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Tunnel spectroscopy of localised electronic states
in hexagonal boron nitride
M.T. Greenaway 1,2, E.E. Vdovin1,3, D. Ghazaryan4, A. Misra4, A. Mishchenko4, Y. Cao5, Z. Wang4,

J.R. Wallbank5, M. Holwill 5, Yu.N. Khanin3, S.V. Morozov3,6, K. Watanabe 7, T. Taniguchi7, O. Makarovsky1,

T.M. Fromhold1, A. Patanè1, A.K. Geim4,5, V.I. Fal’ko 5, K.S. Novoselov4,5 & L. Eaves1,4

Hexagonal boron nitride is a large band gap layered crystal, frequently incorporated in van der

Waals heterostructures as an insulating or tunnel barrier. Localised states with energies

within its band gap can emit visible light, relevant to applications in nanophotonics and

quantum information processing. However, they also give rise to conducting channels, which

can induce electrical breakdown when a large voltage is applied. Here we use gated tunnel

transistors to study resonant electron tunnelling through the localised states in few atomic-

layer boron nitride barriers sandwiched between two monolayer graphene electrodes. The

measurements are used to determine the energy, linewidth, tunnelling transmission prob-

ability, and depth within the barrier of more than 50 distinct localised states. A three-step

process of electron percolation through two spatially separated localised states is also

investigated.
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F
ollowing the discovery of the remarkable electronic properties
of graphene1, researchers have investigated a variety of other
layered crystalline compounds that remain chemically stable

even when they are disassembled into atomically thin flakes by
mechanical exfoliation2–4. These two-dimensional crystals can be
stacked to form heterostructures and functional devices5–18 held
together by van der Waals (vdW) forces that preserve the structural
integrity and physical properties of the component layers. Of par-
ticular significance is hexagonal boron nitride (hBN)2,19, which has
a lattice constant only 1.8% larger than that of graphene. It is a
large band gap material that can be used as an insulating barrier
for a gating electrode, as a barrier for tunnelling electrons, or as a
source of ultraviolet light2.

Recent studies have demonstrated that crystals of hBN can
contain strongly localised electronic states within the energy
gap20–27. These states are attributed to the presence of structural
defects and impurities likely to be present even in nominally pure
hBN crystals. They could also be introduced unintentionally
during mechanical exfoliation of hBN and/or its incorporation
within a multilayer vdW heterostructure. Electronic transitions
between localised states with energies within the large band gap of
hBN are also of interest, because they are single quantum emitters
of visible light28–40 and thus have potential for applications in
nanophotonics, optoelectronics and quantum information pro-
cessing. Recently, localised states have been shown to affect the
electronic properties of spintronic41 and superconducting42 van
der Waals devices. Defect-related phenomena can also impair the
electrical properties of future devices based on hBN by inducing
random telegraph noise and causing electrical breakdown of its
insulating properties when a sufficiently strong electric field is
applied43,44.

In this paper, we investigate how electrons tunnel resonantly
between two monolayer graphene electrodes through localised
states within an hBN barrier. Our devices incorporate either one
or two gate electrodes, which provide precise control of the
density and chemical potentials of the carriers in the graphene
layers. The measurements allow us to determine the energy and
spatial position of each of the localised states. The crystalline
lattices of the two monolayer graphene electrodes are misaligned
by a small angle of a few degrees. This twist angle suppresses
direct band-to-band resonant tunnelling where the in-plane
momentum component of the tunnelling electron is con-
served8,10–12, and helps resolve clearly the small tunnel current
passing through an individual localised state. The momentum
conservation rule is relaxed for the case of tunnelling through the
bound states within the band gap of hBN due to their strong
spatial localisation17,18.

Results
Resonant tunnelling through a single localised state. The top
left inset of Fig. 1a is a schematic diagram showing the config-
uration of Device 1. A few atomic layers of hBN (green) forms a
tunnel barrier sandwiched between two graphene monolayers,
Grb and Grt, which act as source and drain electrodes. The
application of a bias voltage, Vb, between them causes a tunnel
current, I, to flow through the hBN barrier. A third graphite layer
(Grg), which lies on a SiO2 substrate, is separated from Grb by an
insulating hBN layer. This gate electrode is used to adjust the
carrier sheet density of the graphene layers by varying the gate
voltage, Vg. The active area for current flow in Device 1 is ~50
μm2. Further details of the device fabrication are given in the
Methods section and ref. 10.

The red curve in Fig. 1a shows the I(Vb) curve at a
measurement temperature, T= 1.75 K, and Vg= 0. For |Vb|≲
200 mV, the tunnel current is small, but has a step-like increase
when Vb= V1 ≈ ±200 mV. The differential conductance plot, G
= dI/dVb, shown in Fig. 1b, displays the increase of current at the
step edge as a sharp peak. At Vg= 0, the two strong and sharp

peaks at Vb ≈ ± 200 mV are accompanied by weaker features at
higher |Vb|. We attribute each of the two strong peaks to the
threshold of resonant tunnelling through the same localised state
(state A) within the hBN barrier when its energy, EA, becomes
aligned with one or other of the chemical potentials, μb or μt, of
the bottom (b) or top (t) graphene layers. For Vb > V1, the
conductance channel through the localized state remains open,
see lower right inset of Fig. 1a for this general case. An increase of
Vg decreases the |Vb| position of the two conductance peaks until
at Vg= 1.7 V they merge into a single peak centred at Vb= 0, see
the green and blue curves in Fig. 1a, b.

Figure 2a is a colour map of G(Vb, Vg) measured for Device 1.
The white curves show a series of seven G(Vb) plots at selected Vg

(5 V, 3 V, …, −7 V). Close to the top of Fig. 2a, the white arrows
highlight the positions of the two strong peaks in G(Vb) at Vg= 5
V. The Vb positions of the peaks are strongly dependent on Vg:
over the range of Vg from +7 V through 0 to −7 V, their loci have
a prominent X-shaped dependence, corresponding to the onset of
electron tunnelling through state A.

We reproduce these measurements accurately using the
Landauer-Büttiker conductance formula45–48, combined with
Fermi’s golden rule and an electrostatic model of the device,
Fig. 2b. It includes the quantum capacitance of graphene that
arises from its low density of states near the Dirac points. Details
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Fig. 1 Current-bias voltage characteristics of Device 1. a Measured current-

bias voltage curves, I(Vb), when the gate voltage, Vg= 0 (red), Vg= 0.8 V

(green) and Vg= 1.7 V (blue) (T= 1.75 K). Top left inset: schematic

diagram of the device showing the graphite gate (Grg) and electrodes

through which the current flows (Grb,t) (horizontal black lines), hBN layers

(lime green), the voltage configuration and definition of spatial axes.

Bottom right inset: band diagram showing the densities of states Db and Dt

in the bottom and top graphene layers and their chemical potentials, μb and

μt. The electron tunnels through a localised state ‘A’ of energy EA and

spatial position zA, see open circle. b Differential conductance, G= dI/dVb

of the I(Vb) curves in a
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of the model are presented in Supplementary Notes 1 and 2, and
refs. 7,9–11,49. The measured device characteristics are described
accurately by the model. In this way, we obtain accurate values for
the tunnel barrier thickness, d= 1.5 nm, and lower insulating
hBN layer thickness, dg= 25 nm. The electric field, Fb, across the
hBN tunnel barrier generated by the bias voltage-induced charge
on the graphene layers shifts the energy level of a given localised
state, A, so that its energy relative to the Dirac point of the
bottom graphene layer is EA ¼ E0

A þ eFbzA. To obtain a best fit to
the data, we set the energy of the level at the flat band condition
(Fb= 0) to be E0

A ¼ 0:11 eV; we set its location to be in the
middle of the barrier so that its spatial coordinate perpendicular
to the plane of the layers and relative to the position of the
bottom graphene layer is zA= d/2= 0.75 nm, see lower right
inset of Fig. 1a.

At low bias (Vb <V1) and low temperatures there are
few electrons with sufficient energy to tunnel with energy
conservation through the localised state. The bias voltage Vb is
given by eVb= μb− μt− ϕb, where ϕb= eFbd and μb and μt are

measured with respect to the Dirac points of the graphene
electrodes. When Vb is increased, μb increases and EA decreases.
When Vb= V1, EA= μb so that electrons can tunnel with energy
conservation through this localised state, thus opening a
conduction channel between the two graphene layers, and
producing the peak in G. Similarly, for Vb < 0, tunnelling through
the same impurity can be achieved when EA aligns with the
chemical potential in the top layer, i.e. EA= μt+ ϕb. The model
provides an accurate fit to the measured data as can be seen by
comparing our modelled conductance Fig. 2b with the measured
data in Fig. 2a. Note the positions on the X-shaped loci at which
the measured amplitude of the conductance peaks is suppressed;
these are indicated by vertical white arrows in both maps. The
model calculation in Fig. 2b confirms that this suppression occurs
when the chemical potential in one or the other graphene
electrode passes through its Dirac point where the density of
states approaches zero. The good agreement between the
measured and modelled zero conductance loci validates our
electrostatic model.

We find that the peaks in G broaden as T increases, consistent
with the thermal broadening of the electron energy distribution at
the chemical potentials of the two graphene layers, see
Supplementary Fig. 1. By comparing our model with the data
over the temperature range from 1.75 to 90 K, we estimate the full
width half maximum linewidth of the state to be γ ≈ 6 meV and
the lifetime ħ/γ ≈ 0.1 ps. The best fit to the data is obtained when
we use a Gaussian lineshape, see Supplementary Note 2 for more
details. This is consistent with studies of the lineshape of optical
emission from localised states in hBN37 and corresponds to
inhomogeneous broadening50 of the state. This lineshape could
arise from spectral diffusion due to local electrostatic fluctuations
in the vicinity of the state. A similar effect has also been reported
for colour centres in diamond51,52.

The peak in conductance at Vb= 0 when Vg= 1.7 V and T=
1.75 K corresponds to Gp= βe2/h, where e2/h is the quantum of
conductance and the measured parameter β= 0.75. For coherent
tunnelling through a localised state with a Gaussian density of

states β ¼
ffiffiffiffiffiffiffiffiffi

πln2
p

S, where S= 4γbγt/(γb+ γt)2 ≈ 0.5 is the total
transmission probability. Here, γb/ħ and γt/ħ are the electron
tunnelling rates between the localised state and the b and t
electrodes and γ= γb+ γt48. Note that if γb= γt then S= 1;
however, in contrast we find that γb ~ 0.8γ and γt ~ 0.2γ, which
means that the state is somewhat more strongly coupled to the
bottom layer than the top, see Supplementary Note 2 for more
details.

Sequential tunnelling through two localised states. Figure 2a
exhibits an additional feature in the measured G(Vb, Vg) data.
This arises from a more complex tunnelling process involving
state A and a nearby localised state B with spatial coordinates zB
and energy EB. This process, in which a tunnelling electron makes
three sequential steps, Gr →A → B →Gr, accounts for the broader
peak in conductance highlighted by the loci of black dots in
Fig. 2a, as explained at the end of this section. This additional
contribution to the current flow is initiated when the bias and
gate voltages are tuned so that states A and B are energetically
aligned, EA= EB, allowing electrons to tunnel through the barrier
in three steps, as shown schematically by the horizontal arrows in
the top right inset of Fig. 2b. The two levels are aligned when
E0
A � E0

B ¼ eFb zA � zBð Þ. Sequential tunnelling only occurs when
the energies of the levels are aligned with each other and are
located between μb and μt. Therefore, the sequential tunnelling
feature disappears when its locus intersects with that of the
sharper conductance peak EA= μb corresponding to the onset of
tunnelling through state A alone (see horizontal dashed white
arrow at the top of Fig. 2a, b).
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Horizontal arrows highlight the position where the sequential tunnelling

feature vanishes. The black dotted curves indicate the loci where states A

and B are in energetic alignment, EB= EA, illustrated by the upper inset in

b, the lower inset in b shows schematically the sequential inelastic

tunnelling process when EB > EA
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The peak in conductance due to this three-step process
corresponds to a step-like increase of current, which means that
the current channel remains open when EB > EA. This requires an
inelastic tunnelling process in which the electron loses energy as it
tunnels between states A and B, see lower right inset in Fig. 2b.
Such a process can occur by emission of a phonon53 or else by an
electron–electron interaction process analogous to Auger scatter-
ing whereby the tunnelling electron transfers the required excess
energy to a free electron in one or other of the nearby graphene
electrodes.

Comparison of Fig. 2a, b shows that the inclusion of this
inelastic tunnelling process in our model (see Supplementary
Note 3) provides an excellent fit to the data when we set the
following parameters for state B: E0

B ¼ 0:02 eV and zB= d. These
values imply that state B is situated near to the top graphene
layer. Such a state could arise from an impurity or defect close to,
or within, the top graphene layer, or from a local perturbation of
the electronic states of this layer due to the close proximity of
state A, giving rise to a peak in the local density of electron states
of the top graphene electrode at an energy EB54. Further evidence
for this local enhancement is provided by the increased strength
of the conductance peak associated with tunnelling through state
A only at the intersection between the three and two-step
processes, see the strong red contour highlighted by horizontal
white arrow observed in the measured data, Fig. 2a, and
confirmed in our model calculation, Fig. 2b. This observation of
a three-step tunnelling transition process is of topical interest as it
is an example of a percolation process, which has been recently
reported in refs. 43,44.

Comparison of Fig. 2a, b also shows that the model successfully
predicts the larger linewidth, ΔVAB ~ 70 mV, of the 3-step
tunnelling peak compared to ΔVA= 20 mV for the peak arising
from tunnelling through state A only. This increased broadening
arises due to the addition of the linewidths of the two states. Note
that the region of suppressed conductance (dark blue) predicted
by the model, and the minimum of the double peak in the
measured conductance (indicated by the locus of black dots in
Fig. 2a) is fully consistent with the intersection of EA with the
Dirac point in the top graphene layer, leading to a suppression in
the number of electrons in the graphene layer available for
sequential tunnelling.

Position and energy spectroscopy of the localised states. We
now consider the current–voltage characteristics of a second type
of device, Device 2, which has two-independent gate electrodes.
The schematic diagram in Fig. 3a shows the layer and gate con-
figuration. For this device, we observe a larger number (~50) of
conductance peaks than for Device 1. The double gate arrange-
ment provides further control over the electrostatics of the device.
It allows us to select the particular combination of μb and μt
required for electron tunnelling through a given localised state,
see schematic diagram in Fig. 3b. The top gate is separated from
the upper graphene layer by an insulating hBN barrier layer with
thickness dtg, see schematic diagram. The doped Si substrate is
used as the bottom gate electrode and is insulated from the lower
graphene electrode by a SiO2 surface layer and the thinner hBN
bedding layer with a total thickness dbg on which the lower gra-
phene electrode, Grb, is mounted, see Fig. 3a. The lattices of the
two monolayer graphene electrodes are misaligned by a small
twist angle, θ. The active area for electron tunnelling in this device
is ∼25 μm2. The larger number of localised states observed in
Device 2 may be due in part to the more complex processing
required for this heterostructure.

Using a combination of conventional lock-in amplification and
4-probe DC measurements, we measured the tunnel current, I,
and differential conductance with a small amplitude AC
modulation voltage ΔV= 1 mV at zero DC bias (Vb= 0) over a
range of Vb

g and V t
g. This allows us to determine spectroscopically

the energies of the localised states in the hBN tunnel barrier.
Figure 3c maps out the positions of the conductance peaks at

zero applied bias voltage G(Vb= 0) over a wide range of Vb
g and

V t
g. When Vb= 0, the chemical potentials in the top and bottom

graphene electrodes are aligned in energy, i.e. μb= μt+ ϕb. The
electrostatic potential drop across the barrier, ϕb, is strongly
dependent on the two gate voltages. Figure 3c reveals a broad,
dark blue cross-shaped region of very low conductance G≲ 10−6

S. In this region, the Fermi energy in either the top or bottom
graphene electrodes is close to the Dirac point in that layer (i.e.
either μt or μb ≈ 0), where the density of states is low. The white
loci show the calculated values of Vb

g and V t
g when μt= 0 and μb

= 0 using the electrostatic model presented in Supplementary
Note 1, with dtg ¼ 21 nm, dbg ¼ 310 nm and d= 1 nm. The
calculated loci show good agreement with the location of the
measured conductance minima, thus confirming the accuracy of
our model. Our model shows that at zero bias and zero gate
voltages, the chemical potentials of the two graphene layers are
within 40 ± 10 meV of their Dirac points corresponding to a hole
doping level of ~2 × 1015m−2.

Figure 3c also reveals a sharp change in conductance from low
to high (blue through yellow to orange) with well-defined loci,
extending from J to K and from L to M in Fig. 3c. These
correspond to the threshold at which electrons can tunnel directly
between the two twisted graphene electrodes with conservation of
momentum and energy10 (i.e. not through localised states). The
threshold condition is given by μb= μt+ ϕb= (ϕb ± ΔKvFħ)/2.
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Using our model, we determine the misalignment of the in-plane
wavevector between the Dirac points of the top and bottom
layers: ΔK= 8π sin(θ/2)/3a, where a is the lattice constant of
graphene. This provides a measure of θ= 2° ± 0.5°.

Discussion
We now consider the sharply defined curved loci of conductance
peaks observed in the blue regions of the colour map in
Fig. 3c where band-to-band tunnelling is suppressed, and also
those in the yellow–red regions where the conductance peaks are
superimposed on the high conductance regions that arise from
momentum conserving, direct band-to-band, tunnel transitions.
Each locus is due to resonant tunnelling through an energy level
of a localised state and occurs when μb= μt+ ϕb= Ei, where Ei
is the energy of the state relative to the Dirac point of the bottom
graphene electrode. To analyze the data in more detail, we remap

G V t
g;V

b
g

� �

into a more useful colour plot of G(μt, μb), using our

electrostatic model, see Fig. 4a. As Ei ¼ E0
i þ eFbzi, we determine

both E0
i and zi for each state. When ϕb= μb− μt= 0 (shown by

the black dashed line) the energy level of a given state, i, aligns
with the chemical potential of the bottom graphene electrode so
that E0

i ¼ μb, thus determining E0
i at the point when the peak

trace crosses the black dashed curve. Whereas some of the loci of
the conductance peaks in Fig. 4a are distinctly curved, most of
them are approximately straight lines given by the relation

μb 1� zi=dð Þ ¼ E0
i � μtzi=d: ð1Þ

Equation (1) and the colour map in Fig. 4a therefore allows us
to determine the zi and E0

i values of each localised state from the
gradient of the locus, dμb/dμt, and its position on the map. The
results are shown in Fig. 4b, c. The width of each segment of the
histogram in Fig. 4c indicates the accuracy, Δzi= 0.06 nm, with
which the position of each localised state is determined and
reflects the uncertainty in the value of dμt/dμb. The histogram
gives the number distribution, Ni of states with respect to their
position coordinate, zi, within the hBN barrier.

Each bin of the histogram in Fig. 4c has a symbol and colour
with which we label each conductance peak locus in Fig. 4a. Note
that several peaks in G have the same gradient and therefore the
same value of zi/d, within experimental error. For example, the
peak at zi/d ≈ 0.65 with Ni= 14, includes a group of 4 con-
ductance peaks, each labelled with a club-shape, numbered 11–14,
in the lower left section of the plot and another group, clubs 5–8,
in the lower right section. A second peak occurs when zi/d ≈ 0.3
(diamonds) corresponding to Ni= 13. The measurements there-
fore reveal that more than half of the detected states are located at
or close to the two atomic layers that form the hBN barrier
corresponding to zi/d ≈ 0.3 and 0.65. We also find a number of
states which appear to be located interstitially e.g. the five states at
zi/d ~ 0.85. Others with zi/d ≈ 0 and ≈1 appear to be located close
to the two monolayer graphene electrodes, possibly due to defects
in or close to their lattices.

Figure 4b plots the energy, E0
i , relative to the Dirac point of the

bottom graphene layer at zero bias and gate voltages, and the
binned position of each localised state in the barrier. To obtain
the data shown in Figs. 3 and 4 we apply strong electric fields of
up to a limit of ~±300 mV/nm across the barrier. This avoids the
danger of electrical breakdown but limits our study to those
localised states with energies, E0

i , in the range −0.3 to 0.3 eV.
Previous studies indicate that the top of the valence band of hBN
and the Dirac point of graphene are located at energies of 7.7 ±
0.5 eV55 and 4.6 ± 0.1 eV56,57 respectively, below the vacuum
level. Based on these estimates, we determine that the group of
localised states measured here are located in the mid-gap energy
range between 2.8 ± 0.5 and 3.4 ± 0.5 eV above the valence band
edge of the hBN barrier, with an average density of states of ~3
μm−2 eV−1.

Our measurements indicate that the areal density of tunnel-
active defects in our devices is quite small ≲1012m−2, around 4
orders of magnitude smaller than the electron sheet densities in
the graphene electrodes at zero bias and gate voltages. The
average in-plane separation of the localised states is ~1 μm. These
states are located at different depths within the thin hBN barrier
layer and their energy levels appear to be distributed randomly
over the energy range of ~0.6 eV that is accessible with these
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Fig. 4 Energies and spatial locations of localised states within the hBN tunnel barrier as determined from the differential conductance measurements.

a Colour map of the dependence of the zero bias differential conductivity as a function of the chemical potentials in the bottom and top graphene layers G

(μb, μt): symbols and associated lines highlight peaks corresponding to localised states with similar position, zi, used to construct the histogram in c. The

dashed line shows where μb= μt and thus the electric field in the tunnel barrier, Fb= 0. b Horizontal lines show, on the y-axis, E0i , which are the energies of

the localised states measured relative to the Dirac point of the bottom graphene layer in the flat band condition. The zi/d indicates their coordinate position

within the hBN barrier. c Histogram showing the distribution of the positions of the localised states in the barrier. The widths of the lines in b and the bars in

c reflect the uncertainty in the value of dμt/dμb
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devices. However, the observation of the three-step electron
tunnelling process requires that some localised states are in close
proximity to each other, separated by ~1 nm.

In summary, we have observed resonant electron tunnelling
between graphene monolayers through individual localised states
in the hBN tunnel barrier. Our theoretical model determines the
energy, linewidth, tunnel coupling coefficients and spatial coor-
dinate of individual localised states in the barrier region. A three-
step percolative inelastic process is also observed. These results
may provide useful insights into the future exploitation and
control of electron tunnelling through localised states in hBN.

Methods
Fabrication. The devices were fabricated by a conventional dry-transfer procedure,
the graphene and hBN layers were mechanically exfoliated onto the Si/SiO2 sub-
strate. Cr/Au contact pads were independently mounted on the single and bilayer
graphene electrodes. Finally, the top hBN capping layer was covered by a Cr/Au
layer of cross-sectional area 15 μm2; this served as a top gate electrode. Further
details of device fabrication can be found in ref. 10.

Data availability
The datasets generated during this study are available from the corresponding
authors on reasonable request.
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