρ2Y is determined by the product of Ωc and δB which remains unchanged if the sign of δB and

Ωc reverses simultaneously. Indeed, we found that the master equation remains valid when the

following substitution is made: δB → −δB, Ωp → Ωp, Ωc → −Ωc, ρ1X → ρ1X , ρ2Y → ρ2Y ,

ρ1Y → −ρ1Y , ρ2X → −ρ2X , ρXY → −ρXY , ρaa → ρaa (a = 1,2,X ,Y ), which indicates these

are two sets of identical solutions to the system. In other words, the probe field susceptibility

should be the same if we change the sign of the magnetic field and change the relative phase

from ϕ to ϕ +π simultaneously.



(b)(a)
Experiment Theory

Fig. 4. (a) Measured output probe transmission vs the relative phase for different δB. The

black dashed, black solid and grey solid curves are for δB = 0 Hz, 40 Hz and −40 Hz

respectively. Experimental conditions are in section 3. (b) Corresponding theoretical results

where the excited state decay rate Γ/2π= 500 MHz. Other simulation parameters: γ1/2π=
25 Hz, γ2/2π = 28 Hz, Ωc/2π = 240 kHz, Ωp/2π = 60 kHz, and the optical depth was

15.

To verify above predictions, we measured the probe transmission vs the relative phase for

δB = 0, ±40 Hz (Fig. 4). The transmission was normalized to the off-resonant transmission of

the probe when the control was absent. We can see that, in contrast to the cold atom regime,

the phase sensitivity was already very pronounced without the magnetic field. This is because

that Doppler broadening makes the effects of the upper excited state not negligible, and thus

the fields form a closed loop four-wave-mixing (even without the magnetic field) which is

phase sensitive. When δB was nonzero, the phase sensitivity increased, as in the simulation

for cold atoms. Also, the two curves for δB = ±40 Hz can almost overlap when one curve

is shifted by π along the x-axis, consistent with above theoretical analysis. To account for

the shape difference of the measured curves compared to the cold atom case, we performed

simulations with Γ/2π= 500 MHz (Fig. 4(b)) and found good agreement with our experiment.

The experiment results show that a double-lambda scheme has distinct phase dependence than

a single lambda scheme.

4.2. System manipulation via combination of relative phase and magnetic field

In this section, we investigate the combined effects of the magnetic field and the relative phase

on the probe’s transmission and its group velocity.

We first measured the probe transmission vs δB for various relative phase ϕ . As shown in

Fig. 5(a), the curves combine features of absorption and dispersion plots, which can be inter-

preted using the circular basis. Eq. (6) shows that the probe transmission carries the information

of both the absorption and refractive index (phase) of the circular laser beams. In particular, the

first two terms of Eq. (6) represent the total transmission of the two circular fields, and should

give a normal Lorentzian EIT spectra when δB is swept. As for the interference term of Eq. (6),

cosθ can be written as cosθ = cos(θ0 + ε) = cosθ0 − ε sin(θ0) if ε is small. Here θ0 is the

input relative phase between the two circular beams, and ε is the accumulated phase difference

which has a dispersive feature.

Also, it is clearly seen from Fig. 5 that, the two curves with relative phase ϕ and ϕ +π are

mirror images of each other. This again verifies that the probe transmission remains unchanged

if we change the sign of δB and add π to the relative phase simultaneously. Fig. 5(b) is the

numerically calculated results, which agree well with the experiment. Remaining discrepancy

between the experiment and the simulation results is mainly due to that in our simplified model,
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Fig. 5. Probe transmission vs δB for several relative phases. (a) Measured results, with

experimental conditions stated in section 3. (b) Calculated results, with identical simulation

parameters as used in Fig. 4(b).

we did not include the effects of atomic motion in the coated vapor cell [29–31], and Doppler

broadening was not strictly taken into account by integrating over all velocities.

Next, we studied the dynamic behavior of the probe field, and found that the refractive index

and the group velocity can be also controlled by the magnetic field and the relative phase. We

generated the probe pulse field via programming the AOM’s driving field by LabVIEW. For

optimal slow and fast light effects, the full width half maximum (FWHM) of the probe pulse

was chosen to be about 5 ms. The continuous control field power was 225 µW and the peak

power of the probe pulse was 15 µW. When δB was set at −91 Hz, we could turn the slow light

into fast light by changing the relative phase from about 1.75 π to 0 (Fig. 6(a)). The base of the

fast light or slow light curve was the result of the optical rotation of the control field due to the

magnetic field. On the other hand, if the relative phase was set to be 0, we could also turn the

slow light into fast light by changing δB from 0 Hz to −91 Hz (Fig. 6(b)). The fractional delay

and advance were about 25% and 10% respectively.

To explain such phenomena, we calculated the refractive index experienced by the probe

field while fixing the control field frequency and sweeping the probe’s one-photon detuning δ.

For this calculation, we rewrote the Hamiltonian of the system in the linear basis as depicted in

Fig. 1(b), and computed the real part of (ρ1X +ρ2Y )/Ep which is proportional to the refractive



(a) (b)

Fig. 6. Measured slow and fast light results. Probe pulse transmission is normalized to the

reference (black solid curve) pulse. The blue dashed curve is the fast light, and the red

dashdotted curve is the slow light. (a) δB =−91 Hz. (b) relative phase ϕ = 0.

(a) (b)

✭✛
✜
✢
✲✣
✤ )

✥✦
✧
★
✩✪
✫ )

Phase Manip✉✬✮✯✰✱✳ ❈✴✵✶✷✸ng Field ✹✺✻✼✽✾lation

(×
1
0
-1
6
)

(×
1
0
-1
6
)

Fig. 7. Calculated spectrum of the real part of (ρ1X +ρ2Y )/Ep vs the probe frequency, with

the pump frequency fixed. (a) Relative phase manipulation for δB =−91 Hz. (b) Magnetic

field manipulation for the relative phase ϕ = 0. Simulation parameters are the same as in

Fig. 4(b).

index for the probe. According to the group velocity formula

vg =
c

n+ω dn
dω

, (7)

the slope of the refractive index spectra of the probe near δ = 0 Hz in Fig. 7 determines the

group velocity of the probe pulse. Fig. 7(a) shows that when δB =−91 Hz, the slope near δ = 0

changes from positive to negative when the phase changes from 1.75 π to 0. Fig. 7(b) shows

that when the relative phase ϕ = 0, the slope near δ = 0 changes from positive to negative when

δB varies from 0 Hz to −91 Hz. This verifies that switching between slow and fast light can be

realized by either adjusting the magnetic field or the relative phase.



5. Conclusion

In conclusion, we demonstrated a new method to manipulate the phase sensitivity of a double-

lambda system. A magnetic field coupling the two ground states can function as an effective os-

cillating electromagnetic field, and thus can either close an otherwise open interaction loop, ren-

dering the system phase-sensitive, or alter the phase sensitivity of an initially phase-dependent

system. We have theoretically and experimentally verified that a static magnetic field can dras-

tically influence the absorption and refractive index of an optical field and its dependence on

the relative phase. This work should be useful for group velocity manipulation, nonlinear optics

and magnetometery.
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