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Abstract. Accurate prediction of the stability of rock surrounding a tunnel is important in order 

to prevent from rock collapse or reduce the hazard to personnel and traffic caused by such 

incidents. In our study, a KNN algorithm based on grouped center vector is proposed, which 

reduces the complexity of calculation, thus improving the prediction performance of the 

algorithm. Then, the improved KNN algorithm was applied to the surrounding rock stability 

prediction of a high-speed railway tunnel, which, to our knowledge, forms the first application 

thereof for the prediction of surrounding rock stability. Extensive experimental results show that 

our proposed prediction model achieves high prediction performance in this regard. Finally, a 

laboratory experiment of a tunnel is conducted to evaluate whether the tunnel surrounding rock is 

stable or not. The experimental results matched the prediction results obtained by our proposed 

prediction model, which further demonstrates its effectiveness. 

Keywords: tunnel, surrounding rock stability, K-nearest neighbor algorithm, grouped center 

vector, prediction model. 

1. Introduction 

The evaluation of surrounding rock stability is one of the key points in the construction project 

of highway and railway tunnels, mines and hydraulic power plants. Surrounding rock stability 

prediction is a method which applies the engineering analogism method to carry on surrounding 

rock stability evaluation, and it provides a basis for engineering design and construction, so it has 

important practical value. The prediction accuracy will directly affect the safety of engineering 

construction. The traditional prediction method is difficult to classify the of surrounding rocks 

stability quickly due to their depending on more geotechnical parameters [1, 2]. Consequently, the 

reasonable prediction method of surrounding rock stability should be of practical significance. 

The aim of this work is to obtain a prediction approach of the surrounding rock stability based on 

machine learning techniques. 
Prediction of the surrounding rock stability is still a challenge, because there are so many 

factors, and they influence each other, moreover the surrounding rock stability has a complex 

nonlinear relationship with the influencing factors. Thus, it is difficult to predict the surrounding 

rock stability due to the various and complicated factors [3]. In the recent years, the machine 

learning theory, which has a very good modeling capability, has being developed unceasingly. 

The machine learning can carry on nonlinear operation, and has a strong self-learning ability and 

adaptive ability, so it is a good solution to nonlinear problems [4, 5]. Qiu et al. [6] established the 

prediction system of surrounding rock stability based on QGA (quantum genetic algorithm)-RBF 

(radical basis function) neural network and obtained a good evaluation result. Yuan et al. [7] chose 

five indexes including rock quality, rock uniaxial saturated compressive strength, structural 

surface intensity coefficient and amount of groundwater seepage as the model input, and 

established the prediction model for surrounding rock stability based on the support vector 

machine, and the results showed that the stability prediction results by GSM (grid search 

method)-SVM (support vector machine) model for surrounding rock corresponded to the actual 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2020.21427&domain=pdf&date_stamp=2020-11-15
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results. Li et al. [8] analyzed the stability of surrounding rock of underground engineering by using 

an improved BP neural network, and the results showed that the leading roles of rock stability 

were rock mass quality, strength and state, and the structural plane occurrence and characters were 

secondary factors. Li et al. [9] established a prediction model for the surrounding rock stability 

based on PNN (probabilistic neural network), and the results showed that the PNN model had 

strong recognition ability and fast running speed and high calculation efficiency for the prediction 

of surrounding rock stability in a coal mine. Consequently, machine learning approaches are being 

increasingly used for estimating the surrounding rock stability.  

It is worth noting that the k-nearest neighbor (KNN) algorithm [10-12], which is one of the 

most well-known algorithms in pattern recognition, has been proven to be very effective in 

prediction. The 𝑘 -nearest neighbor (KNN) algorithm, as one of the basic machine learning 

algorithms, is simple to learn and is widely used to solve prediction problems. The KNN algorithm 

is a new algorithm that evolves based on the idea of the nearest neighbor (NN) algorithm. The 

idea of a NN algorithm is to find the training samples which are nearest to the samples to be 

classified, and the category of the nearest training samples is used for category determination. The 

KNN algorithm contains the idea of the NN algorithm which is a special case where 𝑘 in the KNN 

algorithm is 1. The KNN algorithm does not need to estimate parameters and train the training set, 

and it is suitable for prediction with a large sample size. Furthermore, for solving a multi-label 

prediction problem, its performance is superior to that of the support vector machine (SVM) 

algorithm. As first proposed by Cover and Hart, it remains one of the most important machine 

learning algorithms until now, however, for the KNN algorithm, the similarity of each sample to 

be classified with all samples in the training set needs to be calculated. When there are too many 

training samples, it becomes time-consuming and therefore presents high calculation complexity, 

which is not conducive to rapid prediction. At present, there are two main aspects to improvements 

of the KNN algorithm: improving the accuracy and efficiency of prediction. To improve the 

prediction accuracy, scholars have carried out studies by adjusting its weights [13, 14]. Dudani 

[15] proposed a weighted voting method named the distance-weighted 𝑘 -nearest neighbor 

(WKNN) rule, which is the first distance-based vote weighting schemes. Gou et al.[16] presented 

a dual weighted k-nearest neighbor (DWKNN) rule that extended the linear mapping of Dudani, 

in which the closest and the farthest neighbors are weighted the same way as the linear mapping, 

but those between them are assigned smaller values. Furthermore, some new ideas are proposed 

to improve the selection of the 𝑘 value, and attempts are made to do so dynamically. The KNN 

algorithm generally requires a pre-set 𝑘 value and runs multiple experiments with different 𝑘 

values to obtain the best prediction results. Moreover, the 𝑘 value selected at this time is used as 

the default experimental parameter. In view of this, Zheng [17] proposed a strategy of dynamically 

setting 𝑘 values. Liu et al. [18] propose a scheme reconstructing points of the test dataset by 

learning a correlation matrix, in which different 𝑘 values are assigned to different points of test 

data based on the training data. The KNN algorithm is widely used in pattern prediction, but some 

problems occur therewith. When calculating the similarity, the samples to be classified need to be 

compared with each sample in the training set by using the traditional algorithm, which depends 

on the number of training samples. If there are too few training samples, the prediction accuracy 

will be reduced.  

On this basis, the KNN algorithm based on grouped center vectors is improved, and can group 

sample vectors under each category, and the center vectors in each group under this category can 

be used to represent the sample vectors in the training set under this category. This not only ensures 

the number of representative vectors and improves classification accuracy, but also reduces the 

number of training sets and improves the efficiency of the method when calculating the similarity 

values. Then our proposed prediction model is used for evaluation of surrounding rock stability 

of a high-speed railway tunnel. Finally, an indoor model experiment is conducted to see the 

prediction performance for surrounding rock stability of the high-speed railway tunnel including 

stability and instability. Extensive experimental results show that our proposed prediction model 
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achieves much better prediction performance to the surrounding rock stability.  

2. Our improved KNN algorithm 

Before presenting our improved KNN algorithm, a brief review of KNN, WKNN and 

DWKNN algorithms is made. 

2.1. KNN, WKNN and DWKNN 

KNN, as a simple, effective, non-parametric prediction method, was first proposed by Cover 

and Hart to solve the text prediction problems [19]. Its principle is to expand the area from the test 

sample point 𝑥 constantly until 𝑘 training sample points are included. In addition, the test sample 

point 𝑥 is classified into the category which most frequently covers the nearest 𝑘 training sample 

points.  

(1) The 𝑘-nearest neighbor algorithm (KNN) [10] is a powerful nonparametric classifier which 

assigns an unclassified pattern to the class represented by a majority of its 𝑘 nearest neighbors. In 

the general classification problem, let 𝑇 = 𝑥 ∈ 𝑅   denote a training set with 𝑀  classes 

including 𝑁 training samples in 𝑑 (dimensional feature space). The class label of one sample 𝑥𝑛 

is 𝑐𝑛 . Given a query point 𝑥 , the rules to KNN algorithm are as follows. KNN algorithm 

implementation steps are shown in Fig. 1. 

 Fig. 1. KNN algorithm implementation steps 

(2) Dudani [15] first introduced a weighted voting method for KNN, calling the 

distance-weighted 𝑘 -nearest neighbor rule (WKNN). In WKNN, the closer neighbors are 

weighted more heavily than the farther ones, using the distance-weighted function. The weighted 

function of WKNN is shown in Eq. (1): 

𝑤𝑖 =
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𝑑𝑖 = (𝑥 − 𝑥𝑖𝑁𝑁)
𝑇

(𝑥 − 𝑥𝑖𝑁𝑁), 

where 𝑑 is the dimensional feature space; 𝑘 is the nearest neighbor; 𝑥 is the query point; 𝑤 is the 

weight. 

Accordingly, the prediction result of the query is made by the majority weighted voting, as 

defined in Eq. (2): 𝑐 = argmax 𝛿,      (𝑐 = 𝑐 )

, ∈ , 
(2)

where 𝑐′ is the classification result; 𝑁 is the training sample. 

(3) DWKNN [16] is based on WKNN: Different weights are given to 𝑘 nearest neighbors 

according to their distances, with closer neighbors having greater weights. The dual 

distance-weighted function of DWKNN is defined in Eq. (3): 

𝑤 =

𝑑 − 𝑑𝑑 − 𝑑 ⋅ 𝑑 + 𝑑𝑑 + 𝑑 ,     𝑑 ≠ 𝑑 ,

1,     𝑑 = 𝑑 .

 (3)

Then, the query �̅� is labeled by the majority weighted vote of 𝑘 nearest neighbors, as specified 

in Eq. (4): 𝑐′ = argmax 𝑤 𝛿,     (𝑐 = 𝑐 ).

( , )∈  (4)

2.2. Support vector machine (SVM) [20] 

The main idea of SVM is summarized as follows: by giving a training sample set, a hyperplane 

established through SVM is used as a pattern surface, so that the space between the positive and 

negative examples of the two types of samples is maximized. The training samples on the 

hyperplane are known as support vectors. SVM is mainly used for analysis based on the linear 

separability. As for the pattern of linear inseparability, it is necessary to expand the basic idea of 

the algorithm. By introducing a kernel function, the linear inseparability in a low-dimensional 

space is transformed into linear separability in the high-dimensional space. Owing to the number 

of support vectors being much less than the number of training samples, a high prediction speed 

and accuracy can be obtained by using an SVM. From the perspective of linear separability, the 

SVM is required to find a decision function, as shown in Eq. (5): 𝑓(𝑥) = sgn(〈𝑎 ⋅ 𝑥〉+ 𝑏), (5)

where 〈𝑎 ⋅ 𝑥〉 represents the dot product of 𝑎 and 𝑥, while 𝑦 = 〈𝑎 ⋅ 𝑥〉+ 𝑏 = 0 is considered as 

the hyperplane. 

The concepts of positive and negative examples are described as follows: 

If 〈𝑎 ⋅ 𝑥〉 + 𝑏 ≥ 0, it can be considered that 𝑥 is a positive example, that is 𝑓(𝑥) = 1. 

If 〈𝑎 ⋅ 𝑥〉 + 𝑏 < 0, it can be regarded that 𝑥 is a negative example, namely 𝑓(𝑥) = –1. 

Fig. 2 presents the geometric structure of the optimal hyperplane in the two-dimensional input 

space.  
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2.3. Our improved KNN algorithm 

Different weights are to be allocated to 𝑘 nearest neighbors, and the weight 𝑤  of the 𝑗-th 

nearest neighbor is determined as shown in Eq. (6): 

𝑤 = ⎩⎨
⎧

exp − 𝑑 − 𝑑𝑑 − 𝑑 ∙ 𝑑 + 𝑑𝑑 + 𝑑 , 𝑑 ≠ 𝑑 .

1, 𝑑 = 𝑑 .

 (6)

The prediction model of the surrounding rock stability based on our improved KNN algorithm 

can be expressed as follows.  

Let 𝑋 denote a set of surrounding rock stability sample, and suppose 𝑋 is 𝑋 = 𝑥 ∈ 𝑅 , 

where 𝑥  represents the feature of the 𝑖-th surrounding rock stability sample, N is the total number 

of features, and 𝑚 is the feature dimension. In addition, let 𝑦  represents the surrounding rock 

stability levels, and 𝑦 ∈ 0,1,2,3,4 , 𝑖 = 1,2,⋅⋅⋅,𝑁. Therefore, the sample set of the prediction 

model is shown in Eq. (7): 

⎣⎢⎢
⎢⎢⎡
𝑥𝑥⋅⋅⋅𝑥
𝑦𝑦⋅⋅⋅𝑦 ⎦⎥⎥
⎥⎥⎤ =

⎣⎢⎢
⎢⎢⎡
𝑥 𝑥 ⋅ ⋅ ⋅ 𝑥 𝑦𝑥 𝑥 ⋅ ⋅ ⋅ 𝑥 𝑦⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅𝑥 𝑥 ⋅ ⋅ ⋅ 𝑥 𝑦 ⎦⎥⎥

⎥⎥⎤. (7)

Given the unknown sample 𝑥 = (𝑥 𝑥 ⋅⋅⋅ 𝑥 ) , our proposed surrounding rock stability 

prediction model based on our improved KNN algorithm can be expressed as Eq. (8): 𝑦 = argmin𝑓 (𝑥) = argmin𝑑(𝑥, �̅� ), (8)

where �̅�  is the nearest neighbor of the unknown sample 𝑥 in the class 𝑤  (𝑖 = 1,2,3). Hence, 

the unknown sample 𝑥 is classified into the class 𝑦 that has the closest neighbor among all classes.  

3. Surrounding rock stability prediction based on our improved KNN algorithm 

The prediction model is established using the training samples in reference [21]. There are 30 

cases used for training and 23 cases are used for testing. 

3.1. Influencing factors and surrounding rock stability prediction 

The surrounding rock stability prediction is provided to find the nonlinear relationship between 

the influencing factors and the surrounding rock stability. The surrounding rock which is 

influenced by many factors is a highly nonlinear complex dynamic system. Therefore, the internal 

and external factors affecting the surrounding rocks stability shall be considered. In addition, it is 

impossible and not necessary to consider all of the influencing factors in the prediction model at 

present. So according to a large number of on-site observation results and practical experience, 

with reference to literature [22], the representative factors-rock quality designation (RQD, %), 

rock uniaxial saturated compressive strength (𝑅 , MPa), rock integrity coefficient (𝐾 ), structure 

plane strength coefficient (𝐾 ) and the amount of underwater seepage (𝑊, L·min-1) are chosen as 

the influencing factors. 

According to China’s standard [22] and the domestic and international experience of 
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surrounding rock stability prediction [23], surrounding rock stability is divided into 5 levels. The 

five levels are labeled as I, II, III, IV and V respectively, as depicted in Table 1. 

Table 1. Levels of surrounding rock stability prediction 

No. Levels RQD (%) 𝑅  (MPa) 𝐾  𝐾  𝑊 (L·min-1) 

0 I 100-90 200-120 1.00-0.75 1.0-0.8 0-5 

1 II 90-75 120-60 0.75-0.45 0.8-0.6 5-10 

2 III 75-50 60-30 0.45-0.30 0.6-0.4 10-25 

3 IV 50-25 30-15 0.30-0.20 0.4-0.2 25-125 

4 V 25-0 15-0 0.20-0.00 0.2-0.0 125-300 

3.2. Normalization 

Since the range of each factor is significantly different, and the test results may rely on the 

values of a few factors, they are preprocessed using the normalization process [24]. The upper and 

lower margins of each factor and the process for the used normalization are computed as per 

Eq. (9), Eq. (10) and Eq. (11): 𝑦 =
𝑦 − 𝑦𝑦 − 𝑦 , (9)𝑦 = min 𝑦 = min

,⋅⋅⋅⋅⋅⋅, 𝑦 , (10)𝑦 = max 𝑦 = max
,⋅⋅⋅⋅⋅⋅, 𝑦 , (11)

where 𝑦 = (𝑦 ,𝑦 ,⋅⋅⋅⋅⋅⋅,𝑦 ) is each predictor. 

Accordingly, the value of each factor is normalized to between 0 and 1 based on the Eq. (9), 

Eq. (10) and Eq. (11). 

3.3. Criteria for our prediction approach performance 

The accuracy, computed based on the percentage of all test samples classified correctly, is used 

to evaluate the prediction performance of the surrounding rock stability. Accuracy tells us about 

the number of samples which are correctly classified, and it is defined as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
#𝑡𝑒𝑠𝑡𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦

#𝑡𝑒𝑠𝑡𝑠𝑎𝑚𝑝𝑙𝑒𝑠 , (12)

where the #𝑡𝑒𝑠𝑡𝑠𝑎𝑚𝑝𝑙𝑒𝑠  denotes the total number of test samples; the 

#𝑡𝑒𝑠𝑡𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 is the number of test samples that are classified correctly. 

3.4. Prediction of surrounding rock stability  

In this section, our proposed prediction model is pretested in 30 typical surrounding rock 

stability cases and tested in 23 typical surrounding rock stability cases. The neighborhood size 𝑘 

ranges from 1 to 10 with an interval of 1, which is inspired by Ref. [24]. The 30 typical surrounding 

rock stability cases are shown in Table 2 and the 23 typical surrounding rock stability cases are 

shown in Table 3. This prediction experiment is implemented in eclipse 3.7.2 by Java language 

programming, and the hardware environment is Inter Core i7-6700 CPU 3.40 GHz. 

As shown in Table 3, our proposed prediction model has high accuracy and reliability, and the 

prediction results of proposed prediction model are in good agreement with the actual results. The 

accuracy of our proposed prediction model is up to 91.30 %. This illustrates that our proposed 

prediction model is feasible to predict the surrounding rock stability, which shows that our 

proposed prediction model can be used to evaluate the stability of tunnel surrounding rock before 
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the design and construction of the tunnel engineering. 

Table 2. Training samples of surrounding rock stability 

No. RQD 𝑅  (MPa) 𝐾  𝐾  𝑊 (L·min-1) Level 

1 0.06 216.60 0.87 0.97 3.86 I 

2 0.05 241.78 0.90 0.95 0.19 I 

3 0.03 257.70 0.85 0.92 2.69 I 

4 0.03 244.65 0.85 0.93 3.06 I 

5 0.04 270.61 0.89 0.95 2.08 I 

6 0.20 158.00 0.68 0.82 6.36 II 

7 0.18 161.14 0.67 0.75 6.80 II 

8 0.15 148.70 0.69 0.78 7.33 II 

9 0.21 164.82 0.66 0.76 8.13 II 

10 0.18 188.49 0.63 0.83 7.81 II 

11 0.32 83.25 0.44 0.60 17.21 III 

12 0.32 76.82 0.48 0.63 17.92 III 

13 0.35 77.18 0.40 0.62 16.25 III 

14 0.31 85.11 0.38 0.60 15.74 III 

15 0.32 72.71 0.46 0.57 18.77 III 

16 0.31 73.89 0.43 0.56 16.45 III 

17 0.32 64.41 0.39 0.48 18.07 III 

18 0.36 61.14 0.42 0.53 15.10 III 

19 0.31 69.14 0.34 0.55 17.14 III 

20 0.29 77.34 0.47 0.56 19.36 III 

21 0.49 41.93 0.25 0.32 34.60 IV 

22 0.51 36.48 0.28 0.27 71.27 IV 

23 0.52 31.18 0.23 0.30 75.97 IV 

24 0.57 37.54 0.22 0.28 67.92 IV 

25 0.46 37.80 0.24 0.25 71.62 IV 

26 0.84 8.77 0.07 0.12 157.42 V 

27 0.76 13.06 0.08 0.15 200.26 V 

28 0.84 11.92 0.11 0.31 159.93 V 

29 0.73 7.65 0.08 0.75 173.72 V 

30 0.81 17.43 0.06 0.11 184.46 V 

Next, the prediction performance of our proposed prediction model is compared with other 

prediction models based on KNN algorithm [11], WKNN algorithm [15], DWKNN algorithm [16] 

and SVM algorithm [24]. The following prediction experiments will show whether our proposed 

prediction model will achieve better prediction performance. The comparison results between 

different prediction models are shown in Fig. 2 and Fig. 3. 

 
a) KNN algorithm 

 
b) WKNN algorithm 

 
c) DWKNN algorithm 

Fig. 2. Prediction results for our proposed approach compared with other approaches 

As it can be seen in Fig. 2 and Fig. 3, the prediction accuracy of our proposed prediction model 

is somewhat better than the prediction accuracy of the prediction models based on KNN, WKNN 
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and DWKNN algorithms in almost all of the test cases. It also shows that our proposed prediction 

approach performs better than other approaches with the increasing of the neighborhood size 𝑘. It 

can be found that the accuracy of our proposed prediction model is the highest when the 

neighborhood size 𝑘 is 6, and our proposed prediction model achieves an accuracy of 91.30 %. 

This result suggests that our proposed prediction model based on the improved KNN algorithm 

has the robustness to the sensitivity of different choices of the neighborhood size 𝑘 with a good 

prediction performance in predicting the surrounding rock stability. 

Table 3. Test samples of surrounding rock stability 

No. RQD 𝑅  (MPa) 𝐾  𝐾  𝑊 (L·min-1) Level 
Prediction results using 

our proposed model 
Comment 

1 0.26 36.0 0.22 0.35 5.0 IV IV Right 

2 0.50 40.2 0.50 0.50 10.0 III III Right 

3 0.52 25.0 0.20 0.50 5.0 III III Right 

4 0.71 90.0 0.35 0.30 18.0 II II Right 

5 0.24 12.5 0.13 0.18 125 V V Right 

6 0.78 90.0 0.57 0.45 10.0 II II Right 

7 0.50 70.0 0.50 0.25 5.0 III II Fault 

8 0.42 25 0.22 0.35 12.5 IV IV Right 

9 0.32 20.0 0.23 0.25 46.0 IV IV Right 

10 0.51 26.0 0.26 0.35 20.0 III III Right 

11 0.76 90.0 0.45 0.52 8.0 II II Right 

12 0.22 13.5 0.10 0.15 135 V V Right 

13 0.80 95.0 0.50 0.45 0.0 II II Right 

14 0.35 70.5 0.35 0.30 10.0 III III Right 

15 0.50 90.0 0.50 0.25 5.0 III III Right 

16 0.05 93.0 0.60 0.50 0.0 II II Right 

17 0.20 10 0.18 0.19 130 V V Right 

18 0.30 70.0 0.40 0.20 10.0 III IV Fault 

19 0.85 92.0 0.70 0.50 10.0 II II Right 

20 0.40 25 0.28 0.35 35 IV IV Right 

21 0.87 95.0 0.50 0.45 0.0 II II Right 

22 0.41 20 0.25 0.3 30 IV IV Right 

23 0.24 13.4 0.15 0.16 120 V V Right 

 
Fig. 3. Surrounding rock stability prediction results with different neighborhood sizes 

In addition, support vector machines algorithm is regarded as a simple and effective 

classification method based upon the statistical learning theory. Consequently, the experiments 
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are also conducted to compare the prediction results based on the unimproved KNN algorithm and 

our improved KNN algorithm with the prediction result based on the SVM algorithm, as shown 

in Fig. 4. In this experiment, the neighborhood size 𝑘 is fixed as 6. 

 
a) Unimproved KNN algorithm 

 
b) Improved KNN algorithm 

Fig. 4. Prediction results based on different prediction models 

As it can be seen in Fig. 4, the test samples are predicted by using the traditional KNN 

algorithm and our improved KNN algorithm when 𝑘  is fixed as 6, and the accuracy of our 

improved prediction model is maximized and obtains good prediction results. The accuracy of the 

prediction results based on the unimproved KNN algorithm and our improved KNN algorithm are 

82.60 % and 91.30 %; while the accuracy of the prediction results based on the SVM with linear 

kernel, polynomial kernel, radial basis function kernel, sigmoid kernel and string Kernel are 

86.95 %, 82.60 %, 82.60 %, 73.91 % and 69.56 %, respectively. Consequently, the results 

obtained using our improved KNN algorithm are stable, and the method offers higher prediction 

accuracy than the SVM algorithm. 

4. Engineering application of our proposed prediction model 

It is well known that the classification of surrounding rock stability can be realized by both 

theoretical method and finite element method; however, the two methods are complicated in 

engineering application, and the evaluation efficiency is low. Therefore, a prediction model based 

on improved KNN algorithm is proposed in the previous section. In this section, our proposed 

prediction model is used to predict the surrounding rock stability, and the predicted results are 

compared with the theoretical method and finite element method. 
To determine the performance of our proposed prediction approach based on improved KNN 

algorithm in engineering applications, some experiments were also conducted to see the prediction 

performance for evaluating the tunnel surrounding rock stability along the high-speed railway 

from Jakarta to Bandung in Indonesia, and the prediction results were compared with the results 

computed by the finite element method. The reason for our study using the finite element method 

is that tunnel instability is an elastoplastic problem and complex nonlinear mechanics problem, 

and the mechanism of tunnel instability is rather complex, so suitable or convenient mechanics 

models are not available. Therefore, the analytical solution cannot be realized, while the finite 

element method can accurately simulate the tunnel instability process. The geological distribution 

of our research region is as shown in Fig. 5. 

The tunnel engineering of our study is located in a legend along the high-speed railway from 

Jakarta to Bandung in Indonesia. Our research group participated in the seismic safety assessment 

of the high-speed railway from Jakarta to Bandung in Indonesia, and accumulated a large number 

of field survey data. The research region, dominated by mountainous regions, is mainly formed 

on the surface of an obduction plate due to the eruption of Cenozoic island arc volcanic rocks 
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(basalt and andesite). Bangka and Belitung Islands are composed of Triassic intrusive rocks and 

Sedimentary rocks as the basement. Tunnels destruction cases along the railway are shown in 

Fig. 6. 

 
Fig. 5. Geological distribution of our research region 

   
Fig. 6. Tunnels destruction cases along railway 

4.1. Finite element model of tunnel surrounding rock  

In this section, the finite element model of the tunnel surrounding rock is established, and the 

surrounding rock stability levels are determined by changing the different influencing factors.  

The tunnels along the high-speed railway from Jakarta to Bandung in Indonesia were chosen 

as the research object, and the finite element model was established. The finite element model of 

the tunnel surrounding rock is established using ANSYS software, as shown in Fig. 7. The model 

length is 150 m, the height is 130 m and the thickness is 12 m. The vertical distance is 32 m 

between the tunnel bottom and the model bottom. The tunnel length is 20 m and the height is 20 m. 

The element type is SOLID185, and the Mohr-Coulomb elasto-plastic model is used to simulate 

the stress-strain behavior of the rock. The model is divided into 13120 grid cells. Fixed constraint 

is applied at the bottom of the model. Meanwhile, in order to avoid the reflection of the model 
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boundary to the stress wave, non-reflecting boundary conditions are applied to the top and sides 

of the model to simulate infinite boundaries. 

  
Fig. 7. Finite element model 

The physical and mechanical parameters of the model materials are mainly obtained by on-site 

investigation and laboratory tests, as shown in Table 4. The surrounding rock stability cases along 

the high-speed railway are shown in Table 5. 

Table 4. Physical and mechanical model parameters 

Type 
Gravity density 

(kN/m3) 

Internal friction 

angle (°) 

Cohesion 

(MPa) 

Elasticity 

modulus (GPa) 

Poisson’s 

ratio 

Tensile strength 

(MPa) 

Material 1 23.8 37 0.6 2.6 0.327 3.02 

Material 2 22.7 28 0.3 1.9 0.342 1.68 

Table 5. Surrounding rock stability cases along high-speed railway 

No. RQD 𝑅  (MPa) 𝐾  𝐾  𝑊 (L·min-1) 

1 0.52 25.0 0.22 0.52 12.0 

2 0.41 25.0 0.22 0.35 12.5 

3 0.28 26.0 0.32 0.30 18.0 

4 0.41 20.0 0.25 0.30 30.0 

5 0.76 132.0 0.78 1.85 3.5 

6 0.20 10.0 0.18 0.19 130.0 

7 0.80 100.0 0.58 1.70 8.0 

8 0.22 13.5 0.10 0.15 135.0 

9 0.51 45.0 0.35 0.50 5.0 

10 0.50 40.5 0.38 0.55 10.5 

11 0.24 16.5 0.15 0.15 125.0 

12 0.91 132.0 0.83 0.85 5.5 

4.2. Evaluation index of surrounding rock stability 

The test signal changes when a fracture occurs inside the rock. The damage degree inside the 

rock can be determined by extracting the location of the mutation point in the signal and 

determining its singularity (or smoothness). In our study, energy ratio variation deviation (ERVD) 

is used to assess the surrounding rock stability levels. Wavelet energy spectrum can be constructed 

by transforming the frequency band energy ratio variation (ERV), and a quantitative correlation 

is available between wavelet energy spectrum and rock mass damage pattern. According to the 

change of frequency band energy ratio variation, the damage degree of the surrounding rock could 

be assessed as shown in Eq. (13): 𝐸𝑅𝑉 = 𝐸𝑅𝑉 = 𝑃 − 𝑃 ,      𝑗 = 0,1,2,⋅⋅⋅⋅⋅⋅, 𝑘 − 1. (13)

where 𝐸𝑅𝑉  is the change of energy ratio in the 𝑗 frequency band of the wavelet frequency band 

energy spectrum; 𝑃  and 𝑃  are the energy ratios in the 𝑗 frequency band. 
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On the basis of ERV, the energy ratio deviation (ERVD) of the surrounding rock stability 

levels based on wavelet energy spectrum is defined as shown in Eq. (14): 

𝐸𝑅𝑉𝐷 = 𝐸𝑅𝑉𝐷 = (𝐸𝑅𝑉 − 𝐸𝑅𝑉 ) , (14)

where, 𝐸𝑅𝑉𝑗 is the average of the energy ratio of each frequency band. 

 
a) Monitoring point 1 

 
b) Monitoring point 2 

 
c) Monitoring point 3 

 
d) Monitoring point 4 

 
e) Monitoring point 5 

Fig. 8. Frequencies band energy of different monitoring points 

In order to analyze the sensitivity of ERVD index to surrounding rock damage, the 

wavelet-band energy estimation of the surrounding rock with different influencing factors is 

conducted by setting different monitoring points in different positions of surrounding rocks. A 
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surrounding rock case is selected where five monitoring points are set. And the frequency band 

energy of the different monitoring points was first computed as shown in Fig. 8. 

As shown in Fig. 8, the frequency band energy of different monitoring points increases with 

the increase of the surrounding rock stability levels. This demonstrates that the frequency band 

energy increases when the surrounding rock stability decreases. Consequently, the surrounding 

rock damage degree can be assessed by the change of the frequency band energy. 

The frequency band energy of surrounding rock level I is selected as the reference value, and 

the energy ratio variation deviation of the surrounding rock levels II, III, IV and V can be 

computed. Twelve surrounding rock cases (Table 5) were selected, besides each surrounding rock 

sample included five monitoring points. Then, the ERVD of the different monitoring points was 

computed as shown in Fig. 9. 

 
Fig. 9. ERVD of different monitoring points 

As shown in Fig. 9, the surrounding rock stability levels can be determined by the ERVD index. 

The ERVD value of the level II ranges from 0 to 0.06; that of the level III ranges from 0.06 to 

0.12, and of the level IV ranges from 0.12 to 0.18. The surrounding rock stability level is V when 

the ERVD is greater than 0.18, which shows that the surrounding rock has a certain failure.  

In order to further verify the accuracy of the surrounding rock stability prediction, stress 

nephograms of the tunnel with different surrounding rock stability levels are given as shown in 

Fig. 10. 

As shown in Fig. 10, it can be found that stress states varied under different surrounding rock 

stability levels. And the stress of the tunnel surrounding rock with level V is the greatest; it 

demonstrates that the tunnel surrounding rock with level V is the most unstable. Therefore, the 

surrounding rock stability prediction can be determined using a stress nephogram by combining 

with the ERVD index, which can be compared with the results of our proposed prediction model 

and can confirm the accuracy of the results of our proposed model. 

4.3. Surrounding rock stability prediction of tunnel engineering 

To assess the surrounding rock stability along the high-speed railway from Jakarta to Bandung 

in Indonesia, our proposed prediction model which is obtained 30 typical training samples to 

classify the surrounding rock stability levels was used. And the classified results obtained by our 

proposed prediction model and finite element method are compared as shown in Table 6.  
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a) Surrounding rock stability level I b) Surrounding rock stability level II 

 
c) Surrounding rock stability level III 

 
d) Surrounding rock stability level IV 

 
e) Surrounding rock stability level V 

Fig. 10. Stress contour of tunnel with different surrounding rock stability levels 

As shown in Table 6, our proposed predicted model can be accurately classified in terms of 

the surrounding rock stability, and is divided into five levels (I, II, III. IV, and V) according to the 

damage degree, and our proposed prediction model almost achieves the best performance 

compared to the finite element method. The prediction accuracy is up to 91.67 % which further 

demonstrates that our proposed prediction model can be used to the surrounding rock stability 

discrimination for the tunnel engineering hazard safety assessment. 

4.4. Surrounding rock stability prediction by laboratory test 

To further evaluate the performance of our proposed prediction model based on the KNN 

algorithm in a surrounding rock stability analysis, a laboratory test which can reproduce the failure 

process of the tunnel surrounding rock is also conducted to see the prediction performance for 

different states of the tunnel surrounding rock stability. 
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Table 6. Test samples of surrounding rock stability 

No. RQD 
𝑅  

(MPa) 
𝐾  𝐾  

𝑊 

(L·min-1) 

Finite 

element result 

Our proposed 

prediction model 
Comment 

1 0.52 25.0 0.22 0.52 12.0 II II Right 

2 0.41 25.0 0.22 0.35 12.5 II II Right 

3 0.28 26.0 0.32 0.30 18.0 III III Right 

4 0.41 20.0 0.25 0.30 30.0 III III Right 

5 0.76 132.0 0.78 1.85 3.5 V V Right 

6 0.20 10.0 0.18 0.19 130.0 IV IV Right 

7 0.80 100.0 0.58 1.70 8.0 I III Fault 

8 0.22 13.5 0.10 0.15 135.0 IV IV Right 

9 0.51 45.0 0.35 0.50 5.0 II II Right 

10 0.50 40.5 0.38 0.55 10.5 II II Right 

11 0.24 16.5 0.15 0.15 125.0 V V Right 

12 0.91 132.0 0.83 0.85 5.5 I I Right 

In this experiment, Fiber Bragg Grating (FBG) sensor technology is used to monitor vibration 

signals during the surrounding rock stability damage. The equipment is Fiber Bragg grating 

dynamic signal acquisition instrument (SM130), as shown in Fig. 11. 

  
Fig. 11. Fiber Bragg grating dynamic signal acquisition instrument 

The size of the test model is 1.5 m×1.22 m×0.3 m, and the model is poured in strict accordance 

with the design ratio. That is, the sand to cement ratio is 5:1. After pouring, standard maintenance 

is carried out according to the specifications. The simulation of geological structures, such as fault 

joints, fracture zones and fractures, is a complex problem, and the simulation method is to reduce 

the modulus and strength of elasticity. In the laboratory test, the stability of tunnel surrounding 

rock roof is analyzed with the simulation of three stable states of the surrounding rock which is in 

the stable state, damage state and fail state using three models. And the three stable states refer to 

surrounding rock stability level I, surrounding rock stability level III and surrounding rock 

stability level V, respectively. The tunnel surrounding rock models are shown in Fig. 12. 

The scaling law between our test model and the real cases follow the Buckingham Pi theorem 

[25] In our experiment, similar material was developed based on the tunnel material of the high-

speed railway from Jakarta to Bandung in Indonesia. The similarity coefficients simulating a 

tunnel surrounding rock are shown in Table 7. 

In the laboratory test, the laboratory test results are compared with our proposed prediction 

results based on the improved KNN algorithm, and the comparison results are shown in Table 8. 
As seen in Table 8, our proposed prediction model based on the improved KNN algorithm 

achieves the best performance compared to the laboratory test results. The prediction accuracy is 

up to 100 % that demonstrates that our proposed prediction model can be used for the surrounding 

rock stability prediction before the tunnel construction. 
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Fig. 12. Tunnel surrounding rock model  

Table 7. Similarity coefficients 

Physical quantity Similarity constants 

Stress 5 

Elasticity modulus  5 

Poisson’s ratio 1 

Cohesion 1 

Unit weight  1 

Internal friction angle  1 

Displacement 5 

Table 8. Comparison between laboratory test results and our proposed prediction results 

No. RQD 
𝑅  

(MPa) 
K  K  

𝑊 

(L·min-1) 

Laboratory test 

result 

Our proposed 

prediction model 
Comment 

1 0.51 40.2 0.38 0.55 10.5 III III Right 

2 0.97 180 0.94 0.95 1.3 I I Right 

3 0.95 160 0.88 0.90 2.5 I I Right 

4 0.25 15.0 0.20 0.20 125.0 V V Right 

5 0.13 7.5 0.10 0.10 212.5 V V Right 

6 0.50 30.0 0.30 0.40 25.0 III III Right 

5. Conclusions 

In our study, a KNN algorithm based on the grouped center vector was proposed, and then a 

prediction model was established using our improved KNN algorithm, and the prediction model 

was applied to the surrounding rock stability prediction of a high-speed railway tunnel. Finally, 

an indoor model experiment was conducted to assess the prediction performance for the 

surrounding rock stability of the high-speed railway tunnel including stability and instability. 

Extensive experimental results show that our proposed prediction model achieves much better 

prediction performance to the surrounding rock stability. The main conclusions are as follows. 
1) A prediction model of the surrounding rock stability was proposed based on our improved 

KNN algorithm, and the experimental results demonstrate that the effectiveness of our proposed 

prediction model. Our proposed prediction model can be used to assess the damage extent of the 
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tunnel to guide its reinforcement.  

2) On the basis of our proposed prediction model, the surrounding rock stability of the tunnels 

along the high-speed railway is predicted. The surrounding rock stability prediction results 

between our proposed prediction model and the finite element method match well, and will 

provide an important contribution to predicting the surrounding rock stability. 

3) Laboratory test is conducted for simulating the progressive failure process of the tunnel 

surrounding rock roof, and the test results show that the prediction accuracy is up to 100 %. This 

demonstrates that our proposed prediction model can also be used to the surrounding rock stability 

prediction before the tunnel construction. 
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