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Abstract

Shannon capacity approaching codes have been extensively studied during the last
decade for ergodic channels. We propose and analyze new channel multiplexing/interleaving
techniques for parallel turbo codes over non-ergodic block fading channels. We reveal
word error probability performance at less than 1dB from outage capacity. The achieved
word error probability is almost insensitive to the code length. The race to the outage
capacity limit on block fading channels is declared open.

1 Notations and channel coding model

We briefly recall the mathematical model of a wireless block fading channel [2]. This section
also introduces our notation and the mathematical context in which convolutional codes and
parallel turbo codes are studied. Let C � �

ncN � K � 2 be a linear binary block code of length
ncN, dimension K, and rate R � K � � ncN � . The binary alphabet GF

�
2 ����� 0 � 1 	 defining the

symbols of C is converted into a binary phase shift keying (BPSK) alphabet B �
��� 1 ��
 1 	
before data transmission on the channel. For any code symbol ci � GF

�
2 � , i � 1 ����� ncN, the

observation made by the decoder at the channel output is

ri � hi �
�
2ci � 1 ��
 zi (1)

where hi is the real fading coefficient at time i, and zi is an additive white Gaussian noise with
zero mean and variance σ2. In a block fading wireless channel, the fading varies slowly in
time: hi takes nc different values during the transmission of one codeword. Thus, for i � 1 ����� N
we have hi � α1. For i � N 
 1 ����� 2N we have hi � α2, and so on. The block fading chan-
nel is said to be an nc-state channel because each codeword undergoes nc independent fadings
� α1 � α2 ��������� αnc 	 . The fading is called block fading because it is constant in time during N bit
periods. The random variables α j are assumed to be iid (within a codeword, and also from one

codeword to another) and Rayleigh distributed, p
�
α j ��� 2α je � α2

j , 0 � α j � 
 ∞. The left part
of Fig.1 illustrates the model described above.

In order to improve the error correcting capability of C, we change the order of code sym-
bols before channel transmission. This interleaving applied at the encoder output will be called
multiplexing in the purpose of avoiding a possible confusion with the interleaver found inside
the turbo code structure. The right part of Fig.1 illustrates the block fading model with channel
multiplexing. Our objective is to minimize the word error probability (WEP) by a suitable
selection of a channel multiplexing scheme.
�
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Figure 1: Block fading channel model without multiplexing (left), with multiplexing (right).

1.1 Pairwise error probability

Maximum likelihood (ML) decoding is assumed. We also suppose that the all-zero codeword
is transmitted. The conditional pairwise error probability associated to a non-zero codeword c
is

P
�
0 � c

�
α1 ������� � αnc � � P

�
dec � metric f or c � dec � metric f or 0

�
0 transmitted �

� P
�
∑ncN

i � 1 ri hi ci � 0 � (2)

On a Gaussian channel without fading (hi � 1, � i), the well known expression for P
�
0 � c � is

P
�
0 � c � � Q

���
2REb

N0
wH

�
c �	� (3)

where wH
�
c � is the codeword Hamming weight and the signal-to-noise ratio Eb � N0 is defined

from the variance σ2 of the additive noise zi, i.e., σ2 � 1
2Eb 
 N0

. Now, on an nc-state Rayleigh
fading channel, the conditional pairwise error probability becomes

P
�
0 � c

�
α1 ��������� αnc � � Q ���
��� 2REb

N0

nc

∑
j � 1

w j
�
c � α2

j �� (4)

The partial weight w j
�
c � is the Hamming weight of code symbols in c undergoing the fading

coefficient α j, 0 � w j
�
c � � wH

�
c � and ∑ j w j

�
c ��� wH

�
c � . After a mathematical expectation

over the nc Rayleigh fadings, the pairwise error probability is upper bounded as follows [6]

P
�
0 � c ��� 1

2

nc

∏
j � 1

1�
1 
 w j

�
c � REb

N0 � (5)

It is clear that channel multiplexing changes the values of w j
�
c � and hence makes a direct

influence on the word error probability in block fading channels. The diversity order d
�
c �

achieved by the codeword c is the number of non-zero partial weights w j
�
c � . Thus, the diversity

order cannot exceed nc (full diversity). The diversity order achieved by the linear binary code
C is defined as d

�
C � � Minc � C � 0d

�
c � . By applying the Singleton bound to the non-binary

version of C, it has been shown that [4][5]

d
�
C � � 1 
�� nc

�
1 � R ��� (6)

The maximal information rate Rmax that achieves maximal diversity order d � nc is upper
bounded by Rmax � 1 � nc. Consequently, this paper considers only rate 1 � nc codes transmitted
over block fading channels. One of our objectives is to achieve full-diversity d � nc with high
probability, while transmitting a rate R � Rmax � 1 � nc. Another objective is to maximize the
product ∏nc

j � 1 w j
�
c � called the coding gain. Indeed, when Eb � N0 ��� 1, the pairwise error

probability behaves like P
�
0 � c � ∝ 1 � ∏nc

j � 1 w j
�
c � � 1 � � Eb � N0 � d � c � .
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1.2 Information theoretical limits

Block fading channels with finite number of states nc, i.e., non-ergodic channels, admit a null
Shannon capacity [2]. The information theoretical limit for such channels is established by
defining an outage probability P

�
C � R � , where C is a random variable representing the in-

stantaneous capacity for a given fading instance, and R is the information rate that the encoder
is willing to transmit. For an infinitely large block length, the outage probability is the low-
est error probability that can be achieved by a channel encoder and decoder pair. The outage
capacity limit drawn in this paper is derived from the probability distribution of the mutual
information [1] on a block fading channel with nc states and BPSK input.

2 Single convolutional codes on block fading channels

Let C∞ be a non-recursive non-systematic (NRNSC) binary convolutional code with memory
ν and coding rate R∞ � 1 � n, where ν ��� , ν � 1, and n ��� , n � 2. The convolutional encoder
outputs � si 	 i � 1 � � � n are related to its single input e via n generator polynomials gi

�
x �

si
�
x � �

� ∞

∑
t � 0

si � t xt � gi
�
x � e � x � e

�
x � �

� ∞

∑
t � 0

et xt (7)

where et � GF
�
2 � is the input at time instant t ��� � , and si � t � GF

�
2 � is the ith encoder output

at time t. The constraint length of C∞ is ν 
 1 where ν � maxi
�
deg

�
gi
�
x ����� . Convolutional

codes of rate greater than 1 � 2 can be built from lower rate codes by puncturing, i.e., dropping
a fraction of coded bits. The semi-infinite trellis graph of C∞ has 2ν states and 2 transitions per
state. A transition from state u to state ϑ at time t is denoted Tu � ϑ

�
t � u � ϑ �
	 0 ����� 2ν � 1 � . The

notation Tu � ϑ
�
t � is replaced by u � ϑ if time position is not required. The binary label of a

transition is Λ 	 Tu � ϑ
�
t ����� �

s1 � t � s2 � t ������� � sn � t � . We write Tu � ϑ
�
t � � /0 when the transition u � ϑ

does not exist. Here, the symbol /0 denotes the null element, not the empty set. If u � 0, then
T0 � ϑ

�
t ��
� /0 for ϑ � Φ. Similarly, If ϑ � 0, then Tu � 0

�
t ��
� /0 for u � Ψ. Since C∞ is linear

and the all-zero codeword is taken as a reference, we say that 0 � Φ is an outgoing transition
and Ψ � 0 is an incoming transition. Any non-zero codeword with finite Hamming weight
includes the first transition T0 � Φ

�
t1 � and the last transition TΨ � 0

�
t2 � , at time instants t1 and t2

respectively, t2 � t1.

In the sequel, the convolutional code C∞ is converted into a linear binary block code C of di-
mension N and length n

�
N 
 ν � . The encoder starts in state 0 at t � 0, i.e., Tu � ϑ

�
0 � � /0 for all

states u 
� 0. The encoder terminates in state 0 at t � N 
 ν, i.e., Tu � ϑ
�
N 
 ν � 1 � � /0 for all

states ϑ 
� 0. It is also assumed that N ��� ν � 1, the coding rate of C is R � R∞ � 1 � n.

A non-zero codeword of C that includes a unique outgoing transition and a unique incoming
transition is called a simple error event. Let ∇ � C be non-zero codeword. If ∇ is a sim-
ple error event, then we write ∇

�
ω � t1 � t2 � L � to indicate that the corresponding trellis path in-

cludes T0 � Φ
�
t1 � and TΨ � 0

�
t2 � , its input Hamming weight is ω, and its length is L � t2 � t1 
 1,

ν 
 1 � L � N 
 ν. Similarly, a double error event ∇
�
ω � t1 � t2 � t3 � t4 � L � � ∇

�
ω1 � t1 � t2 � L1 � 


∇
�
ω2 � t3 � t4 � L2 � is a codeword obtained by the sum of two simple error events, its length is

L � L1 
 L2 and its input weight is ω � ω1 
 ω2. In general, a compound error event is the sum
of two or many simple error events.
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Definition 1 Consider a rate 1 � n binary convolutional code C with constraint length ν 
 1
defined by the generator polynomials g1

�
x � � g2

�
x � ������� � gn

�
x � . The code C is said to be a full-

span convolutional code if the generators satisfy deg
�
gi
�
x ��� � ν and gi

�
0 � � 1, � i.

All known rate 1 � n non-recursive non-systematic binary convolutional codes with best min-
imum Hamming distance are full-span codes [6], e.g., the 4-state NRNSC

�
7 � 5 � 8, the 8-state

NRNSC
�
13 � 15 � 8, and the 8-state NRNSC

�
17 � 15 � 8.

Fig. 2 shows four different ways of multiplexing the 3 outputs s1 � s2 � s3 of a rate 1 � 3 convo-
lutional code. These four multiplexing ways are similar for any rate 1 � n convolutional code,
n � 2, without puncturing of code symbols.

Horizontal Multiplexing

s1 1 1 1 1 1 1
s2 2 2 2 2 2 2
s3 3 3 3 3 3 3

Vertical Multiplexing

s1 1 2 3 1 2 3
s2 1 2 3 1 2 3
s3 1 2 3 1 2 3

Diagonal Multiplexing

s1 1 2 3 1 2 3
s2 2 3 1 2 3 1
s3 3 1 2 3 1 2

Random Multiplexing

s1 2 3 2 3 2 2
s2 1 2 3 2 1 3
s3 1 2 1 1 2 3
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Figure 2: Left: Four different ways of channel multiplexing are described for rate 1/3 NRNSC
codes on a 3-state block fading channel. Right: The word error probability performance of a
rate 1/3 16-state binary NRNSC

�
25 � 33 � 37 � 8 is compared to the outage capacity limit for code

dimensions 400 bits and 6400 bits respectively.

Proposition 1 Diagonal channel multiplexing of a full-span rate 1 � nc convolutional code
achieves full diversity on an nc-state block fading channel.
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Proof: Consider an outgoing transition T0 � Φ
�
t1 � of a codeword ∇ � C. Since C is full-span,

then Λ
�
0 � Φ � � 1nc , where 1nc is the all-1 binary label. Any column in the diagonal multi-

plexing table includes nc distinct fadings. Hence, ∇ achieves diversity order nc. �
The above proposition is also true for horizontal multiplexing, but it is false for both verti-
cal and random multiplexing. Numerical evaluation of the coding gain, based on the weight
distribution of C, shows that diagonal multiplexing outperforms all other proposed methods.
Indeed, for a given Hamming weight wH

�
∇ � , diagonal channel interleaving produces quasi-

equal partial weights w j
�
∇ � , j � 1 ����� nc. Computer simulations confirm the supremacy of

diagonal multiplexing. Fig. 2 illustrates the WEP performance versus the signal-to-noise ratio
for a 16-state rate 1/3 convolutional code. Diagonal multiplexing yields a WEP at 2 to 3dB
distance from the outage capacity limit. Notice also that WEP of a convolutional on a block
fading channel does depend on the code length.

3 Parallel concatenation of two RSC codes

A rate 1 � n recursive systematic convolutional (RSC) code is defined from its NRNSC equiv-
alent by dividing all generators with g1

�
x � . The RSC encoder outputs � si 	 i � 1 � � � n are related to

its single input e via the following expressions

s1
�
x � � e

�
x � and si

�
x � � gi

�
x �

g1
�
x � e

�
x � f or i � 2 ����� n (8)

We limit our study in this section to rate 1/3 parallel turbo codes [3] built from two identical
rate 1/2 RSC constituents separated by a pseudo-random interleaver π of size N bits. A rate 1/2
turbo code can be obtained by puncturing one parity bit out of two parity bits generated by the
RSC constituents. Figures 3 and 4 illustrate four ways of channel multiplexing for rate 1/3 and
rate 1/2 turbo codes respectively. The systematic output is s1, the parity bit produced by the
first RSC is s2 and the parity bit produced by the second RSC is s3. The symbol X denotes a
punctured symbol. Many other channel multiplexing methods can be constructed, but we limit
the description in this paper to those given in Figures 2, 3 and 4.

π-diagonal Multiplexing

s1 1 2 3 ����� 1 2 3
s2 2 3 1 ����� 2 3 1
s3 π( 3 1 2 ����� 3 1 2 )

h-diagonal Multiplexing

s1 1 2 1 2 1 2
s2 2 1 2 1 2 1
s3 3 3 3 3 3 3

Figure 3: Rate 1/3 turbo code, nc � 3 channel states, π-diagonal and h-diagonal multiplexing.

h-diagonal Multiplexing

s1 1 2 1 2 1 2
s2 2 X 2 X 2 X
s3 X 1 X 1 X 1

h-π-diagonal Multiplexing

s1 1 2 1 2 1 2
s2 2 X 2 X 2 X
s3 π( X 1 X 1 X 1 )

Figure 4: Rate 1/2 turbo code, nc � 2 channel states, h-diagonal and h-π-diagonal multiplexing.
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Proposition 2 Let C be a rate 1/3 turbo code built from RSC
�
7 � 5 � and transmitted on a 3-

state block fading channel. Under random channel multiplexing, the expected number η of
codewords in C with incomplete diversity and input weight w � 2 is

η
�
w � 2 � d � nc � � 3

�
9
5
� 2 � 2

3
� 10

� 0 � 168

Proof: The Hamming weight distribution H
�
W � D � L � � ∑N

j � 1 A j of RSC
�
7 � 5 � can be fully

determined from the following transition matrix

A �

���� 0 0 W D2L 0
WD2L 0 L 0

0 W DL 0 DL
0 DL 0 WDL

�����
where the indeterminate W represents the input weight, D the output weight, and L the trellis
path length. Any codeword ∇

�
2 � t1 � t2 � L � has length L � Lmin 
 3i, and weight wH

�
∇ � � 6 
 2i,

i � 0. The minimum length is Lmin � 4. For a fixed time instant t1 and a fixed length L,
the multiplicity of ∇

�
2 � t1 � t2 � L � is 1. Now, a turbo codeword is the direct sum of two RSC

codewords: ∇1
�
2 � t1 � t2 � L1 � in RSC1 and ∇2

�
2 � τ1 � τ2 � L2 � in RSC2, where τ1 � π

�
t1 � and τ2 �

π
�
t2 � . Here, π denotes the interleaver pseudo-random permutation of the turbo code. For finite

dimension N, the expected number of turbo codewords attaining diversity 2 is (the number of
codewords with diversity 1 is negligible)

η � 3 ∑
L1 � L2

	
N 
 L1 � 	 N 
 L2 �

N2 � 2
3 
 wH � ∇1 ��� wH � ∇2 ��� 2 � 3 � N � 4 �

3

∑
i � 0

� N � 4 �
3

∑
j � 0

	
N 
 4 
 3i � 	 N 
 4 
 3 j �

N2 � 2
3 
 10 � 2i � 2 j

If N ��� ∞, then η � 3
	
9 � 5 � 2 	 2 � 3 � 10 which completes the proof. �

In a similar manner, it can be shown that under random channel multiplexing

η
	
w � 2 � d � nc � � 3 � 81

65 
 2 � 2
3 
 14 �

0  0159 f or RSC
	
13 � 15 �

and

η
	
w � 2 � d � nc � � 3 � 9

5 
 2 � 2
3 
 10 �

0  168 f or RSC
	
17 � 15 �

The number η
	
w � 2 � d � nc � is relatively small for RSC

	
13 � 15 � because g1

	
x � � 	

13 � 8 is primitive.
Nevertheless, η does not decrease with N. The use of random multiplexing does not guarantee full-
diversity on block fading channels. The two following propositions give some insight when w � 3 and
w � 4 (results are similar to the Gaussian channel case).

Proposition 3 Let C be a rate 1/3 turbo code built from RSC
	
7 � 5 � and transmitted on a 3-state block

fading channel. Under random channel multiplexing, the expected number η of codewords in C with
incomplete diversity and input weight w � 3 and w � 4 is

η
	
w � 3 � d � nc � � 1  70 � N and η

	
w � 4 � d � nc �"! 0  0094

Proof: The weight distribution of RSC
	
7 � 5 � yields two distinct weight profiles when w � 3. Any

codeword ∇
	
3 � t1 � t2 � L � satisfies the first profile: L � 3 � 3i, wH

	
∇ � � 5 � 2i with multiplicity i � 1,

i ! 0, or the second profile: L � 5 � 3i, wH
	
∇ � � 7 � 2i with multiplicity i � 1, i ! 0. Now, we can write

η � 3 � N � 3 �
3

∑
i � 0

� N � 3 �
3

∑
j � 0

	
N 
 3 
 3i � 	 N 
 3 
 3 j �

N3

	
i � 1 � 	 j � 1 � � 2

3 
 7 � 2i � 2 j
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� 3 � N � 5 �
3

∑
i � 0

� N � 5 �
3

∑
j � 0

	
N 
 5 
 3i � 	 N 
 5 
 3 j �

N3

	
i � 1 � 	 j � 1 � � 2

3 
 11 � 2i � 2 j

� 6 � N � 3 �
3

∑
i � 0

� N � 5 �
3

∑
j � 0

	
N 
 3 
 3i � 	 N 
 5 
 3 j �

N3

	
i � 1 � 	 j � 1 � � 2

3 
 9 � 2i � 2 j

When N ��� ∞, we obtain η
	
w � 3 � d � nc � � 1  70 � N.

For input weight w � 4 codewords, three cases are distinguished: 1- ∇1 and ∇2 are simple error events,
2- ∇1 is simple but ∇2 is a double error event, and 3- ∇1 and ∇2 are double error events. In the last case,
η
�

0  0094 (algebraic details are omitted). � .
Note that in the case RSC

	
13 � 15 � with random multiplexing, we also have η

	
w � 3 � d � nc � ∝ 1 � N. Due

to its special weight distribution, all RSC
	
17 � 15 � codewords have even weight because g1

	
x � � 	

x � 1 � 3,
then RSC

	
17 � 15 � satisfies η

	
w � 3 � d � nc � � 0.

Proposition 4 Let C be a rate 1/2 turbo code built from punctured RSC
	
7 � 5 � and transmitted on a 2-

state block fading channel. Under random channel multiplexing, the expected number η of codewords
in C with incomplete diversity and input weight w � 2 is

η
	
w � 2 � d � nc � � 0  440

Proof: The weight distribution is determined by the two following transition matrices. Matrices A1 and
A2 correspond respectively to the unpunctured and punctured parity bit transitions.

A1 ������ 0 0 W D2L 0
WD2L 0 L 0

0 WDL 0 DL
0 DL 0 WDL

����� A2 ������ 0 0 W DL 0
W DL 0 L 0

0 WDL 0 L
0 L 0 WDL

�����
The omitted details to get η

�
0  440 are similar to the proof of proposition 2. �

Proposition 5 Let C be a rate 1/3 turbo code built from a full-span RSC
	
g1
	
x � � g2

	
x � � and transmitted

on a 3-state block fading channel. Under π-diagonal channel multiplexing, the expected number η of
codewords in C with incomplete diversity and input weight w � 2 and w � 3 is

η
	
w � 2 � d � nc � � 0 and η

	
w � 3 � d � nc � � 0

Proof : Input weight w � 2: Let ∇1
	
2 � t1 � t2 � L1 � and ∇2

	
2 � τ1 � τ2 � L2 � be two simple error events defin-

ing a turbo codeword. The outgoing transition T0 � Φ
	
t1 � in ∇1 is connected via the pseudo-random

turbo interleaver to T0 � Φ
	
τ1 � or to TΨ � 0

	
τ2 � in ∇2. Since all incoming and outgoing transitions are

full-span, then the label
	
s1 � t1 � s2 � t1 � s3 � τ1 � is equal to

	
1 � 1 � 1 � . The π-diagonal multiplexer guarantees that	

α � i � � α � i � 1 � � is associated to α � i � 2 � . Therefore,
	
s1 � t1 � s2 � t1 � s3 � τ1 � � 	

1 � 1 � 1 � undergoes the fading vector	
α � i � � α � i � 1 � � α � i � 2 � � which yields a diversity order 3.

Input weight w � 3: The outgoing transition of ∇1
	
3 � t1 � t2 � L1 � is connected to three possible positions

via the turbo code pseudo-random interleaver. If π
	
t1 � � τ1 or π

	
t1 � � τ2, then diversity order is 3 (see

the proof in the case w � 2). On the other hand, if τ1 � π
	
t1 � � τ2, then diversity 3 is collected by the

incoming transition of the codeword ∇1. �
Even if η

	
w � 2 � d � nc � � η

	
w � 3 � d � nc � � 0 for any RSC with π-diagonal multiplexing, this nice

property does not help improving the WEP in practice. Indeed, let Ai denotes the transition matrix of
RSC1 (upper turbo code constituent) with diagonal and π-diagonal multiplexing. Matrix A i includes
both information and parity bits undergoing fadings αi and α � i � 1 � respectively,

Ai ������ L 0 WDiD � i � 1 � L 0
WDiD � i � 1 � L 0 L 0

0 WDiL 0 D � i � 1 � L
0 D � i � 1 � L 0 WDiL

�����
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By evaluating the generalized weight enumerator H
	
W � D1 � D2 � D3 � L � � ∑3

i � 1 ∑N
j � 1

	
AiA � i � 1 � A � i � 2 � � j, we

can state the following for both diagonal and π-diagonal multiplexing of rate 1/3 turbo codes:

� The 4-state RSC
	
7 � 5 � : H

	
W � D1 � 1 � D2 � 1 � D3 � 0 � L � � 0 � W 2 � 0 � W 3 � 1 � W 4L7 � 0 � W 5 � 1 �

W 6 	 L10 � L10 � L10 �    � �    . Therefore, diagonal multiplexing of RSC1 already insures η � 0
for w � 2 and w � 3. Multiplexing via π does not help in this case. Fortunately, π-multiplexing
will be of great efficiency in the rate 1/2 case.

� The 8-state RSC
	
17 � 15 � : H

	
W � D1 � 1 � D2 � 1 � D3 � 0 � L � � 0 � W 2 � 0 � W 3 � 0 � W 4L7 � 0 � W 5 �

1 � W 6 	 L10 � L13 � L16 � L19 � L22 � � 0 � W 7 � 1 � W 8 	 L16 �    � �    .
� The 8-state RSC

	
13 � 15 � : H

	
W � D1 � 1 � D2 � 1 � D3 � 0 � L � � 0 � W 2 � 1 � W 3L4 � 1 � W 4L7 � 1 �

W 5L10 � 1 � W 6L13 �    .
Proposition 6 The h-diagonal channel multiplexing of a full-span rate 1 � 3 parallel turbo code achieves
full diversity on a 3-state block fading channel, i.e., η � 0 for any input weight w.

Proof: Similarly to the proofs of above propositions, the outgoing transition 0 � Φ in ∇1 guarantees a
diversity order equal to 2. Any non-zero binary element in ∇2 will collect the 3rd diversity order. �
Proposition 7 Let C be a rate 1/2 turbo code built from punctured RSC

	
7 � 5 � and transmitted on a

2-state block fading channel. Under h-diagonal channel multiplexing, the expected number η of code-
words in C with incomplete diversity and input weight w � 2 and w � 3 is

η
	
w � 2 � d � nc � � 0 and η

	
w � 3 � d � nc � � N � 144

Proof: The proof is omitted due to the lack of space. �
Proposition 8 Let C be a rate 1/2 turbo code built from a full-span punctured RSC

	
g1
	
x � � g2

	
x � � and

transmitted on a 2-state block fading channel. Under h-π-diagonal channel multiplexing, the expected
number η of codewords in C with incomplete diversity and input weight w � 2 and w � 3 is

η
	
w � 2 � d � nc � � 0 and η

	
w � 3 � d � nc � � 0

Proof: The arguments are identical to the proof of proposition 5. �
4 Experimental results

We illustrated our experimental results in Figures 5, 6 and 4. The WEP of a rate 1/3 turbo code with di-
mension 400 and length 1212 bits is depicted in Fig. 5. The h-diagonal channel multiplexing guarantees
a WEP at distance less than 1dB from the outage capacity limit. Random channel multiplexing also per-
forms well for WEP greater than 10 � 5 since the expected number η of bad codewords is relatively low.
Fig. 6 shows the same situation with dimension 6400 and length 19212 bits. It can be noticed that WEP
is insensitive to code length and still less than 1dB from outage capacity limit. Finally, Fig. 4 illustrates
the WEP of a rate 1/2 turbo code with h-π-diagonal versus random multiplexing. The h-π-diagonal
also exhibits a WEP at distance less than 1dB from outage capacity limit and shows no sensitivity to
code length. Our results indicate that parallel turbo codes broadly outperform the serial concatenation
(repeat-accumulate codes) designed for block fading channels [7]. In all our computer simulations,
the number of turbo decoding iterations is greater than 10 (Forward-Backward algorithm on both RSC
constituents), and 100 erroneous blocks have been counted to estimate the word error probability.
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Figure 5: Rate 1/3 parallel turbo code with 8-state RSC(17,15) constituent, dimension=400,
length=1212 bits. Random and h-diagonal multiplexing versus outage probability limit. At
least 10 double Forward-backward decoding iterations for each turbo coding block.
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Figure 6: Rate 1/3 parallel turbo code with 8-state RSC(17,15) constituent, dimension=6400,
length=19212 bits. Random and h-diagonal multiplexing versus outage probability limit. At
least 10 double Forward-backward decoding iterations for each turbo coding block.
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Figure 7: Rate 1/2 parallel turbo code with 4-state RSC(7,5) constituent, code dimension=400
and 6400, code length=808 and 12808 bits. Random and h-π-diagonal multiplexing versus
outage probability limit. At least 10 double Forward-backward decoding iterations for each
turbo coding block.

5 Conclusions and further work

Parallel turbo codes are very efficient on block fading channels, especially when intelligent channel
multiplexing is cascaded with turbo encoding. The WEP performances presented in this paper versus
the outage capacity limit are the best known results in the literature (up to now) for rate 1/2 and rate
1/3 binary codes on block fading channels. Our future work should include the analysis of higher input
weight configurations, a universal description of properties valid for all recursive systematic convolu-
tional codes, and a coding gain analysis for the schemes proposed in this paper. We declare open the
race to the outage capacity limit.
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