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Application of the Mie theory of light scattering to measurements of the turbidity ratio and the 

wavelength exponent provides an easy method for estimating particle size distributions of nonab- 

sorbing isotropic spheres in the micrometer to submicrometer range. Combining both these light- 

scattering techniques not only allows one to analyze particle sizes which are too large for quasi-elastic 

light scattering and too small for optical microscopy, but can be accomplished with only two turbidity 

measurements and no prior knowledge of the particle volume fraction. An algorithm is presented for 

constructing turbidity spectra, for any system of known optical constants and known distributional 

form, which can be used to easily determine the mean diameter and standard deviation of an unknown 

distribution. Using this algorithm, size-distribution curves were obtained from turbidity measurements 

at two widely separated wavelengths. These distributions are in agreement with distributions deter- 

mined from scanning electron microscopic analysis. 

1. INTRODUCTION 

The Mie theory of light scattering offers 

an attractive means of studying dispersions 

of fine particles. The principal advantages of 

light scattering as a method of particle size 

analysis include: 

(a) Measurements are rapid and simple. 

(b) Sampling problems are minimized 

since the method is employed in situ. 

(c) Measurement causes no disturbance 

of the system which is simply illuminated 

with a beam of light. 

(d) Independence of  the system being 

studied; it does not matter whether the dis- 

tribution of particle sizes was altered by 
creaming or flocculation, or from their com- 

bined effects. 
Many investigators (1-8) have developed 

various turbidity techniques to determine the 

polydispersity of colloidal suspensions. The 

particle size distributions estimated from 

these turbldimetric methods were found to 

be in good agreement with other techniques, 

such as the scanning electron microscope and 

the Coulter counter. In each case, either a 

measurement of the particle volume fraction 

was required along with two turbidity read- 

ings, or turbidity measurements from at least 

three wavelengths were necessary. A turbid- 

ity technique has not been developed to es- 

timate the particle size distribution of sys- 

tems with an unknown volume fraction from 

only two turbidity readings. A technique of 

this type would be extremely useful in de- 

termining size-distribution curves of floccu- 

lating emulsions during centrifugation since: 

(a) Previous ultracentrifuge data analysis 

methods have not accounted for the forma- 

tion of aggregates (9). 

(b) The volume fraction continually de- 

creases during centrifugation, and conse- 
quently remains unknown after the initial 
start-up. 

(c) Only two turbidity measurements can 

be taken simultaneously on a conventional 

ultracentrifuge without upgrading the system 

with expensive electronic hardware. 

This paper describes a turbidimetric 

method for determining the particle size dis- 
tribution from only two turbidity measure- 
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162 M E L I K  A N D  F O G L E R  

ments. By combining two light-scattering 

parameters, the turbidity ratio and the rate 

at which turbidity changes with wavelength 

(called the wavelength exponent), either a 

one- or a two-parameter distribution can be 

estimated if the form of the distribution is 

known or can be assumed. The first part of 

this paper is a fundamental review of pre- 

vious work, and is included for the sake of  

completeness. 

In order to appraise the proposed turbidity 

technique, size-distribution curves estimated 

from this turbidimetric method are com- 

pared with distributions obtained from scan- 

ning electron micrographs. 

2. T H E O R Y  

2.1.  T u r b i d i t y  

The turbidity, r, of a suspension of par- 

ticles is a measure of the reduction in inten- 

sity of the transmitted beam due to scatter- 

ing. The turbidity is defined by (10) 

r = ] In , [1] 

where l is the scattering path length and, I0 
and I are the intensities of the incident and 

transmitted beams, respectively. In terms of 

the optical density D of the suspension 

r = 2 . 3 0 3 D / l .  [2] 

For a monodisperse system of nonabsorb- 

ing isotropic spheres in the absence of mul- 

tiple and dependent scattering the turbidity 

is given by (10) 

r = rrNr2Q(r,  X, m) ,  [3] 

where r is a function of the particle concen- 

tration, N, the particle radius, r, and the scat- 
tering coefficient, Q, which is defined as the 

ratio of the scattering to geometrical cross 
sections. The scattering cross section is the 

total radiation scattered by a single sphere 
from an incident beam of unit intensity. This 

scattering coefficient is, in turn, a function 

of the particle size, the ratio of the refractive 

index of the particles #p to the refractive in- 

dex of the medium #m, denoted by m, and 

the wavelength of the incident wave in the 

dispersing medium, k. The wavelength k is 

equal to k0/#m, where k0 is the wavelength 
in air. The scattering coefficient is calculated 

using the Mie theory of light scattering and 

will be discussed later. 

By introducing a dimensionless particle 

size c~ 
2rrr 

ol = [41 
k 

the scattering coefficient becomes a function 

of a and m only. Using this variable, Eq. [3] 

is rewritten to give 

N o t 2 ~  2 
~- - - -  Q(a ,  m).  [5] 

4r  

Incorporating the volume fraction $ given by 

4 r r  3 ot3~k 3 

= T N = 6r-- 5- N [6] 

into Eq. [5] and rearranging yields a dimen- 

sionless turbidity 

rX 3r  Q(a, m) 
- -  = [7] 
4, 2 a 

In Fig. 1, the dimensionless turbidity for 

m = 1.10, 1.15 is plotted up to a = 26.0. 
This figure covers the range of colloidal sizes 

that are most likely to be investigated by light 

2.0C 

1.0C 

o.5oi 

0.30 

020 
Lx 

o.)o 

0.05 

0.05 

0.02 

0.0t 

= . 

0,5 t.0 2.0 3.0 5.0 |0.0 20 50 
Ot 

FIG. 1. D i m e n s i o n l e s s  t u r b i d i t y  o f  a m o n o d i s p e r s e  

sys tem.  
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PARTICLE SIZE DISTRIBUTIONS BY TURBIDIMETRY 163 

scattering, and is applicable up to particle 

radii of 2.0/~m for green light in water. For 

this range the multivaluedness is reduced to 

a possibility of two values. Measurements at 

two wavelengths allow one to decide un- 

ambiguously whether one is operating on the 
ascending or descending branch of these 

curves, and by comparison with the theoret- 

ical curve, the particle size can be obtained. 

2.2. Wavelength Exponent 

This method makes use of the dependence where 

of the turbidity on the wavelength of the in- 

cident beam. This wavelength effect is influ- 

enced most directly through the variation of 

Q(a, m) with a and, more subtly, by the dis- 

persion of the refractive index with wave- 

length. 

For a monodisperse system of nonabsorb- 

ing isotropic spheres in the absence of mul- 

tiple and dependent scattering, the exponent and 

g, associated with Xo, is given by (11) 

T 

- = [81 

where 

k = 3~r#m X~-~ Q(a, m). [91 
2 a 

For any given m, #m, and ~0, the wavelength 
exponent will have a value of 4 for Rayleigh 

scatterers (2a[m - 1 ] <~ 1), will decline with 

increasing particle size until it reaches zero, 

and will subsequently assume negative val- 

ues. As long as the wavelength exponent re- 

mains single valued, it can be used to deter- 

mine particle sizes. 

To derive the manner in which the tur- 

bidity changes with wavelength, one takes the 

negative of the derivative of In (T/b) with 

respect to In X0, at a constant value of  the 
particle size a. This gives 

d In (r/b) d In k 
d lnXo - g d lnXo no, [10] 

where the experimental exponent no is ob- 
tained from the slope, at a selected wave- 

length, of a In (r/b) versus In ~o plot. If only 

an approximate particle size is desired, no 

could be used in place of g in Eq. [8] (12). 

In order to translate the exponent obtained 

experimentally into accurate particle size de- 

terminations, it is necessary to evaluate no 

as a function of a and m using the Mie scat- 

tering theory. 

Since gin, m, and a are functions of Xo, 

inserting Eq. [7] into Eq. [10] gives 

no = n(a, re)F, - P(ot, m)F2, [11] 

rO In Q(a, m)] , 
n(a, m) = L Oi-nn~ Jm [12] 

P(a, m) = [0 In Q(a, rn)] [13] 
am , '  

F] = 1 dln__~m I , [14] 
d In Xo I x0 

dm I F2 = dVnx0 [151 

The correction terms F~ and F2 depend on 

the optical properties of the particles and the 

medium (analytical expressions for F~ and 

F2 are given in Appendix B); while n(a, m) 

and P(a, m) can be calculated from theoret- 

ical Q(a, m) values. These calculations will 

be considered later. 

The wavelength exponent no is plotted in 
Fig. 2 for various values of the particle size 

a. A plot of this type enables a determination 
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FIG. 2. Wavelength exponent of a monodisperse sys- 

tem for incident light of 546.1 nm in a water medium 
at 25°C. 
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of the particle size parameter from a mea- 

surement of the experimental exponent at 

h0 = 546.1 nm for systems in a water medium 

(i.e., #,, = 1.33). For other wavelengths, sim- 
ilar plots need to be constructed. 

2.3. Polydispersions 

The above development is applicable only 

for dispersions of uniform particle size. We 
now turn to the problem of determining the 

distribution of particle sizes by turbidity 
when the spheres comprising the dispersion 
are no longer of nearly the same size. 

Since the turbidity of a polydispersion is 
the sum of all the contributions over the var- 

ious particle sizes, the turbidity of the total 

distribution expressed in integral form is (10) 

N)~2 f~o 
r = ~ do azf(at)Q(at, m)dat, [16] 

where f(at)dat is the number fraction of par- 
ticles with a size between at and at + da. 
Equation [ 161 can be put into a more tract- 
able form by incorporating the volume frac- 
tion ~b. The volume fraction of the particles 
in the suspending medium is related to the 

particle concentration by 

41rN f0 °~ 4) = T raf(r)dr" [17] 

Since f(at)da = fir)dr, in terms of the particle 
size parameter at this becomes 

N•3 at3f(at)da. [ 18] 
¢ = 6~r--- 5- 

Inserting Eq. [18] into Eq. [16] and rear- 
ranging gives a dimensionless turbidity 

rX 3r atzf(at)Q(at, m)dat 
- -  = .fo~ [19]  
4) 2 a3 f ( at )dot 

Since, in general, the volume fraction is 
either known only approximately or not at 
all, it can be eliminated by taking a ratio of 

turbidities 
lengths 

at two widely separated wave- 

- -  ~ ) , 1  

Efo  3,,o,4 
Equation [20] is known as the turbidity ratio 

for a polydisperse system of spherical parti- 

cles. Knowing the distribution of particle 

sizes fiat), the expected turbidity ratio can be 
computed. However, the real problem lies in 

finding the unknown distribution from a se- 
ries of turbidity ratio readings. 

The corresponding wavelength exponent 
for a polydisperse system is obtained by sub- 

stituting Eq. [19] into Eq. [101 to give an 
average exponent 

( r OQ(a, m) 
~FmJo at2f(°t)0~n~- da 

fo ~ dQ(a, m) } - F2 at2f(~) ~mm dat 

~I ~ aZf(a)Q(a, m)da 

[211 

Incorporating the definitions of n(a, m) and 
P(a, m), given by Eqs. [12] and [13], respec- 
tively, the final form of the wavelength ex- 
ponent becomes 

no 

FIfo ® a2f(a)Q(o¢ m)n(a, m)da 

-F2fo°~a2f(a)Q(a,m)P(a,m)da} 

fo ° a2f(a)Q(a, m)dat 

[22] 
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Just as in the case of the turbidity ratio, if  

the distribution of  particle sizes is known, 

the expected wavelength exponent can be 

calculated. However, the objective is to use 

the experimentally observed exponent to ob- 

tain the unknown distribution. 

2.4. Calculation of Q(a, m), n(a, m), 
and P(a, m) 

The scattering coefficient Q(a, m) is gen- 

erally computed from the rigorous Mie the- 

ory and can be expressed in the form (10) 

2 ~ 
Q(a, m) = _-5.2 Z (2n + 1) 

Og n = l  

x {la,I 2 + Ib,12}, [23] 

where a,  and b, are complex functions of  

a and m. Except for small, a < 0.6, and large, 

a > 25.0, particles, Eq. [23] should be used 

to accurately calculate Q. Scattering coeffi- 

cients for colloidal systems are tabulated 

quite extensively in the literature (13-15). 

For small and large particles, approximation 

formulas, which are accurate within at least 

1% of the values calculated from Eq. [23], 

can be used without any major loss of  ac- 

curacy. For a < 0.6, the approximate relation 

of Schoenberg and Jung can be used (16) 

8 .F m 2 -  1] 2 
Q: 2j 

6 2Frn 2 -  23l 
× l + g a L ~ . ] ~ .  [24] 

For a > 25.0 and 1 < m _< 1.25, the equation 

of Van de Hulst can be applied (16) 

16m 2 sin p 4(1 - m cos o) 
Q = 2  + 

(m + 1)2p p2 

+ 7.53 (z - m) a_.772 ' [25] 
(z + m) 

where 

and 
o= 2 a ( m -  1), 

Z = [ ( m  2 --  l)(6oL/a-) 2/3 + 1] 1/2. 

[26] 

[271 

(Note: Van de Hulst's approximation is ac- 

tually correct within 1% for p > 2.4, but in 

this work is used only for a > 25.0.) The light 

scattering coefficient Q(a, m) is plotted in 

Fig. 3 for various values of  the particle 

size p. 

Equation [ 12] is used to calculate n(a, m) 

and Eq. [13] to calculate P(a, m). For a 

< 0.6 and a > 25.0, analytical formulas are 

derived from Eqs. [24] and [25]. For inter- 

mediate a values, numerical differentiation 

is employed to calculate the derivatives from 

tabulated Q(a, m) values. A central deriva- 

tive formula was selected as the most accu- 

rate method for deriving n(a, m) and P(a, m) 

(17) 

dy = (1/60h)[45(y, - Y-l) 
dx 

- 9(y2 - y-z) + (Y3 - Y-3)], [28] 

where h is the constant interval between suc- 

cessive a values for n(a, m) or successive m 

values for P(a, m). The quantities Yu and y_, 

are the In Q(a, m) values pertinent to the 

a or the m values which follow and precede, 

respectively, by u unit intervals, the a or the 

m value to be considered. 

3. DEVIATIONS F R O M  IDEALITY 

Since it is difficult to choose experimental 

conditions which are in agreement with the 

assumptions underlying scattering theory, it 

3.0 
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Q,Q* 
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, 5 /  ,... ...... % 
t.O / m--t.15 
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0 t i i i i i J , i i i , i i i i i 1 i i i i i 
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P 

FIG. 3. Values of  the light scattering coefficient Q, and  

of  the corrected coefficient, Q*, for the case where ~o 

= 2.04 °. 
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is usually necessary to apply a number of 

corrections. A detailed discussion of the pos- 

sible errors involved in turbidimetry is given 

elsewhere (18, 19); however, the more im- 
portant errors and corrections relative to this 

work will be reviewed, and the instrumental 

requirements discussed. 

3.1. Instrumentation 

One notes from Eq. [1 ] that a light-trans- 

mission optical system (transmissometer) 

must measure the ratio Io/I in order to de- 

termine the turbidity r. A primary concern 

here is that I is the light energy which has 

traveled the path length l and which has not 
been scattered. This implies that an ideal in- 

strument will not measure any of the light 

that is scattered. However, since scattering 

occurs in all directions, no such instrument 

exists. All transmissometers will accept scat- 

tered light to some degree; consequently, 

some error results. 

The effect of scattered light on turbidity 

measurements is characterized by a "finite 

angle of acceptance," w (20). The angle w is 

equal to one-half the sum of the divergence 

or convergence of the primary beam, 20s, and 

the angle subtended by the detector with ref- 

erence to the center of the scattering volume, 

20d. To the extent that w is not zero, the 

detector will also be accepting any scattered 

light which falls within its field of view. This 

results in a measured turbidity r* which is 

less than the true turbidity r by some amount 

6, which implies an error in the measurement 

oflo/L Therefore, the angle w should be kept 

as small as possible. Moreover, secondary 

scattered light from outside the suspension 

volume which is illuminated by the incident 

beam should also be prevented from reaching 

the detector. 
Of the various optical systems which have 

been used in light-transmission experiments, 

the lens-pinhole system shown in Fig. 4 is 

preferred for three reasons (21-23): 

(a) The exact value for the detector's half- 

angle 0d can be calculated from a direct mea- 

surement of the diameter of the pinhole and 

the focal length of the lens. Referring to Fig. 

4, light from the monochromator A is fo- 

cused into a nearly parallel beam by lens Ll. 

Beam stop B~ determines the diameter of the 

light beam, which then passes through the 

optical cell (cuvette) C. BE serves to eliminate 

secondary scattered light and lens L2 focuses 

the beam at the pinhole, which is located at 

the focal length of this lens. The pinhole must 

be large enough to permit all the light in the 

focused beam to pass through and fall on the 

cathode of the phototube P. The value of 

0d is equal to the arc tangent of a/f, where 

a is the radius of the pinhole and f the focal 

length of lens L2 (24). 
(b) The value of 0d is constant and inde- 

pendent of the location of the illuminated 

particle in the path of the beam or in the 

fringes of the beam, so long as the diameter 

of lens L2 satisfies the condition 

2az 
DLz >--- 7 + Db' [29] 

where DL2 is the diameter of lens L2, z the 

distance between lens L2 and the most re- 

mote particle in the beam, and Db the di- 

9 

S~ 

38mm - ",= z = 9 0 m m ~  f = 73rnm '*'~ 

B I B 2 

FIG. 4. Schematic of lens-pinhole optical system. 
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INCIDENT BEAM 

SPHERICAL 
PARTICLE 

LIQUID MEDIUM 

SCATTERED LIGHT 
TO DETECTOR 

0; 

CELL BOUNDARY 

FiG. 5. Effect of dispersing medium on the half-angle of the detector. 

ametcr of the light beam as determined by 

beam stop B~. 

(c) The lens-pinhole optical system prac- 

tically excludes all stray light from the pho- 

totube. 

When transmission measurements are 

being made on a liquid dispersion of immis- 

cible particles, one must account for the de- 

flection of the scattered light upon crossing 

the boundaries of the cell as shown in Fig. 

5 (22). Applying Snell's law of refraction (25) 

to Fig. 5, and noting that all is usually quite 

small, the value of 0d for particles in a liquid 

medium is given by 

0a 
0. = - - ,  [30] 

where 0'a is the angle measured by the ratio 

a/f, and #m is the refractive index of the 
medium. 

In addition, since a point source is phys- 

ically impossible, a perfectly collimated in- 

cident beam is not feasible. The light beam 

either slightly converges or diverges from a 

perfectly collimated path as shown in Fig. 6. 

This effect can be corrected by measuring the 

half-angle of divergence or convergence, 0s, 

also shown in Fig. 6, and adding this half- 

angle to the detector's to obtain the total fi- 

nite angle of acceptance o:. 

The angular size of this divergence or con- 

vergence, 0s, is determined from the dimen- 

sions of the exit slit St and the dimensions 

of the light beam at a point downstream from 

slit $1; for example, at beam stop B1. (An 

example of this calculation is given in the 

experimental section.) Just as in the case of 

the detector's half-angle, one must account 

for the light deflected upon crossing the cell 

boundaries by using a relationship analogous 

to Eq. [30]. Finally, it should be pointed out 

that the detector's half-angle should be larger 

than the divergence or convergence of the 

primary beam to ensure that all of the beam 

energy will arrive at the phototube. 

~ .e - " -~-~  (Diverc.lincj Case) 

Inciden, ~ ] _ j ~ / - - ~ ~ S  (Converging Case) 

.eom I 
St 

FIG. 6. Divergence or convergence of the primary beam. 
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3.2. Correcting for Scattered Light 

Even when w is kept small the influence 

of scattered light on the turbidity may be im- 

portant; it should be taken into account as 

soon as o~a > 0.2 (~o measured in radians). 

Fortunately, it suffices to apply a correction 

to Q(a, m), as long as w is kept small 

(c0 < 5°). The correction CQ for scattered ra- 

diation falling on the detector, to be sub- 

tracted from Q, is given by 

CQ = a -2 [i1(() + iz(O] sin (d(, [31] 

which is deduced from basic scattering 

theory (10). The sum [il(() + h(O] is the total 

intensity of light scattered in a direction de- 

fined by the angle ( when the incident wave 

is of unit intensity. The angle ( is the angle 

between the direction of observation and the 

direction of the primary beam. A detailed 

discussion on this scattered-light correction 

is given by Deepak and Box for both mono- 

disperse (21) and polydisperse (26) systems. 

Unfortunately, calculation of C e by means 

of the rigorous Mie theory is time consum- 

ing, and therefore it is worthwhile to use an 

approximation which yields sufficient accu- 

racy. With the aid of the following approxi- 

mation, Walstra (6) obtained significantly 

more accurate size-distribution curves than 

would be possible if this correction were ne- 

glected. 
For P > 2.5 and 1 < m _< 1.25, the cor- 

rected scattering coefficient Q* can be found 

from the relation (19) 

Q*(a, m) = Q(a, m) - F(a, m)R(~oa), [321 

where Q(a, m) is given by Eq. [23], [24], or 

[251, 

F(a, m) = (B 2 + Q2)/4.0, 

R ( , o a )  = 1 - J ~ ( o ~ )  - J ~ ( o ~ ) ,  

Jo, Jt = Bessel functions of the first kind 
of zero and first order, respec- 

tively, and 

the term B(a, m) is given by (19) 

- 1 6 m  2 cos p 4m sin p 
B(a, m) - (m + 1)20 + p 2 

4.2(z - m) O_.772, 
~zq- m-) [331 

where p and z are given by Eqs. [26] and 

[27], respectively. The corrected light-scat- 

tering coefficient Q*(a, m) is plotted in Fig. 

3 as a function of the particle size a for the 

experimental conditions discussed later (i.e., 

o: = 2.04°). 
It should be remarked that the turbidity 

is not a function of Q but of Q*. Therefore, 

Q in Eqs. [3], [5], [7], [9], [12], [13], [16], 

[ 19], [20], [21 ], and [22] should be replaced 

with Q*. Similarly, n(a, m) in Eqs. [11], [12], 

and [22] should be replaced with n*, and P(a, 

m) in Eqs. [ 11 ], [ 13], and [22] should be re- 

placed with P*. 

3.3. Other Requirements 

In addition to forward scattering and sec- 

ondary scattering, there are a series of other 
factors which may interfere with the accuracy 

of the theory as outlined here. The most fre- 

quent difficulty in turbidimetry is the failure 

of Beer's law: the optical density increases to 

a smaller extent than is proportional with 

concentration, thus necessitating extrapola- 

tion to zero concentration. As in absorption 

photometry, this may sometimes be caused 

by a large spectral bandwidth, but is usually 

due to other phenomena such as multiple 

and dependent scattering. Multiple scattering 
arises whenever the particles receive light 

scattered by other particles in addition to ra- 

diation from the incident beam; while de- 

pendent scattering arises whenever the par- 

ticles are not randomly positioned, the over- 

all interference between waves scattered by 
different particles is not zero. In order to 

avoid these deviations the following precau- 

tions should be taken: (i) w should be at most 
3 or 4 degrees; (ii) the optical density must 

not be larger than 0.7 or 0.8 (and preferably 
not smaller than 0.15 for reasons of accu- 
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racy); and (iii) the volume fraction must 

never exceed 0.002. 

4. D E T E RMIN IN G  U N K N O W N  PARTICLE 

SIZE DISTRIBUTION 

In this section we will show how one can 

apply the theory developed in Sections 2 and 

3 to determine the unknown distribution 

f(a) from measurements of  the turbidity ra- 

tio and wavelength exponent. Since an im- 

portant application of our proposed turbidity 

technique would be to estimate the distri- 

bution of particle sizes during centrifugation, 

we will work with the two visible wavelengths 

found on a conventional ultracentrifuge (~,o~ 

= 435.8 nm, h0z = 546.1 nm, or hi = 325.2 

nm, h2 = 409.2 nm in a water medium), even 

though other wavelengths can be used. 

4.1. Size-Distribution Functions 

As mentioned in Section 2.3, Eqs. [20] and 

[22] can be used to determine the unknown 

frequency distribution function f(a) .  How- 

ever, these equations are extremely difficult 

to invert without assuming a distributional 

form a priori. Two common distributions 

found in colloid science are the two-param- 

eter log-normal distribution and the one-pa- 

rameter positively skewed distribution (27). 

The log-normal distribution by number is 

given by 

q 

f(a) - (2,x)l/2ot 

[q' 1 Xexp - ~ - ( l n a - l n p ) 2  , [34] 

where 

q = l/In #g, 

eg = geometric standard deviation, 

p = 2ram~X, and 

am = geometric mean radius. 

The effect of  these distribution parameters 
is evident in Fig. 7. 

The one-parameter positively skewed dis- 

tribution by number is given by 

.4 

f(~J 

.3 

p:8.0 

j 
2 4 6 

q : 10.0 
/ 

4.5 

5 0  

1.5 

8 10 t2 14 16 t8 
ot 

FIG. 7. Effect of the distribution parameters p and q 

on the log-normal distribution. 

3K2a 
f(a) = - -  exp[-(Ka)  3] [35] 

1"(2/3) 

where 

I" = gamma function, 

K = X/2~rs, 

s = 1.109w, and 

w = half-width. The half-width is the distance 

between the two points of  the distribu- 

tion curve at which the frequency is one- 

half the value of  the modal radius. 

Examples of this distribution are given in 

Fig. 8. 

4.2. Wavelength Associated with 

For particle size distributions with an av- 

erage particle size a,, less than approximately 

0.2 j,m, the wavelength exponent evaluated 

at both ~0~ and ~o2 are essentially equal. In 

addition, for these small particle sizes, Eq. 

[22] can be shown to reduce to 

{Fl , I  ~ a3f(a)n*(ot, m)da 

-Fz f f fa3 f (a)P*(oqm)dot}  

fO ~ . 3 f ( ~ ) d ~  

[36] 
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FIG. 8. Effect o f  the distr ibution parameter K on the 

positively skewed distribution. 

Therefore, in this case, Eq. [36] can be used 

directly to solve for the wavelength exponent 
without the need for numerically solving the 

integral in the denominator, since it can be 
inverted analytically, and without the addi- 

tional complexities of evaluating the follow- 

ing approximation. 

When the particle size distribution has an 
average particle size greater than approxi- 
mately 0.20 #m, another approximation can 
be used. For these larger particle sizes, the 

turbidity ratio can be determined exactly 
from two turbidity measurements, but the 

experimentally observed exponent, com- 
puted according to Eq. [10] (see Eq. [39]), 

can correspond to either wavelength Xo~ or 

~02, or, more than likely, some wavelength 
between X01 and Xo2. Therefore, without any 
prior knowledge of the wavelength associated 
with rio, it seems prudent to use an average 
exponent (ri0) defined by 

fx x°2 tio(Xo)dX0 
01 

( l ' l O )  = ~'02 - -  ~'01 ' [ 3 7 ]  

where no(~o) is given by Eq. [22]. The ade- 
quacy of this approximation is indicated by 
the general agreement between the particle 
size distributions determined by turbidity 

analysis and by scanning electron micros- 

copy. 

4.3. Algorithm for Determining 

Distribution Parameters 

Referring to the turbidity ratio equation, 
Eq. [20], there are two unknowns if the log- 

normal distribution is used (q and am), and 
one unknown if the positively skewed distri- 

bution is used (s). Likewise, if only the wave- 

length exponent equation, Eq. [37], is used 

the same situation arises. There are two ap- 
proaches to estimate the unknown distribu- 

tion: 

(1) For the two-parameter distribution, 
use both Eqs. [20] and [37] (or [36]) simul- 
taneously to solve for the unknown param- 
eters. This approach does not allow any in- 
ternal check on the turbidity ratio and wave- 

length exponent techniques. 
(2) Use the one-parameter distribution 

model and solve for the unknown parameter 

using Eqs. [20] and [37] (or [36]) indepen- 

dently. This approach allows an internal 
check on the result of each method. 

4.3.1. Two-Parameter Model 

For the log-normal distribution, or any 

other two-parameter distribution, the solu- 
tion of Eqs. [20] and [37] (or [36]) for the 
distribution parameters can be approached 

by the following graphical and computa- 

tional methods. 

(a) For the optical constants of the system 
involved (m, Fi, and F2), the turbidity ratio 
[(rA)x,/(r;~)x2] is evaluated as a function of am 
for the parameter q by numerically integrat- 
ing Eq. [20]. The results of  these calculations 
are summarized in Fig. 9, where the optical 

constants are for octacosane (C28H58) parti- 
cles in water at 25°C. (See the experimental 
section for more details on these optical con- 
stants and the finite angle of acceptance o~.) 

(b) Evaluate the wavelength exponent (rio) 

in the same fashion as the turbidity ratio, The 
results of these computations are shown in 
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FIG. 9. Turbidity ratio for a log-normal distribution. 

Fig. 10 for the same optical constants as 
in (a). 

(c) From the experimentally measured 
value of the turbidity ratio [(Th)x,/(rh)x~], 
read off the family of (a,,, q) pairs which sat- 
isfy Eq. [20] from Fig. 9, or an equivalent 
figure for different optical constants. 

(d) From the experimentally observed 

value of the wavelength exponent (ti0>, read 

off the (am, q) values which satisfy Eq. [37] 
from Fig. 10, or an analogous figure. 

(e) Steps (c) and (d) result in several (am, 
q) pairs which satisfy Eqs. [20] and [37], sep- 

4.0 . ko1= 435.8nm 

l XOZ= 546.t nm 
5.0 \~, w = O356 radions 

\\%. m~ ,.,5 

, o  

<~,> o 
O0 

- t 0  

- 2 0  

-3.o .~ .4 .~ .'= ,Io ,12 ,14 ,.'6 
a m (microns) 

FIG. 10. Wavelength exponent for a log-normal dis- 

tribution. 

arately. In order to determine the distribu- 
tion parameters which satisfy both equations 

simultaneously, two curves of q versus am are 

constructed, one for constant [(rX)xj/(rX)x2] 
and the other for constant (rio>. Both con- 

stant turbidity parameters correspond to the 
experimentally measured values. The inter- 

section of these two lines gives approximate 

values of the two distribution parameters, am 
and q. (Fig. 11 shows this result for distri- 
bution 1, which was used in the experimental 
section to verify the proposed turbidity tech- 

nique.) 

(f) The approximate values of am and q 
can be substituted into Eqs. [20] and [37], 

and iterated on the computer until the cal- 

culated turbidity ratio [(rX)x,/(Th)x~] and 

wavelength exponent <ri0> agree precisely 

with the measured values. 

4.3.2. One-Parameter Model 

If the positively skewed distribution, Eq. 
[35], is used, a scheme similar to the two- 
parameter model is followed. Using Eqs. [20] 

and [37], plots similar to Figs. 9 and 10 are 
constructed with the exception that since 

there is only the breadth parameter s, there 

will be only a single line for each figure. From 

the experimentally observed values of the 

turbidity ratio and wavelength exponent, two 

independent values of the parameter s can 
be read directly from these figures. These 

o / /  
8 (rk)k , 

61 (r--'~x2 " ~ ;  ("o> 

/ 4 
q 

5 

2 / ~  o.=.47pm, q:2.00 

I I I I I 

I 0 . .4 .6 .8 t.0 
a m (microns) 

FXG. 1 1. Graphical determination of  log-normal dis- 
t r i b u t i o n  p a r a m e t e r s .  

Journal of Colloid and Interface Science. Vol. 92, No. I, March 1983 



172 M E L I K  A N D  F O G L E R  

approximate values can be substituted into 

Eqs. [20] and [37], and iterated on the com- 

puter to accurately determine s. 

The optical dispersion constants F~ and F2 

were computed from the analytical expres- 

sions derived in Appendix B. 

5. E X P E R I M E N T A L  

5.1. Preparation of  Suspensions 

Polydisperse suspensions were prepared by 

sonicating deionized water and octacosane 

(C2sHss) at a temperature above the melting 

point of octacosane (60°C) and then cooling 

the resulting emulsion to obtain solid parti- 

cles. The complete details of this procedure 

are given by Li and Fogler (28). By using the 

ultrasonic method, suspensions of varying 

degrees of polydispersity can be prepared. 

Short irradiation times result in very poly- 

disperse systems; while longer irradiation 

times yield narrow distributions of particle 

sizes. 

The prepared suspensions were diluted to 

obtain optical density (turbidity) readings 

and samples for electron microscopic anal- 

ysis. 

5.2. Electron Microscopy 

As a basis for appraising the turbidimetric 

method, particle size distributions were also 

obtained by electron microscopic analysis. 

By the usual methods of direct count and 

size measurement on electron micrographs, 

number density distributions were deter- 

mined. 

5.3. Optical Constants 

The refractive index and optical dispersion 

of the particles were obtained from the lit- 

erature (29). For octacosane particles: 

ttp = 1.541 (),o = 435.8 nm; 25°C), 

#p = 1.531 (),o = 546.1 nm; 25°C). 

For the water medium (30): 

#m = 1.340 (9~o = 435.8 nm; 25°C), 

#~ = 1.334 (2~o = 546.1 nm; 25°C). 

5.4. Instrumentation 

Turbidity measurements were made on a 

Bausch & Lomb Spectronic 88 spectropho- 

tometer using the lens-pinhole attachment 

between the monochromator and the pho- 

tometer tube. A schematic of the apparatus 
is shown in Fig. 4. 

The monochromatic light beam diverging 

from the spectrophotometer exit slit St is 

partially collimated by a 6.18-cm focal length 

lens L1 and, after passing through the sample 

cell, is focused by a 7.30-cm focal length lens 

L2 (DL2 = 1.73 cm) at the pinhole, which has 

a diameter of 4 mm. Beam stops B~ and B2 

also have 4-ram-diameter holes. Standard l- 

cm cells are used in a standard cell holder 

and carriage. Slit Sl is masked to a 4-ram 

height (normally 16 mm) and limited to a 

maximum width of 0.864 mm. 

The resolving power of this arrangement 

is characterized by the finite angle of accep- 

tance ~. The incident beam diverges from slit 

St's dimensions to a diameter of 4.5 mm at 

beam stop B~, and since there is a distance 

of 38 mm between S~ and Bt, the source part 

of the half-angle in the vertical plane is 

1 [4"58.~'01 0sv = ~ tan -~ = 0.38 °, 

and in the horizontal plane 

1 ~ [4.5 ~8.~864 ] 
0sh = ~ tan- - - - - -  = 2.73 °. 

For rectangular slits, the total source part of 

the half-angle is determined from (19) 

0 s = [(4/Tr)0sv0sh] 1/2. [38] 

Therefore, 

0s = [(4/7r)(0.38)(2.73)] ~/2 = I. 15 °. 

Since the primary beam is deflected from its 

original path upon crossing the boundaries 
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of the cuvette, the value of  0s to be applied 

to the particles in water at 25°C is 

1 . 1 5  
os . . . . .  0 . 8 6  ° . 

gm 1.33 

The total detector part of  the finite angle of  

acceptance is computed from Eq. [30] 

0d = tan-I (a/f) = tan -1 (2.0/73.0) = 1.18o. 

#m 1.33 

Therefore, the total angle of  acceptance is 

o~ = 0s + 0d = 2.04 ° -~ 0.0356 radians. 

For the sake of  completeness, the mini- 

mum diameter of  lens L2 required to justify 

the previous calculations is determined from 

Eq. [29]. Since the distance between the most 

remote part of  the scattering cell and lens L2 

is z = 90 mm, the minimum possible di- 

ameter of  L2 is 

(2)(2)(90) 
DL2 > (73) t- 4 = 8.9 mm. 

Since the actual diameter is 17.3 mm, this 

condition is satisfied. 

5.5: Turbidity Measurements 

Because of  our instrument's small angle 

of  acceptance, minute irregularities, scratches, 

etc., on the optical cell also caused a mea- 

surable extinction. Therefore, the cells were 

maintained in a completely fixed position 

and orientation, and blank values were ob- 

tained after tilling both the measuring and 

the reference cell with water. 

The aqueous suspensions, 0.04% by vol- 

ume, were adjusted in concentration to give 

optical densities in the range of  0 .2-0 .8  at 

wavelengths of  435.8 and 546.1 nm. The val- 

ues of  the turbidity calculated according to 

Eq. [2] seldom varied more than 5% (see Fig. 

12); while the computed turbidity ratios var- 

ied less than 0.5% (see Fig. 13). Due  to the 

absence of  any significant concentration de- 

pendence of  the turbidity ratio, the effects of  

multiple and dependent scattering were neg- 

ligible. Therefore, extrapolation to zero con- 

x t .8  

I o,e MeQsurements ot 455.8nm 
2,1 ~ ,a  Meosurements ot 546.1nm 

O,A Run NO.2 
• • Run No, I 
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' 0  
t.I "~ 
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.9 

I .8 
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FtG. 12. Normalized turbidity as a function of the 
volume fraction at wavelengths of 435.8 and 546.1 nm. 

centration, the normal procedure for remov- 

ing these effects, was deemed unnecessary. 

The logarithmic slope (ri0) was calculated 

from 

In [rXo~/7~o~] [39] 
<no> = In [Xo, /X02]  

which is a special case of  Eq. [10] for only 

two turbidity measurements. The slope val- 

ues are reliable to 1.0%. All measurements 

were made at 25°C. 

6. RESULTS 

Distributions from two different suspen- 

sion samples determined from scanning elec- 

1.2C 

1.15 

i .IC 

Xot = 435.8nm 
XO2= 54GI  nm 

o Run NO2 
• Run No. I 

O 

T.Xot 1.0~ 

T;~O~ 
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FIG. 13. Turbidity ratio as a function of the volume 
fraction at wavelengths of 435.8 and 546.1 nm. 
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F I G .  14.  Comparison of the turbidity method, using the two-parameter log-normal distribution, w i t h  

S E M  results for run 1. 

tron microscopic analysis (SEM) are com- 

pared with distributions obtained from the 

turbidimetric method outlined in section 4 

using the log-normal distribution (Figs. 14 

and 15) and the positively skewed distribu- 

tion (Figs. 16 and 17). As can be seen from 

these figures, both distribution models give 

results which are in agreement with SEM 

analysis. Since the log-normal distribution is 

a two-parameter model, a better fit is ob- 

tained as compared to the one-parameter 

positively skewed distribution. 

In the turbidity analysis of these distri- 

butions, Eqs. [20] and [37] were used. In 

order to examine the usefulness of Eq. [36], 

these samples were also analyzed using Eq. 

[20] and Eq. [36] evaluated at (~01 + X02)/2. 

For the one-parameter distribution, the re- 

sults were identical to Figs. 16 and 17; while 

for the two-parameter distribution, slightly 

different results were obtained. For run 1, am 

-- 0.49 t~m and q = 2.5, and for run 2, am 

= 0.39 tzm and q = 2.1. These findings in- 

dicate that the approximation for the wave- 

length exponent, Eq. [36], may remain valid 

for particle size distributions with an average 

size up to approximately 0.50 #m. 

In addition to the accuracy of the proposed 

turbidity technique, further advantages of the 

method are the easy, rapid technique and 

14  

T'~ 1.2 
o 
(J 
~_ t.0 
>- 
~-.8 
z 
w 
o .6 
fe- 
w 
m .4 

z 
.2 
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!-- 

/ \ 
r__j -I ,,.~SEM (am=.32/.Lm, q=1.751 

O0 ~4 .8 1.2 1.6 2.0 2.4 2.8 312 

D (microns) 

FIG. 15. Comparison of the turbidity method, using the two-parameter log-normal distribution, with 

S E M  results for run 2.  
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I~G.  16. C o m p a r i s o n  o f  t h e  t u r b i d i t y  m e t h o d ,  u s i n g  t h e  o n e - p a r a m e t e r  p o s i t i v e l y  s k e w e d  d i s t r i b u t i o n ,  

w i t h  S E M  resu l t s  f or  r u n  1. 

simple apparatus. The elaborate preliminary 

calculations are a disadvantage, but the 

high reproducibility of the results make the 

method very useful for studying flocculation. 

It should be noted that in our experimental 

analysis we restricted ourselves to the two 

visible wavelengths available on a conven- 

tional ultracentrifuge (435.8 and 546.1 rim). 

Even though other wavelengths could have 

been used, our objective was to demonstrate 

the direct application of  the proposed tur- 

bidity technique to determining particle size 

distributions without modifying the centri- 

fuge to accomodate other wavelengths. The 

limitations imposed by using only these two 

wavelengths are discussed in the following 

section. 

From the above results, one might infer 

that if three wavelengths were used, one 

could estimate a three-parameter distribu- 

tion. Although, in principle, it should be pos- 

sible to determine all three distribution pa- 

rameters from turbidity spectra, the work of 

Nakagaki and Shimoyama (31) has shown 

that the experimental accuracy required 

would be excessively high. Therefore, they 
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FIG.  17. C o m p a r i s o n  o f  t h e  t u r b i d i t y  m e t h o d ,  u s i n g  t h e  o n e - p a r a m e t e r  p o s i t i v e l y  s k e w e d  d i s t r i b u t i o n ,  

w i t h  S E M  resu l t s  f or  r u n  2. 
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recommend using only a one- or a two-pa- 

rameter distribution. 

7. D I S C U S S I O N  

Even though the proposed turbidity tech- 

nique can be used to estimate particle 

size distributions, there are some limitations 

which should be kept in mind when using 

this method. 

7.1. Optical Dispersion 

of the Refractive Index 

On applying the method outlined here, it 
must be borne in mind that the relative re- 

fractive index m varies with wavelength. This 

has not been taken into account for the theo- 

retical turbidity ratio spectra in Fig. 9. In 

many instances, such as for the system on 

which the method has been tested, correc- 

tions for the dispersion are not important 

enough to be applied. In those cases where 

the dispersion should be taken into account, 

the turbidity ratio equation, Eq. [20], can 

reflect this change in refractive index by eval- 

uating the scattering coefficients at the ap- 

propriate value of m for each wavelength. 

7.2. Range of Application 

The usefulness of both turbidity ratio and 

wavelength exponent spectra (within the vis- 

ible spectral range) for determining size-dis- 

tribution curves and the sensitivity of the 

spectra to changes in the degree of  polydis- 

persion can be determined with the aid of 

Figs. 9 and 10. It can be anticipated that the 

sensitivity to heterodispersion for systems 

with a geometric mean radius smaller than 
0.5 #m and with a breadth parameter smaller 

than 2.1 um will be similar to the systems 
studied here. While experiments in the lower 

range of particle diameters and with wider 

distributions is desirable, the situation which 

one is bound to find if a,~ is as small as 0.1 

um can be derived from an inspection of 

Figs. 9 and 10. An increase in q from 1.5 to 

10 changes both the turbidity ratio and the 

wavelength exponent spectra just as pro- 

foundly no matter whether am has the value 
0.5 um or the value 0.1 um. Finally, it should 

be noted that the method described here, like 

any other turbidity technique, will, of course, 

be totally insensitive to particle size distri- 

butions if all the particles are sufficiently 

small compared to the wavelength that Ray- 

leigh scattering applies. 

Turbidity spectra will become quite insen- 

sitive to particle size distributions if the par- 

ticles are large relative to the wavelength. In- 

spection of Figs. 9 and 10 shows that the 

range of sensitivity terminates for moderately 

heterodisperse systems (q = 3.0) at am " ~  0.8 

um and for highly polydisperse systems (q 

= 2.0) at am - 0.6 um. Therefore, a system 
with a distribution breadth parameter q of 

2.0 will not respond to the analysis if am is 

about 0.8 um. In fact, the sensitivity within 

the visible range of the spectrum begins to 

fall off seriously if the distribution extends 

appreciably into the microscopic range. 

On being faced with systems in which the 

particles are too small (Rayleigh range) or too 

large (microscopic range) to apply both tur- 

bidity ratio and wavelength exponent spectra 

usefully within the visible range, one may, 

of course, in favorable instances (no true ab- 

sorption) resolve the problem by making use 

of spectra in the ultraviolet or intermediate 

infrared, respectively. 

7.3. Multivalued Solutions 

It is apparent in Figs. 1, 2, 9, and 10, that 

there exists either a minimum or a maximum 

in each of these curves and, in addition, there 
are some extraneous ripples in Fig. 2. These 

phenomena are a consequence of the sinu- 
soidal nature of the scattering coefficient (see 

Fig. 3). In this region the various turbidity 

parameters do not always uniquely define the 

system; two solutions may be theoretically 
possible. However, in practice this difficulty 
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was not encountered. Referring to Figs. 9 and 

10, the possibility of  multivalued solutions 

can occur for slightly polydisperse systems 

(q = 4.5) i f  am >- 1.0 #m and for moderately 

heterodisperse systems (q -- 3.0) if  am >- 0.8 

#m. For highly polydisperse systems (q -- 1.5), 

both the turbidity ratio and wavelength ex- 

ponent spectra remain highly insensitive for 

am >- 0.55 #m. Consequently, in this region 

there is the possibility of thousands of  solu- 

tions with no way of  differentiating the cor- 

rect distribution from the others. 

A detailed study of multivalued solutions 

by Zollars (32), for the log-normal distribu- 

tion when h0, = 300 nm and hOE ---- 600 nm 

(ht -- 221 nm, hE = 450 nm in a water me- 

dium), has shown that as long as the system 

under investigation has a geometric mean 

radius in the range 0.03 #m_< am -< 0.94 

/~m, and a geometric standard deviation in 

the range 1.05 _< % <_ 2.33 (1.17 _< q _< 20.0), 

there is only one solution. Although Zollars 

used specific turbidities (Eq. [19]) to deter- 

mine the distribution parameters, rather than 

combining turbidity ratio and wavelength 

exponent measurements, his results are ap- 

plicable to the present case since both meth- 

ods are based on the same theoretical foun- 

dations. 

One notices that as the ratio of the longer 

to the shorter wavelength increases from 1.26 

in the present work to 2.04 in ZoUar's study 

(a 62% increase), the domain of  singular so- 

lutions practically doubles. This indicates 

that, if feasible, one should use two wave- 

lengths that are as far apart as possible. 

run 2 (Fig. 15) deviates from a log-normal 

distribution. The turbidimetrically estimated 

distribution conforms closely to the central 

portion of  the true distribution while not 

being strongly biased toward either of  the 

tails. Based on these observations, one can 

infer that turbidity techniques can be applied 

to systems which may not conform to the 

log-normal distribution. The resulting esti- 

mated distribution would be a "best-fit" log- 

normal approximation to the true particle 

size distribution. 

Yang and Hogg (7) have studied this prob- 

lem using a log-normal distribution on par- 

ticulate systems that deviate significantly 

from this type distribution. Their conclusion 

is the same as the one reached here. 

7.5. Effect o f  Particle Shape 

An underlying assumption in applying any 

turbidity technique is that the particles are 

spherical. Napper and Ottewill (33, 34) have 

examined in detail the deviations obtained 

between experimental values of the scattering 

by certain nonspherical particles and the re- 
sults calculated on the assumption that these 

particles scatter as equivalent spheres. Silver 

bromide hydrosols, with a narrow particle 

size distribution, consisting of either cubes 

or octahedra were used. In calculating the 

theoretical turbidities of  the cubes, the radius 

of the equivalent sphere was taken to be half 

of the face diagonal. For the octahedra, the 

radius was the distance from the center to a 

corner. 

7.4. Deviations from Model  Distributions 

When using turbidity techniques, there is 

always the concern that the actual distribu- 

tion can not be accurately modeled by some 
Measured 

theoretical distribution, such as the log-nor- quantity 

mal distribution. In the present work, run 1 

(Fig. 14) is well represented by a log-normal [(rx)~,/(~x)j 

distribution and, consequently, a good fit is ('~& 

obtained throughout the distribution; whereas ~P 

TABLE I 

Estimated Accuracy of Turbidimetric Method 

Uncertainty in 

measurement (%) 

Average error in calculated 

ixwameters (%) 

am q s 

0.5 1.0 1.6 4.0 
1.0 1.4 2.6 7.5 
0.3 2.5 10.1 14.3 
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In both cases, there was quite good agree- 

ment between the experimental and com- 

puted values of the turbidity. Indeed, this 

agreement was such as to indicate justifica- 
tion of the various turbidimetric methods 

described for particles which deviate some- 

what from spherical shape. 

7.6. Sensitivity to Experimental 

Uncertainties 

a m 

FI, F2 

Y(,~) 

m 

N 

n, n* 

The accuracy with which the distribution 

parameters can be determined depends upon 

the region of the theoretical turbidity curves no, ti0 

(Figs. 9 and 10) in which the dispersion falls. 

In Table I are listed the average errors which 

can be expected for the probable uncertain- (vi0) 
ties in measurements of  the turbidity ratio, 

the wavelength exponent, and the refractive p, p* 

index of the particles. 

8. SUMMARY 

A turbidimetric technique has been de- 

veloped to estimate the particle size distri- 

bution of nonabsorbing isotropic suspen- 

sions in the micrometer to submicrometer 

range from only two turbidity measure- r 
ments. For any system of known optical con- 

s 
stants and known distributional form, one 

can use the algorithm outlined to estimate 

the distribution parameter(s) from observed 
O/ 

turbidity ratio and wavelength exponent 

measurements. The proposed turbidity 

method has been shown to yield size-distri- 

bution curves which are in agreement with 

scanning electron microscopic analysis. ~o 

This~technique can be extremely useful for 

estimating the polydispersity of flocculating #m 

emulsions during centrifugation, where pre- 

vious data analysis methods have failed to #p 

account for the formation of aggregates. In 
addition, since only two turbidity measure- o~ 

ments are needed, a conventional ultracen- 
trifuge requires no significant modification 

of the equipment to apply the proposed tur- 
bidity technique. 

Q, Q* 

q 

APPENDIX A: NOTATION 

Geometric mean radius for the log- 

normal distribution, t~m 

Optical correcUon tactors to the 

theoretical wavelength exponent 

Size-distribution lhnctlon based on 

number 

~//~m 
Total particle concentration, cm -3 

Uncorrected and corrected theoret- 

ical Mie wavelength exponent, re- 

spectively 

Experimental wavelength exponent 

for a monodisperse and polydis- 

perse system, respectively 

Wavelength exponent averaged over 

a range of wavelengths 

Uncorrected and corrected Mie light- 

scattering correction factor to the 

theoretical wavelength exponent, 

respectively 

Uncorrected and corrected Mie light- 

scattering coefficient, respectively 

1/ln ag, geometric breadth param- 

eter for the log-normal distribu- 

tion 

Particle radius, #m 

Characteristic parameter of the one- 
parameter positively skewed dis- 

tribution, #m 

27rr/~, dimensionless particle size 

~0/#m, wavelength of the primary 
beam in the dispersing medium, 

#m 

Wavelength of the incident beam in 
air, ~m 

Refractive index of the suspending 

medium; evaluated at ~,0 

Refractive index of  the particles; 

evaluated at Xo 

Finite angle of acceptance; equal to 
one-half the sum of the diver- 

gence or convergence of  the in- 

cident beam and the angle sub- 
tended by the detector with ref- 
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P 

% 

o~ 

Os 

erence to the center of the scat- 

tering volume 

Volume fraction of particles 

2a(rn- 1), dimensionless particle 

size 

Geometric standard deviation for 

the log-normal distribution 

Detector's half-angle; equal to one- 

half the angle subtended by the 

detector with reference to the cen- 

ter of the scattering volume 

Light source's half-angle; equal to 

one-half the divergence or con- 

vergence of the primary beam 

Turbidity, cm -~ 

APPENDIX B: ANALYTICAL EXPRESSIONS 

FOR F~ AND F2 

The refractive index of water can be ac- 

curately calculated from a relation in the In- 

ternational Critical Tables (30) 

g i n =  A - B X  2 + ( X  2 D ) J  + E ,  [B1] 

where X = [gm]. (Note: the subscript 0 has 

been deleted from X in Eq. [B 1 ] and all other 

equations in this Appendix. It must be re- 

membered that refractive indices are always 

evaluated at X0.) 
At 25°C: 

A = 1.76148, 

B = 0.013414, 

C = 0.0065438, 

D = 0.013253, 

E = 0.0001515. 

The refractive index of many hydrocar- 

bons can be correlated by the relationship 

(6) 
/ ~ + 2  b 
/ ~ -  1 = a + h 2 '  [B21 

where 2t = [tim]. For octacosane (C2sHss) at 
25°C: 

a = 3.3227, 

b = -0.026414. 

Inserting Eqs. [BI] and [B2] into Eqs. [14] 

and [15] yields the following analytical 

expressions for F~ and F2: 

Kl 
F ~ = I +  

K2[K2 + E] 

3b 
F2 = X2[K 3 + 2]~/2[K3 _ 113/2[K2 + E] [B3] 

KI[K3 + 2] 1/2 
+ [B4] 

K 2 [ K 3  - 1]'n[K: + E] : '  

where 

K~= X2EB+ (X 2 __CD)21 ' [B5] 

c ].2 
K2 = .4 -- BX 2 -t- (X 2 - -  D).] ' [B61 

and 

b 
/(3 = a + )2. [B7] 
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