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ABSTRACT

This paper presents TurboFold II, an extension of the

TurboFold algorithm for predicting secondary struc-

tures for multiple RNA homologs. TurboFold II aug-

ments the structure prediction capabilities of Tur-

boFold by additionally providing multiple sequence

alignments. Probabilities for alignment of nucleotide

positions between all pairs of input sequences are

iteratively estimated in TurboFold II by incorporating

information from both the sequence identity and sec-

ondary structures. A multiple sequence alignment is

obtained from these probabilities by using a prob-

abilistic consistency transformation and a hierarchi-

cally computed guide tree. To assess TurboFold II, its

sequence alignment and structure predictions were

compared with leading tools, including methods that

focus on alignment alone and methods that provide

both alignment and structure prediction. TurboFold

II has comparable alignment accuracy with MAFFT

and higher accuracy than other tools. TurboFold II

also has comparable structure prediction accuracy

as the original TurboFold algorithm, which is one of

the most accurate methods. TurboFold II is part of the

RNAstructure software package, which is freely avail-

able for download at http://rna.urmc.rochester.edu

under a GPL license.

INTRODUCTION

RNA is critical in cellular function. In addition to being the
template for translation, RNA has been shown to be cat-
alytic (1–3). Additionally, with increasing numbers of non-
coding RNA (ncRNA) families being identi�ed (4,5), there
is strong interest in developing computational methods to

estimate sequence alignment and secondary structure (6–
12). These methods are key to detecting conserved regions
(13–15), to understanding gene evolution (16) and to �nd-
ing novel ncRNAs (17,18).

In protein alignment, homologous amino acids often
conserve physical properties, such as polarity or hydropho-
bicity, even if the amino acid identity changes (19). Detect-
ing homologous nucleotides in RNA is more dif�cult be-
cause of the simpler alphabet composition. A notable prop-
erty of RNA alignments, however, is that they re�ect the
fact that secondary structure is conserved to a greater extent
than sequence identity (20). Canonical base pairs between
nucleotides are preserved by compensating mutations, for
instance, from a GC pair to an AU pair or from a GC
to a CG pair (21). Therefore, to increase accuracy, leading
RNA alignment methods use secondary structure informa-
tion (22–25).

There are several strategies for structural information-
guided sequence alignment. One strategy is to solve the
alignment and structure problems simultaneously, for ex-
ample via dynamic programming using the Sankoff algo-
rithm (26). The Sankoff algorithm is, however, compu-
tationally expensive, requiring O(N3H) time and O(N2H)
memory, given H sequences with the average length N. A
number of approaches have been used to accelerate these
calculations, including restriction of the alignment (27,28)
or structure space (29,30) or a simpler approximation to the
problem using precomputed pair probabilities (22,31,32).
Alternative structural alignment methods implement score
function calculations based on sequence and structure sim-
ilarity by comparison of upstream and downstream base
pairing probabilities (33–35).
Another approach for improving multiple sequence

alignments is to take the advantage of the homology across
multiple sequences by using consistency among pairwise
alignments (36,37). Probabilistic consistency, introduced by
ProbCons (37), combines Hidden Markov Model (HMM)-
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based posterior probabilities with a heuristic that aims at
three-way alignment consistency. The scoring of pairwise
alignments is adjusted to favor the alignment of nucleotides
to common nucleotides in the third sequence. In other
words, given three homologous sequences, A, B and C, the
alignment of A and C can be improved by having an align-
ment of A and B and also of B and C. Likewise, the other
two pairwise alignments can be improved by such consis-
tency. This can be extrapolated to consistency for a set of
any number of sequences using three-way consistency of all
sequence triples. ProbCons provides high alignment accu-
racy while maintaining fast computation speed (with com-
plexityO(H2N2) in time, givenH sequences with the average
length N).

This paper describes TurboFold II, which is an extension
of the original TurboFold algorithm (38). TurboFold pre-
dicts secondary structures for a set of homologous RNA
sequences. Speci�cally, TurboFold iteratively estimates base
pairing probabilities for each sequence using two types
of information for sequence folding: intrinsic information,
which is derived from the thermodynamic nearest neigh-
bor model (39–41), and extrinsic information, which is in-
ferred from other homologous sequences. The extrinsic in-
formation for a sequence is a proclivity for base pairing in-
ferred from the posterior base pairing probabilities for other
homologous sequences, mapped to the sequence of inter-
est by the posterior probabilities of nucleotide co-incidence
of the other sequences to that sequence. Two nucleotides
are de�ned as co-incident when either they are aligned or
when a nucleotide in one sequence occurs directly in a se-
quence of inserts following a nucleotide that aligns with
a nucleotide in the other sequence (28). The posterior co-
incidence probabilities are obtained with a Hidden Markov
Model (HMM) for pairwise alignments (42). The estimated
base pairing probabilities from TurboFold can be used to
predict secondary structure for each sequence by three op-
tional methods: thresholding the probabilities to compose a
structure with base pairs with estimated base pairing proba-
bilities higher than threshold, using the maximum expected
accuracy (MEA) secondary structure prediction algorithm
(43–45), or the ProbKnot method (46,47). TurboFold is it-
erative, with the extrinsic information being updated with
each iteration, and the iterations were shown to improve
the accuracy of the base pairing probability estimates. Be-
cause TurboFold does not strictly enforce the commonality
among predicted structures, it also performs well on struc-
turally diverged sequences.
TurboFold II makes several improvements upon the orig-

inal TurboFold algorithm. Whereas TurboFold only pro-
vided secondary structure predictions, TurboFold II also
provides a multiple sequence alignment that incorporates
information from secondary structure conservation. In con-
trast with TurboFold that used �xed posterior coincidence
probabilities computed at the start using only sequence in-
formation, TurboFold II updates the posterior co-incidence
probabilities for inter-sequence alignment at each iteration.
The updates incorporate secondary structure conservation
information in the alignment by using a match score, cal-
culated from estimated base pairing probabilities to repre-
sent the secondary structural similarity between nucleotide
positions in the two sequences. Upon completion of the it-

erations, in addition to structure predictions computed as
in TurboFold, TurboFold II computes a multiple sequence
alignment that is progressively computed using a sum-of-
pairs scoring based on a probabilistic consistency transfor-
mation, adopted from ProbCons (37).
To assess the performance of TurboFold II, the accu-

racy of sequence alignment and structure predictions were
compared with several leading alignment tools, including
pure sequence alignment methods, Clustal Omega (48);
ClustalW (49); ProbCons (37), and also methods that do
both alignment and structure prediction, LocARNA (22),
MAFFT (50), MXSCARNA (23), and R-Coffee (51). In
the comparison, TurboFold II shows signi�cantly better
alignment accuracy over other tools in the benchmark
test for RNase P and telomerase RNA families. Turbo-
Fold II also outperforms several alignment methods ex-
cept MAFFT on the SRP RNA family and except Clustal
Omega and MAFFT on the small subunit ribosomal RNA
(rRNA) family (where all tools are highly accurate). Fur-
thermore, the structure prediction accuracy of TurboFold II
is comparable to that of the original TurboFold algorithm.

MATERIALS AND METHODS

Base pairing probabilities and extrinsic information

TurboFold II uses an iterative framework analogous to Tur-
boFold (38), taking homologous RNA sequences as in-
put and providing estimates of base pairing probabilities
for each sequence and alignment posterior probabilities for
each pair of sequences as output (38). Prior to the iterations,
pairwise posterior co-incidence probabilities and pairwise
sequence identities are computed for each pair of sequences.
Subsequent iterations compute updated estimates of: (a)
base pairing probabilities using two sources of informa-
tion: the nearest neighbor thermodynamic model of the se-
quence itself (called intrinsic information) and a combina-
tion of the estimated base pairing probabilities of other in-
put sequence from previous iteration and the pairwise se-
quence alignment probabilities (called extrinsic informa-
tion) and (b) posterior probabilities for alignment between
nucleotide positions for each pair of sequences, again using
two sources of information: the nucleotide identities for the
sequence and a match score that quanti�es the secondary
structure similarity of nucleotide positions using the base
pairing probabilities. For brevity, in the following descrip-
tion we drop the quali�er ‘estimated’ when referring to var-
ious probabilities.
As illustrated in Figure 1, TurboFold II comprises eight

main steps: (1) computing pairwise posterior co-incidence
probabilities using an HMM, (2) estimating base pair-
ing probabilities using a partition function, (3) calculat-
ing an alignment match score (� ) for each possible pair
of nucleotide positions for each pair of sequences, (4) re-
computing posterior co-incidence probability matrices that
incorporate the match score, (5) calculating extrinsic in-
formation for each sequence by combining base pairing
probabilities from other input sequences using the poste-
rior co-incidence probabilities, (6) re-computing estimated
base pairing probabilities by a partition function, using
extrinsic information by combining updated posterior co-
incidence probabilities and base pairing probabilities, (7) re-
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Figure 1. Flowchart for TurboFold II. The input is a set of homologous RNA sequences. In step 1, the pairwise posterior co-incidence probabilities
(rectangular matrices) are calculated by pairwise HMM alignment. In step 2, base pairing probabilities (lower triangular matrices) are calculated using a
partition function. In step 3, a match score is calculated for each sequence using the base pairing probabilities. In step 4, the coincidence probabilities are
re-estimated using the match scores. In step 5, the base pairing probabilities and coincidence probabilities are used to calculate extrinsic information for
each sequence, and, in step 6, the base pairing probabilities are re-estimated using the extrinsic information. Steps 3, 4, 5 and 6 form a loop that is used for
multiple iterations. At step 7, a probabilistic consistency transformation is used to estimate a multiple sequence alignment. And at step 8, structures are
estimated for each sequence.

estimating the pairwise comparison score by probabilistic
consistency transformation, building a guide tree, and per-
forming progressive alignment and (8) predicting �nal sec-
ondary structures. Steps (3), (4), (5) and (6) form a loop that
is iterated through multiple times. Each step is described
below in more detail. The H homologous sequences are
denoted by X1, X2,. . . XH with corresponding lengths N1,
N2,. . . NH, respectively.

Initial posterior co-incidence probability. Pairwise poste-
rior co-incidence probabilities are estimated for all pairs
of sequences with an HMM as implemented by Harmanci
et al. (28). In the HMM, an alignment between two se-
quences is speci�ed by a sequence of three states: aligned nu-
cleotide positions (ALN); an insertion in the �rst sequence
(INS1), a nucleotide in �rst sequence but no correspond-
ing nucleotide in the second sequence; and an insertion
in the second sequence (INS2). HMM parameters are the
state transition probabilities for these three states that rep-
resent the pairwise alignment and the emission probabili-
ties for the nucleotides in the sequences. Using the forward-
backward algorithm, matrices of posterior co-incidence
probabilities for two nucleotides (one from each sequence)
are calculated. Detailed descriptions of co-incidence, pos-
terior probabilities for pairwise alignment, and HMM pa-
rameter optimization can be found in (28).

Base pairing probabilities. Base pairing probabilities are
calculated using the partition function method in RNAs-
tructure (52).

Match score (ρ). TurboFold II improves uponTurboFold
by updating the pairwise posterior co-incidence probabili-
ties during the iterations instead of using a static set of pre-
computed probabilities. To provide sequence alignments
that conform better with predicted secondary structures,
the pairwise posterior co-incidence probabilities are recom-
puted during each iteration while incorporating a prior
probability for base pairings based on a match score that
encourages alignment between nucleotide positions where
both nucleotides are either upstream paired, downstream
paired, or unpaired. A nucleotide position in a sequence is
said to be upstream or downstream paired, respectively, if it
is paired with another nucleotide that is closer to the 5′ or 3′

end of the sequence. The details of the match score follow.
A match score for alignment based on base pairing prob-

abilities was proposed in PMcomp (35), and this is adapted
and utilized here as a prior. For themth sequence, based on
estimated base pairing probabilities between all pairs of nu-
cleotide positions obtained from the partition function cal-
culation, for a nucleotide at position i , the estimated prob-
ability of downstream pairing is Pm

< (i ) =
∑

j>i P
m
i j , of up-

stream pairing is Pm
> (i ) =

∑

j<i P
m
i j , and of being unpaired

is Pm
◦ (i ) = 1 − Pm

< (i ) − Pm
> (i ). In alignments between two

homologous sequences with conserved secondary struc-
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tures, aligned nucleotide positions typically have the same
status: both aligned nucleotides are upstream paired, down-
stream paired, or unpaired. Therefore, to encourage align-
ments that conform better with estimated base pairing
probabilities for secondary structures, an alignment match
score between nucleotides i and k in sequences m and n, re-
spectively, is formulated as

ρ (i, k)

= α1

(

√

Pm< (i ) Pn< (k) +
√

Pm> (i ) Pn> (k)
)

+ α2

(

√

Pm◦ (i ) Pn◦ (k)
)

+ α3 (1)

where α1 and α2 are nonnegative weight parameters that
determine the emphasis placed on requiring that paired
and unpaired nucleotides are aligned, respectively, and α3 is
the nonnegative parameter that controls the ratio of match
scores between the situation where a paired nucleotide
aligns with an unpaired nucleotide and the situation where
two paired or unpaired nucleotides align. Both of these sit-
uations are encountered near the boundary of stems and
loops in RNA structures, and the introduction of α3 can
therefore improve the overall alignment accuracy. This com-
putation step scalesO(H2N2) in time, whereH is the number
of sequences and N is the length of each sequence.
Maximization of the alignment match score in Equa-

tion (1) encourages alignments that conform better with
predicted base pairing probabilities for secondary structure
and therefore can be used to inform alignment based on
secondary structures. This was �rst proposed in PMcomp
(35), which used a speci�c instance of the match score of
Equation (1) obtained by setting α1 = α2 = 1 and α3 = 0.
Whereas PMcomp utilized the match score directly in a dy-
namic programming-based maximization, here we incorpo-
rate the match score as a prior in the HMM based compu-
tation of posterior probabilities for alignment between nu-
cleotide positions, which are then iteratively updated.

Updating posterior co-incidence probabilities. In step 4, in-
formation from prior iterations is utilized to re-estimate
alignment posterior probabilities and base pairing proba-
bilities for secondary structures. The iterative re-estimation
of alignment posterior probabilities is new to TurboFold
II and uses the standard HMM alignment model (42), but
with the match score of Equation (1) incorporated as a
prior. This is complementary, yet analogous, to the incor-
poration of extrinsic information, in TurboFold, as a prior
for the partition function based re-estimation of base pair-
ing probabilities. The framework for HMM based pairwise
alignment of homologous sequences is already extensively
covered in (42). The description here highlights the new ele-
ments in TurboFold II following the notational conventions
from Harmanci et al. (28).
The pairwise alignment HMMmodeling the two homol-

ogous RNA sequences Xm and Xn progresses through a se-
ries of stochastic state transitions between states in the set
{ALN, INS1, INS2} corresponding to alignment, insertion
in sequence 1, and insertion in sequence 2, respectively. Nu-
cleotides observed in the sequences arise from HMM emis-
sions where in the ALN state, a nucleotide is emitted for
each sequence and in the insertion states, a nucleotide is
emitted for the sequence with the insertion and an unob-
served gap symbol ‘-’ for the other sequence. The HMM
enables ef�cient computation of the posterior co-incidence

probability P(i ∼ k|Xm, Xn) that nucleotide i in sequence
Xm is co-incident with nucleotide k in sequence Xn via the
recursive computation of the so-called forward and back-
ward variables. The forward-variable αSt (i, k) is the proba-
bility the HMM produces the �rst i and k nucleotides, re-
spectively, from the �rst and second sequence and is in state
St, where St ∈ {ALN, INS1, INS2}. The backward variable
βSt (i, k) is the probability that conditioned on starting in the
state St theHMMproduces the nucleotides i+1 through Nm
and k+1 through Nn , respectively, from the �rst and second
sequence.
TurboFold II computes the forward variable using the re-

cursions

αALN(i, k) =
∑

St∈{ALN,INS1,INS2}

τ (St, ALN) γALN
(

Xi
1, X

k
2

)

ρ (i, k)αSt (i − 1, k− 1)

αINS1(i, k) =
∑

St∈{ALN,INS1,INS2}

τ (St, INS1) γINS1 (i,−)αSt (i − 1, k)

αINS2 (i, k) =
∑

St∈{ALN,INS1,INS2}

τ (St, INS2) γINS2 (−, k)αSt (i, k− 1)

(2)

where τ (St+1, St) denotes the conditional probability that
the next state is St+1 given the current state is St, γSt (Y, Z)
for Y, Z ∈ {A, C, G, U,-} is probability for emission of the
pair Y, Z in the state St, and, as described earlier, ρ(i, k)
is the match score for secondary structure similarity be-
tween nucleotide positions i and k, which incorporates the
estimated structural information into the HMM alignment
process. The backward variable recursions in TurboFold II
are given by

βSt (i, k) = τ (St, ALN) γALN (i, k) ρ (i, k)βALN (i + 1, k+ 1)

+τ (St, INS1) γINS1 (i, −)βINS1 (i + 1, k)

+τ (St, INS2) γINS2 (−, k)βINS1 (i, k+ 1)

(3)

Compared with TurboFold the new component in Equa-
tions (2) and (3) is the introduction of the match score,
ρ(i, k). In the HMM framework, the match scores ρ(i, k)in
Equations (2) and (3) correspond (after normalization) to
a prior probability for pairing of nucleotide positions i in
sequence with nucleotide positions and k. Incorporation of
the score, ρ(i, k), increases the likelihood of alignment of
nucleotide positions i and k if both positions have higher
probability of being in the same structural pairing state
(both upstream-paired, downstream-paired, or unpaired)
compared with the case when the structural pairing states
of positions i and k are different.
Once the forward and backward variables have been re-

cursively computed, the posterior co-incidence probability
can be obtained from these as (28)

P (i ∼ k|Xm, Xn) =

∑

St∈{ALN,INS1,INS2} αSt (i, k)βSt (i, k)
∑

St∈{ALN,INS1,INS2} αSt (Nm, Nn)
(4)

Alignment posterior probabilities required for the prob-
abilistic consistency transformation in Step (7) are also ob-
tained from the forward and backward variables as

P (i − k|Xm, Xn) =
αALN (i, k)βALN (i, k)

∑

St∈{ALN,INS1,INS2} αSt (Nm, Nn)
(5)

Extrinsic information. The extrinsic information calcula-
tion begins with computing base pairing proclivity for each
sequence, inferred from every other sequence. For each se-
quence, a lower triangular matrix is calculated. Speci�cally,
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the proclivity P(n→m)(i, j ) for base pairing between nu-
cleotide positions i and j in sequence m inferred from se-
quence n is computed as

P(n→m) (i, j ) =
∑

k, l

1 ≤ k < l ≤ Nn
k ∈ C

m,n
i

l ∈ C
m,n
j

Pn (k, l) × P(m,n) (i ∼ k) × P(m,n) ( j ∼ l) (6)

where Pn(k, l) is the probability of pairing between nu-
cleotide positions k and l in sequence n, ‘i ∼ k’ indicates
the alignment between the nucleotides at indices i and k
in the two sequences with P(m,n)(i ∼ k) denoting the corre-
sponding probability, and C

m,n
i and C

m,n
j denote the sets of

indices outside of which the posterior co-incidence align-
ment probabilities P(m,n)(i ∼ k) and P(m,n)( j ∼ l), respec-
tively, are smaller than 0.01. Exclusion of indices outside
of the sets C

m,n
i and C

m,n
j from the summation in Equation

(6) saves computation time without a signi�cant accuracy
performance penalty.

The extrinsic information P̃m for sequence m is then ob-
tained as the normalized sum of the proclivities for the
sequence m inferred from all other sequences, where the
proclivities are inversely weighted by the pairwise sequence
identity. That is,

P̃m = αm
∑

n∈N\m

(1 − ψm,n) × P(n→m) (7)

where ψm,n is the identity between sequences m and n com-
puted from the HMM alignment, and αm is a normalizing

factor that sets the maximum value in P̃m as one. The ex-
trinsic information for each sequence is then normalized by
the maximum pair extrinsic information for that sequence.
A detailed description is in Harmanci et al. (38).

Updating extrinsic information and base pairing probabili-
ties. The extrinsic information (the normalized sum of the
base pairing proclivities for all pairs of each sequence with
other sequences) is re-computed as in step (5), using up-
dated posterior co-incidence probabilities (from step 4) and
base pairing probabilities (from step 2).
Repeating step (2), the partition function is re-computed

with the extrinsic information. The extrinsic information is
incorporated as a pseudo free energy term in the partition
function calculation. A detailed description is in Harmanci
et al. (38).

Probabilistic consistency transformation, guide tree compu-
tation, progressive alignment, and computing �nal multiple
sequence alignment. Upon completion of the iterations,
using the posterior co-incidence probabilities obtained with
the most recent match scores through step (3) are used to
obtain a multiple sequence alignment.
Probabilistic consistency, which was described in Prob-

Cons (37), is based on three-way alignment consistency of
pairwise HMM posterior probabilities. From the pairwise
HMMalignments, for each pairwise alignment, between se-
quences Xm and Xn , the alignment score between two nu-
cleotides i and k (the ith nucleotide of sequence Xm, and
kth nucleotide of sequence Xn) are calculated based on

probabilistic consistency transformation

P
′ (i ∼ k|Xm, Xn ) =

1

|S|

∑

Xo∈S

∑

q

P (i ∼ q|Xm, Xo) P (q ∼ k|Xo, Xn ) (8)

where P′(i ∼ k ∈ a
∗|Xm, Xn) is the re-estimated alignment

score of sequences Xmand Xn , q is the qth nucleotide in se-
quence Xo. Re-estimated alignment scores are used in pro-
gressive alignments, which are processed hierarchically ac-
cording to a guide tree as described in ProbCons (37).

Structure prediction using updated base pair probabilities.
The structures are predicted by the maximum expected ac-
curacy algorithm.Given the base pair probabilities Pm(i, j )
for sequence Xm, the maximum expected accuracy structure
is de�ned as

S∗
m = argmax

Sm

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

(i, j )∈Sm

2 · Pm(i, j ) +
∑

∀i ;

i unpaired in Sm

Pm(i )

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(9)

where Pm(i ) is the probability that nucleotide position i is
not base paired, which is computed as

Pm (i ) = 1 −

Nm
∑

j = i+1

Pm (i, j ) −

i−1
∑

j = 1

Pm ( j, i ) (10)

TheMEA structure is obtained with a dynamic program-
ming algorithm as described in (38).

Parameter optimization

For parameter optimization and benchmarking, an RNA
alignment and structure database, named RNAStralign
(http://rna.urmc.rochester.edu), was aggregated from avail-
able online databases of RNA structure and alignment.
Compared with the pre-existing BRAliBase dataset (53),
RNAStralign has greater diversity of sequences; in partic-
ular, several sequence families longer than 320 nucleotides
are included.
Structures for each family in RNAStralign are catego-

rized into homologous families based on the classi�cations
in the original databases. If available, further categorization
into subfamilies was also included in RNAStralign. Only
sequences with known alignments and secondary structures
were included. The families included are 5S ribosomalRNA
(54), Group I intron (55), tmRNA (56), tRNA (57), 16S
ribosomal RNA (58), Signal Recognition Particle (SRP)
RNA (59), RNase P RNA (60) and telomerase RNA (61).
To train the three parameters in the match score scheme

(α1, α2, and α3), 40 groups of input sequences, comprising
three, �ve and seven homolog sets, were randomly chosen
from RNAStralign for the 5S ribosomal RNA (Eubacteria
subfamily), group I intron (IC1 subfamily), tmRNA, and
tRNA families. A search was performed to �nd optimal pa-
rameter values for these selected sequences over a 3D grid
with α1 and α2 for values 0, 0.6, 0.8, 1.0, 2.0, 3.0, 4.0, and
5.0, and α3 for values 0, 0.3, 0.5, 0.7 and 1.0. The result-
ing optimal parameters (α1 = 1.0, α2 = 0.8, α3 = 0.5) were
then used as the defaults for the TurboFold II. Supplemen-
tary Figure S2 illustrates the landscape for the grid search.
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TheHMMparameters and the alignment constraint thresh-
olds (the cutoff value below which co-incidence probabil-
ities were excluded from the extrinsic information sum in
order to reduce computational time) were kept identical to
those used for TurboFold (38).

Benchmarks

Default options and parameters were used for the other pro-
grams use in the benchmarking. For RNAalifold (2.1.9),
separate benchmarks were run using Clustal Omega (1.2.1),
(48) or ClustalW (2.1) (49) to predict input alignments (62).
For benchmarking, groups of sequence homologs were

randomly selected from families distinct from those used
for estimation of the parameters. Speci�cally, 200 groups
of 5, 10 or 20 sequence homologs were selected from the
small subunit ribosomal RNA (Alphaproteobacteria sub-
family), SRP RNA (Protozoan subfamily), RNase P RNA
(bacterial type A subfamily) and telomerase RNA. For
SRPRNA, sequences shorter than 200 nucleotides were ex-
cluded because their structures are not consistent with those
of longer sequences. All methods were benchmarked on the
same groups of sequences, except for the single-sequence
predictions, which were obtained by running MaxExpect
from RNAstructure 5.7 (45,63) on each available sequence.
To allow for comparison against previous evaluations,

benchmarks for the commonly used BRAliBase dataset
(53), which provides multiple sequence alignments catego-
rized by sequence identity, are included in the Supplemen-
tary Materials (Supplementary Figure S3). BRAliBase suf-
fers from a bias in the ‘twilight zone’ sequence identities
ranging from 40% to 60%, caused by the fact that amajority
of sequences in BRAliBase for this range of sequence iden-
tities are tRNAs (64). Therefore, alignment methods with a
performance advantage for tRNA demonstrate better per-
formance in the low similarity region for BRAliBase.

Comparison with other methods that align sequences with
structure as auxiliary information

Like TurboFold II, the MAFFT (50) and R-Coffee (51)
RNA alignment methods align sequences using predicted
structure as auxiliary information, but these methods also
have signi�cant differences with TurboFold II.
For MAFFT, the X-INS-i option provides the capability

for incorporating structural information in a multiple se-
quence alignment (MSA); hence forth, MAFFT refers to
the program used with this option. To obtain a multiple se-
quence alignment, MAFFT �rst calculates pairwise struc-
tural alignments using either the SCARNA (65) or LaRA
(66) methods. Using a guide tree and consistency score,
an initial MSA is computed progressively from the pair-
wise structural alignments. This MSA is then iteratively re-
�ned to incorporate structural information represented as
base pairing probabilities for each sequence computed us-
ing the McCaskill algorithm (39). The iterative re�nement
optimizes an alignment score that combines a weighted sum
of pairs term (67) that assesses sequence conservation, a
consistency term (68) that assesses consistency of the MSA
with the pairwise alignments, and a ‘four-way consistency’
term that encourages alignment of nucleotides in the two

sequences whose paired nucleotides are aligned. The ‘four-
way’ consistency incorporates the structural information in
the alignment.
While both MAFFT and TurboFold II iteratively incor-

porate structural information in computing an MSA, the
approaches differ fundamentally. The TurboFold II iter-
ations alternate between structural predictions (updating
base pairing probabilities) and alignment predictions (up-
dating alignment probabilities). Both the structural and
alignment prediction steps utilize probabilistic models and
exchange information as prior probabilities. TurboFold II
also re�nes the pairwise sequence alignments using struc-
tural information, in contrast to MAFFT using structural
information at the MSA re�nement.
R-Coffee is a variant of T-Coffee (36). It starts by gen-

erating pairwise sequence alignments, called a library, and
then estimates a MSA from the pairwise alignment library
using the individually aligned nucleotide positions from the
library as ‘weighted constraints’. RNA secondary structure
information is also included in the re�nement in the form
of local base paring probabilities, which are calculated by
RNAplfold (69,70).

In R-Coffee, the MSA is assembled from library of
nucleotide alignments in a way that favors a 4-way-
consistency, i.e. nucleotides are more likely to align if they
align to common nucleotide in a third sequence and if they
have high probability of base pairing with nucleotides that
are also aligned in the library. Sequences are aligned pair-
wise (71) with a score that favors 4-way consistency, a tree
is built (72), and the multiple alignment assembled (49).
A major difference between TurboFold II and both

MAFFT andR-Coffee is that thematch score in TurboFold
II re�ects the general similarity of base pairing conditions
(being paired upstream, paired downstream, or unpaired)
rather than restraints as being paired with particular nu-
cleotides. The advantage of the match score is not to limit
the potential alignment partners in too narrow a range. By
combining with sequence identity in the HMM calculation,
it can be useful to improve the overall alignments based on
imperfect structure prediction, particularly at the beginning
of the iterations.

Scoring of prediction accuracy

For both predicted alignments and structures, sensitivity
and positive predictive value (PPV) were calculated. For the
alignment benchmark, sensitivity is the fraction of aligned
nucleotide pairs in the database that are correctly predicted
by the methods. PPV is the fraction of predicted aligned
nucleotide pairs that also occur in the accepted alignment
(53,73,74). For the secondary structure benchmark, sensi-
tivity is the fraction of base pairs annotated in the database
that are correctly predicted. PPV is the fraction of the pre-
dicted base pairs that also occur in the accepted structures
in the database. Predicted base pairs are considered correct
if a nucleotide either on 5′ or 3′ end of the correct base is
off by one position (75). For instance, a predicted base pair
(i , j ) is correct if base pair (i , j ), (i±1, j ) or (i , j±1) exists
in database. This is important because of uncertainty in the
determination of secondary structure by comparative anal-
ysis (76) and also because of thermodynamic �uctuations of
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local structures (77–79). The scorer program of RNAstruc-
ture was used.

Signi�cance testing

To assess the statistical signi�cance of the differences in sen-
sitivity and PPV, paired t-tests were performed usingR 3.0.2
(URL: http://www.R-project.org/) (80) between TurboFold
II and each of the other methods (81). Alpha, the type I er-
ror rate, was set to 0.05. The �gures summarizing the bench-
marking results are annotated to indicate the results of the
signi�cance tests.

RESULTS

Algorithm overview

Fundamentally, TurboFold II is an extension of TurboFold
(38), which takes multiple homologous RNA sequences as
input and outputs estimated base pair probabilities, where
the estimates for each sequence are informed by the other
sequences. The main enhancement from TurboFold to Tur-
boFold II is that, in the iterations, the pairwise posterior
co-incidence probabilities for alignments are also updated,
guided by estimated base pairing probabilities, and, upon
completion of iterations, a multiple sequence alignment is
obtained via the probabilistic consistency-based progressive
alignment method of ProbCons (37). Just like TurboFold,
TurboFold II does not enforce predictions into a single
common structure, therefore, it is able to predict diverged
structures for homologous sequences.

Comparison to other programs

Alignment Prediction. The accuracy of TurboFold II was
compared to those of seven leading multiple alignment
methods: Clustal Omega (1.2.1) (48), a method that uses
HMM alignment that is based on the HHalign pack-
age (82) and guide tree computation that utilizes an en-
hanced version of mBed (83) and can cluster large num-
bers of sequences rapidly; ClustalW (2.1) (49), a method
that is based on pairwise dynamic programing alignments
(84) and a neighbor joining clustering algorithm (72); Lo-
cARNA (1.8.7) (22), a Sankoff-style structure-based align-
ment method that implements the algorithm of comparison
of estimated base pairing probabilities that was proposed
in PMcomp (35); MXSCARNA (2.1) (23), a structural-
alignment method that progressively aligns potential stem
candidates after removing the inconsistent stem compo-
nents that are overlapping with others; ProbCons (1.12)
(37), a method based on HMM-derived posterior proba-
bility and three-way probabilistic consistency; MAFFT (X-
INS-i option) (50), a method that utilizes pairwise struc-
tural alignments calculated by SCARNA (65) and progres-
sively combines them to create a multiple sequence align-
ment; and R-Coffee (51), an approach that extends T-
Coffee’s algorithm by re�ning the score of the pairwise nu-
cleotide alignments by considering the predicted base pair-
ing of nucleotides. Calculations were performed on 200 sets
of 5, 10 and 20 homologous sequences of small subunit
rRNA (58), RNase P RNA (60), SRPRNA (59) and telom-
erase RNA (61). All methods were run with default param-
eters. The results are shown in Figure 2.

With the exception of the small subunit rRNA family,
TurboFold II had the highest sensitivity and PPV among
the programs benchmarked. The pairwise sequence iden-
tities for the families used in the benchmarking are tabu-
lated in the SupplementaryMaterial, where the pairwise se-
quence identity is de�ned as the fraction of nucleotide po-
sitions for which the nucleotides are aligned and identical.
The small subunit rRNA family sequences have the highest
average pairwise sequence identity among all the families
(Supplementary Figure S1), therefore, the sequence-based
alignment methods tend to be more successful for those se-
quences. Sequence-identity-based methods, however, tend
to perform poorly on families with low pairwise sequence
similarity, including SRP and RNase P. Additional bench-
marks of multiple sequence alignment by TurboFold II on
the BRAliBase 2.0 dataset demonstrated that TurboFold II
performed well, especially in the low sequence identity re-
gion (Supplementary Figure S3).

Structure Prediction. The secondary structure prediction
results from TurboFold II over the test datasets were com-
pared against leading secondary structure prediction meth-
ods: LocARNA (1.8.7) (22); RNAalifold (2.1.9) (62), a
method that reads aligned RNA sequences and computes
minimum free energy conserved structures as allowed by the
input alignment; MXSCARNA (2.1) (23), which predicts
a consensus structure by Rfold and input from ClustalW
(2.1) (49); and TurboFold (38). MaxExpect (45,63), a sin-
gle sequence structure prediction method, is used as a con-
trol calculation because it also predicts structure with the
maximum expected accuracy algorithm, which is same as
the mode chosen in TurboFold II and TurboFold. The re-
quired alignment input for RNAalifold was calculated by
ClustalW, Clustal Omega (1.2.1) (48), or MAFFT (X-INS-
i). The results are shown in Figure 2.

For each family, TurboFold II had a sensitivity and PPV
comparable to TurboFold and performed well in compar-
ison with other methods (Figure 2). Except for the small
subunit rRNA family, TurboFold II and TurboFold are the
top two methods when considering the average of sensitiv-
ity and PPV.Among themethods compared,MXSCARNA
has the highest accuracy for the small subunit rRNA. The
accuracy ofRNAalifold depended on the alignment quality.
For sequences of small subunit rRNA, RNase P RNA, and
telomerase RNA, RNAalifold performs better structure
predictions with input alignments from Clustal Omega and
MAFFT than fromClustalW, which corresponded with the
relative alignment accuracy of the methods (Figure 2).

DISCUSSION

TurboFold offered a breakthrough by predicting conserved
RNA secondary structures using probabilistic alignment
information rather than �xed input alignments. It lacked,
however, a mechanism for estimating the alignments us-
ing structural information. TurboFold II �lls this lacuna by
incorporating iterative re�nement of the alignment prob-
abilities in addition to that of the base pairing probabili-
ties. This additional functionality is introduced in Turbo-
Fold II by using a match score function that represents the
secondary structural similarity between two nucleotides (in
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Figure 2. Sensitivity and PPV of alignment (left) and structure (right) predictions. Sensitivity and PPV of alignment predictions obtained by running the
methods with 5, 10 or 20 input sequences on the small subunit rRNA, RNase P RNA, SRP RNA and telomerase RNA test datasets. The star (*) above
the bar for a method indicates that the difference in sensitivity (or PPV) between the method and TurboFold II is statistically signi�cant, as determined by
a paired t-test. Numerical sensitivity and PPV values corresponding to the plots in the �gures are provided in the Supplementary Materials in Tables S1
and S2 for alignment and structure prediction, respectively.

two sequences) based on estimated base pairing probabil-
ities. Thus, the computation of extrinsic information for
structures also uses updated posterior co-incidence proba-
bilities to re-estimate base pairing probabilities for each se-
quence. The �nal predicted alignment additionally bene�ts
from the consistency transformation introduced by Prob-
Cons (37). The pairwise comparison scores are used in pro-
gressive alignment to output a �nal multiple sequence align-
ment.
Structural alignment methods, like TurboFold II, take

advantage of predicted structural information to inform se-
quence alignments. In contrast, sequence alignment meth-
ods rely solely on nucleotide identity, which is problematic
because of the relatively poor sequence conservation com-
pared to structure conservation in RNA.
As with other structural alignment tools, a limitation of

TurboFold II is that its alignment accuracy heavily relies on
the accuracy of secondary structure prediction. When a se-
quence has variable structure elements that are absent in the
other input sequences, the extrinsic information computed
from other sequences for the corresponding regions is not
as useful as when there are similar structural elements in at
least one other input sequence. These structural inserts are
common in several RNA families, such as RNase P RNA
and SRP RNA (77). A detailed example of such a case in
RNase P is shown in Supplementary Figure S4, with the
known secondary structures for �ve RNase P sequences,
Nocardioides albus, Propioniferax innocua, Salt Marsh A26,
Mycobacterium tuberculosis and Lake Griffy A #8 in Sup-
plementary Figure S4(a–e). The known structure for No-
cardioides albus in Supplementary Figure S4(a) was differ-
ent from other two structures Propioniferax innocua in Sup-
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A
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B C

Figure 3. Predicted structures and alignments forNocardioides albus,Propioniferax innocua and SaltMarsh A26. Structures forNocardioides albus (A),Pro-
pioniferax innocua (B) and Salt Marsh A26 (C) as predicted by TurboFold II. (D) Database alignments for Nocardioides albus, Propioniferax innocua and
Salt Marsh A26. Alignments as predicted by TurboFold II (E), ProbCons (F), ClustalW (G), Clustal Omega (H), LocARNA (I), MXSCARNA (J),
MAFFT (K) and R-Coffee (L). The alignment accuracy is indicated as sensitivity and PPV for each method. The colored nucleotides correspond to helices
in database structures.

plementary Figure S4(b) and Salt Marsh A26 in Supple-
mentary Figure S4(c), with a three-arm multibranch loop
(helixes are marked by colors). On the other hand, struc-
tures for Propioniferax innocua and SaltMarsh A26 contain
a bulge loop in the corresponding position. Therefore, an
inserted hairpin structure in Nocardioides albus makes the
secondary structure different from those for Propioniferax
innocua and Salt Marsh A26.

TurboFold II inherits the bene�cial capability of Turbo-
Fold that allows variable structural elements within indi-
vidual structures. For these RNase P sequences, the �ex-
ibility of the model of structural conservation is clear.
Figure 3 (panels a–c) shows the structures for Nocar-
dioides albus, Propioniferax innocua and Salt Marsh A26
as predicted by TurboFold II. The multibranch loop and
bulge loops are correctly predicted. Figure 3d shows the
known alignment of nucleotides of the variable structure el-
ements for Nocardioides albus, Propioniferax innocua and
Salt Marsh A26. The nucleotides of the aligned helices
alignments are colored according to their secondary struc-
tures. Figure 3 (panes e–l) shows the predicted sequence
alignments and prediction accuracies for TurboFold II,
ProbCons, ClustalW, Clustal Omega, LocARNA, MXS-
CARNA, MAFFT, and R-Coffee. The multiple sequence

alignments output by TurboFold II achieved the highest
prediction accuracy (both sensitivity and PPV) among all
methods. The helix of the inserted structural domain (indi-
cated by magenta coloring in Figure 3, panels a–c) in No-
cardioides albus is correctly predicted as an insertion by Tur-
boFold II, by two other structural alignment methods, Lo-
cARNA and MXSCARNA, and by the purely sequence-
basedmethod, Clustal Omega.Without the bene�t of struc-
tural information, this helical region is aligned incorrectly
with nucleotides in 5′-end of another helix in the Prob-
Cons prediction and with nucleotides in 3′-end of another
helix in the ClustalW prediction. Supplementary Figures
S6–S13 in the Supplementary Materials show the complete
predicted sequence alignments from TurboFold II, Clustal
Omega, ClustalW, LocARNA and MXSCARNA, Prob-
Cons, MAFFT and R-Coffee, respectively. Supplementary
Figures S14–S20 show the predicted structures by Turbo-
Fold II, LocARNA, MaxExpect, MXSCARNA, RNAali-
fold (using Clustal Omega alignment), RNAalifold (using
ClustalW alignment) and TurboFold, respectively.
TurboFold II uses a relatively simple match score scheme

to incorporate structural information into HMM align-
ments so that the computational demands remain compa-
rable to TurboFold. Although the match score does not
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A

D E

C

F

G H I
B

Figure 4. An example from the alignment of tRNA sequence homologs that illustrates how the update of posterior coincidence probabilities introduced
in TurboFold II can improve alignments by incorporating structural information. tRNA structures of (A)Halorubrum lacusprofundi (tdbD00000003) and
(B) Streptococcus pneumoniae TIGR4 (tdbD00009726) (57,85) by TurboFold II with three other tRNAs. (C) Predicted alignment of the two sequences. The
nucleotides in predicted helices are indicated by corresponding colors in both the alignment and the structures. (D) The posterior co-incidence probabilities
calculated by pairwise HMM alignment. The co-incidence probabilities are color coded as shown by the adjacent key. (E) The posterior co-incidence
probabilities of pairwise HMM alignment incorporating the match score. (F–H) Posterior co-incidence probabilities by incorporating match score after
�rst (F), second (G) and third (H) iterations, respectively. (I) The alignment from the Sprinzl database (48,68). The colored blocks along the axes in the
alignment probability plots (D–I) identify the nucleotides for helices shown in (A), (B) and (C).

distinguish between nucleotides in same structure compo-
nents (5′ stem, 3′ stem or unpaired), by combining with
pairwise HMM alignments and probabilistic constraints,
the nucleotides with relatively high posterior co-incidence
probabilities are aligned and incorrect alignments at the
border of stem and loop regions are excluded. An exam-
ple of such a case in tRNA is shown in Figure 4. Fig-
ure 4A and D depicts the predicted structures of two
homologous tRNA sequences Halorubrum lacusprofundi
(database ID: tdbD00000003, anticodon: UGC, amino
acid: Ala) and Streptococcus pneumoniae TIGR4 (database
ID: tdbD00009726, anticodon: GCU, amino acid: Ser), re-
spectively. Figure 4C is the predicted alignment. Compared
with the relatively diffuse posterior co-incidence probabili-
ties for the variable hairpin loop structure from the initial
pairwise HMM alignment (Figure 4D), the posterior co-
incidence probabilities obtained with TurboFold II (Figure
4H) are sharper for the second hairpin loop structure and
the variable region is more distinguishable as an insertion in
the second sequence. The gradually change in the posterior
co-incidence probabilities during the iterations (Figure 4E–
H) shows that distribution of the probability mass becomes
more consistent with the database alignment (Figure 4I) as
the iterations proceed.
TurboFold II now iteratively re�nes multiple sequence

alignments and estimated secondary structures, estimating
both nucleotide alignment probabilities for sequence pairs
and base pairing probabilities for base pairs. Dynamic pro-
graming algorithms accomplish both steps, but the simulta-
neous folding and alignment problem is avoided, and thus
TurboFold II accomplishes sequence alignment and struc-

ture prediction with much better overall scaling, O(H2N2 +
HN3) forH sequences of average lengthN. The time perfor-
mance on select sequence families is provided in the Supple-
mentary Materials in Table S3.

DATA AVAILABILITY

TurboFold II is a component of the RNAstructure soft-
ware package and is available for download from http://rna.
urmc.rochester.edu. Source code and binaries are available.
Additionally, a C++ class is available for incorporating Tur-
boFold II into other software packages.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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