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Abstract

Background: The prediction of secondary structure, i.e. the set of canonical base pairs between nucleotides, is a

first step in developing an understanding of the function of an RNA sequence. The most accurate computational

methods predict conserved structures for a set of homologous RNA sequences. These methods usually suffer from

high computational complexity. In this paper, TurboFold, a novel and efficient method for secondary structure

prediction for multiple RNA sequences, is presented.

Results: TurboFold takes, as input, a set of homologous RNA sequences and outputs estimates of the base pairing

probabilities for each sequence. The base pairing probabilities for a sequence are estimated by combining intrinsic

information, derived from the sequence itself via the nearest neighbor thermodynamic model, with extrinsic

information, derived from the other sequences in the input set. For a given sequence, the extrinsic information is

computed by using pairwise-sequence-alignment-based probabilities for co-incidence with each of the other

sequences, along with estimated base pairing probabilities, from the previous iteration, for the other sequences.

The extrinsic information is introduced as free energy modifications for base pairing in a partition function

computation based on the nearest neighbor thermodynamic model. This process yields updated estimates of base

pairing probability. The updated base pairing probabilities in turn are used to recompute extrinsic information,

resulting in the overall iterative estimation procedure that defines TurboFold.

TurboFold is benchmarked on a number of ncRNA datasets and compared against alternative secondary structure

prediction methods. The iterative procedure in TurboFold is shown to improve estimates of base pairing

probability with each iteration, though only small gains are obtained beyond three iterations. Secondary structures

composed of base pairs with estimated probabilities higher than a significance threshold are shown to be more

accurate for TurboFold than for alternative methods that estimate base pairing probabilities. TurboFold-MEA, which

uses base pairing probabilities from TurboFold in a maximum expected accuracy algorithm for secondary structure

prediction, has accuracy comparable to the best performing secondary structure prediction methods. The

computational and memory requirements for TurboFold are modest and, in terms of sequence length and number

of sequences, scale much more favorably than joint alignment and folding algorithms.

Conclusions: TurboFold is an iterative probabilistic method for predicting secondary structures for multiple RNA

sequences that efficiently and accurately combines the information from the comparative analysis between

sequences with the thermodynamic folding model. Unlike most other multi-sequence structure prediction

methods, TurboFold does not enforce strict commonality of structures and is therefore useful for predicting

structures for homologous sequences that have diverged significantly. TurboFold can be downloaded as part of

the RNAstructure package at http://rna.urmc.rochester.edu.
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Background

The discovery that RNA can directly regulate chemical

reactions in a cell without being translated into, or cod-

ing for, a protein has radically altered the understanding

of RNA function [1,2]. Many types of such non-coding

RNAs (ncRNAs) have been identified, with roles in

diverse cellular activities [3,4] and it is predicted that

numerous ncRNAs are yet to be identified [4-8].

Correct determination of the secondary structure of a

ncRNA, i.e., the canonical base pairing interactions

between the nucleotides, is important for understanding

the chemical basis for its function [9]. In addition, accu-

rate prediction of RNA secondary structure also

improves computational methods that scan genomes for

novel ncRNA genes [4,10-14] because these methods

utilize structure prediction to test for conserved second-

ary structure across genomes, which, in turn suggests

that the sequence regions corresponding to conserved

structural regions form homologous ncRNA genes.

A number of alternative techniques have been pro-

posed for RNA secondary structure prediction - a pro-

cess that is commonly referred to as RNA folding

[15,16]. For folding a single RNA sequence, the state of

the art method utilizes a thermodynamic model that

predicts molecular stability for a given set of base pair-

ing interactions using a nearest neighbor model [17-20].

When multiple RNA homologs that share a common

secondary structure are available, significantly higher

accuracy can be obtained by folding these multiple

sequences together to find the conserved structure. In

fact, comparative sequence analysis methods [21] that

utilize a large number of homologs for RNA folding,

currently offer the most accurate prediction of second-

ary structure. Comparative sequence analysis takes as

input multiple homologous RNA sequences and predicts

a consensus secondary structure. The analysis is an

iterative process, where the sequences are aligned and

conserved base pairs are identified between columns of

the alignment. Then the pairing information is utilized

to refine the alignment of the sequences in the next

iteration. Comparative sequence analysis aims at com-

bining the folding of individual sequences and the align-

ment between the sequences to determine the

consensus structure. The method is, however, manual

and time consuming. Computational methods for struc-

ture prediction using multiple homologous sequences

can be thought of as attempts to automate comparative

sequence analysis, typically with a much smaller number

of input sequences. A recent comprehensive review of

computational methods for structure prediction for mul-

tiple sequences can be found in [22].
This paper presents TurboFold, a new secondary struc-

ture prediction algorithm. TurboFold is an iterative algo-

rithm that takes, as input, a collection of homologous

RNA sequences and outputs estimates of base pairing

probabilities for each of the sequences. TurboFold com-

putes estimated base pairing probabilities for a given

sequence, by using both intrinsic information derived

from a thermodynamic nearest neighbor model for fold-

ing of the sequence and extrinsic information for folding

of the sequence inferred from the other sequences in the

input set. The extrinsic information contribution of each

of the other sequences is obtained by mapping the esti-

mated base pairing probabilities for the sequences, from

the previous iteration, using posterior probabilities of

nucleotide co-incidence between sequences. Two nucleo-

tide positions (one from each of the two sequences) are

co-incident if they are either aligned, or if one nucleotide

position (from one of the sequences) occurs in an inser-

tion in that sequence that begins at a nucleotide position

aligned with the second nucleotide position (from the

other sequence) [23]. Co-incidence is illustrated in Figure

1 and a formal definition can be found in [23]. The pair-

wise nucleotide co-incidence probabilities are obtained

by using a Hidden Markov Model (HMM) for the align-

ment between the sequences.

The estimated posterior probabilities of base pairing

output by TurboFold can be utilized for predicting the

secondary structure of the sequences, either by thresh-

olding the probabilities to obtain structures composed

of base pairs with estimated pairing probabilities higher

than a desired threshold or by using the estimated pos-

terior probabilities in a maximum expected accuracy

(MEA) secondary structure prediction algorithm [24-26].

The latter algorithm is termed TurboFold-MEA. While

TurboFold predicts the secondary structures for the

multiple sequences collectively using information from

all sequences, it does not do so with a rigid definition of

common secondary structure for the collection of

sequences. Thus TurboFold permits variable folding

Figure 1 Nucleotide coincidence. Example illustrating nucleotide

co-incidence. (a) a sample alignment for two hypothetical sequences

x1 and x2, and (b) representation of the alignment as an array

where i denotes the nucleotide index for sequence x1 and k the

nucleotide index for the sequence x2. The co-incident nucleotide

positions are indicated by black and cross-hatched squares, where

the black squares indicate aligned positions and the cross-hatched

squares indicate inserted positions.
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domains that are seen in some of the sequences and not

in others, a scenario that is not uncommon in ncRNA

sequences that are homologous despite the minor varia-

tions in their secondary structure topology.

Benchmarking results demonstrate that the base pair-

ing probability estimates of TurboFold are more accu-

rate than alternative methods that provide such

estimates, i.e. for a given sensitivity, the base pair pre-

dictions obtained by thresholding the estimated prob-

abilities from TurboFold have a higher positive

predictive value (PPV) than the alternative methods.

Secondary structure prediction using TurboFold-MEA

also provides among the highest accuracy across the

secondary structure prediction methods benchmarked.

Specifically, for ncRNA families with significant struc-

tural variation, TurboFold-MEA has a higher sensitivity

than other methods at similar PPV. For other ncRNA

families, the results of TurboFold-MEA are comparable

to the best performing methods. The computation time

and memory requirements of TurboFold are modest

and comparable to, or lower than, those for other meth-

ods with comparable accuracy, with the exception of

RAF [27], which is faster.

In the next section, TurboFold is presented as an

iterative algorithm that alternates between computations

of a) extrinsic information and b) a modified partition

function that yields estimates of posterior base pairing

probabilities. Within the section, a description is also

provided for methods for prediction of secondary struc-

tures from base pairing probability estimates, either by

composing structures made from base pairs with esti-

mated probabilities higher than a chosen threshold or

by using the MEA methodology. The Results section

benchmarks the performance of TurboFold and Turbo-

Fold-MEA against other secondary structure prediction

methods with regard to structure prediction accuracy

and resource (time and memory) requirements. The

Discussion section presents the motivation for the pro-

posed method and the nomenclature by exploring con-

nections with Turbo-decoding [28] and presents an

example that illustrates TurboFold’s ability to allow vari-

able structural elements across input sequences. The

relation of TurboFold to existing multi-sequence meth-

ods for prediction of RNA secondary structure is also

addressed within the Discussion section.

Methods

TurboFold takes as input K RNA sequences denoted by

x1, x2, ..., xK or {xm}m∈N where N = {1, . . . , K} denotes

the set of sequence indices. The length of the mth

sequence xm is denoted by Nm. Thus the sequence xm
consists of an sequence of Nm nucleotides ordered from

the 5’ to the 3’ end, where each nucleotide takes values

from the alphabet set {A, U, G, C} based on its

identifying nitrogenous base. A secondary structure Sm
on an RNA sequence xm is represented as the set

{(il, jl)}l of pairs (il, jl) of nucleotide indices il, jl corre-

sponding to the base pairs in the secondary structure,

where the subscript l indexes the base pairs in the struc-

ture. By convention, 1 ≤ i <j ≤ Nm and each nucleotide

position can participate in at most one base pair.

Furthermore, as is common, for computational reasons,

it is assumed that the base pairs within a structure

satisfy the pseudoknot free condition, i.e. for any four

nucleotide indices 1 ≤ i1 <i2 <j1 <j2 ≤ Nm, both (i1, j1)

and (i2, j2) cannot be base pairs in Sm.

The steps in TurboFold are listed in Algorithm 1. The

ensuing description first provides a high-level overview

which is followed by details of the individual modules

within the algorithm. The notational convention denotes

probabilities by π and matrices of probability entries by

Π. Terms analogous to, but not strictly, probabilities are

denoted as π̃ and �̃, respectively, in their scalar and

matrix forms. The association of these terms with a

sequence or a pair of sequences is indicated by adding

superscripts comprised of a single sequence index or a

two-tuple of sequence indices. Pre-subscripts of p and c

indicate that they are associated with pairing and co-

incidence events, respectively. Finally, if required, a pre-

superscript denotes the iteration index.

Prior to commencing the iterations, pairwise posterior

co-incidence probability matrices cΠ
(s,m) and pairwise

sequence identities ψm,s are computed for each pair of

sequences (m, s), m, s ∈ N , m ≠ s. Specifically, cΠ
(m,s) is

an Nm × Ns matrix whose ikth entry cπ
(m,s) (i, k) is the

posterior probability that nucleotide at index i in xm is

co-incident with the nucleotide at index k in xs. The

sequence identity, ψm,s, is computed as the fraction of

positions, along the maximum likelihood alignment

path, in which the nucleotides for sequence xm and xs
match. The posterior co-incidence probability matrices

cΠ
(s,m) and sequence identity ψm,s are computed effi-

ciently in TurboFold using a pairwise alignment Hidden

Markov Model (HMM) [23,29], which requires O(NmNs)

operations and storage for each sequence pair.

Once similarities and posterior co-incidence probabil-

ities are available, TurboFold proceeds with iterations

indicated in Algorithm 1, where t denotes the iteration

count, commencing at t = 0. The tth iteration computes

base pairing probability matrices t
p�

s for each sequence

s ∈ N using, as input, the base pairing probability

matrices {t−1
p �

s}s∈N computed in the previous iteration.

Specifically, t
p�

m is an Nm × Nm lower triangular matrix,

whose ijth element t
pπ

p(i, j) represents the tth iteration

estimate of the probability that in the secondary struc-

ture of xm the nucleotides at indices i and j in the

sequence are base-paired. The computation of the base

Harmanci et al. BMC Bioinformatics 2011, 12:108

http://www.biomedcentral.com/1471-2105/12/108

Page 3 of 22



pairing probability matrix t
p�

m comprises two steps,

details of which follow the overview of the algorithm

flow. The first step computes a lower triangular Nm ×

Nm extrinsic information matrix t
p�̃

m
, using base pairing

probability matrices {t−1
p �

s}s∈N \m for all sequences other

than xm from the previous iteration. The notation N \m
denotes the set of indices obtained by deleting m from

the full set of indices N . The second step computes a

modified partition function that combines the extrinsic

information with the nearest neighbor thermodynamic

model to obtain the base pairing probability matrix t
p�

m.

The algorithm terminates after (h + 1) iterations where

the first iteration (t = 0) corresponds to an initialization

step where base pairing probabilities {0
p�

s}s∈N are com-

puted with the extrinsic information set to unity for all

sequences. The overall process is illustrated in Figure 2

in a flow chart format that highlights the iterative nature

of the algorithm and the analogy with Turbo-decoding

in digital communications.

Extrinsic Information Computation

The process for computing extrinsic information t
p�̃

m

for the mth sequence xm in the tth iteration is outlined

next. First values for base pairing proclivity for the

sequence xm induced by each of the other sequences are

computed. Specifically, for each s ∈ N \m, an Nm × Nm

lower triangular matrix t
p�̃

(s→m)
is evaluated. The ijth

entry of t
p�̃

(s→m)
is computed as in (1) and characterizes

the proclivity for base pairing between the nucleotides

at indices i and j in the sequence xm, as induced by: a)

the base pairing probability matrix t−1
p �

s for the

sequence xs in the (t - 1)th iteration and b) the align-

ment posterior co-incidence probability matrix cΠ
(m,s).

Equation (1) can be intuitively understood by referring

to Figure 3. Multiplying t−1
p π s(k, l), which represents the

most recent estimate of the probability that nucleotides

at indices k and l are paired in xs, with the probabilities

cπ
(m,s)(i, k) and cπ

(m,s)(j, l) that the nucleotide indices k

and l in xs are co-incident with the nucleotide indices i

and j, respectively, in xm yields an estimate for the pro-

clivity of base pairing induced from the index 2-tuple (k,

l) in xs onto the index 2-tuple (i, j) in xm. This estimate

is exactly the term listed in the summation on the right

hand side of (1). The summation itself represents an

aggregation of the proclivity estimates across the differ-

ent possible base pairs (k, l) in xs.

Figure 2 Flowchart for iterative computation of probabilities of base pairing and extrinsic information. The pairwise coincidence

probabilities are computed once during initialization. Iteration t starts with computation of the extrinsic information for the sequences, utilizing

the base pairing probabilities {t−1
p �

s}s∈N \k computed in the previous iteration. Note that the extrinsic information computation for a sequence

at iteration t does not utilize its own base pairing probabilities computed at iteration (t - 1). This is shown in the figure by an ‘×’ symbol

between the arrow that represents the base pairing probability of the sequence and the extrinsic information computation block for the

sequence. The first iteration starts with initialization of extrinsic information of each sequence to 1. (h + 1) total iterations are performed.
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In (1), the induced proclivity terms for which either of

the two co-incidence probabilities are small can be

excluded from the summation in order to reduce the

computational load, without incurring a significant

t
pπ̃

(s→m)(i, j) =
∑

k,l
1≤k<l≤Ns

k∈Cm, s
j

l∈Cm, s
j

t−1
p π s(k, l) cπ

(m,s)(i, k) cπ
(m,s)(j, l)

(1)

performance penalty. This is indicated in (1) by con-

straining the indices k and l to constraint sets Cm,s
i and

C
m,s
j , respectively, where C

m,s
i denotes the set of indices

for which the posterior co-incidence probabilities cπ
(m,s)

(i, k) exceed a chosen, sufficiently low, significance

threshold, and C
m,s
j is similarly defined. The computation

of these sets of constrained co-incident indices is

described in detail in [23]. If, over all choices of

sequence pairs (m, s), the average number of elements

in the set Cm,s
i (and C

m,s
j ) is d, then the computation of a

term in one of the matrices {t
p�̃

(s→m)
}s,m∈N ,s�=m requires

(d2) operations on average. It is worth noting that with-

out the constraints for indices k and l, the evaluation of

induced probabilities in (1) could be expressed as two

matrix multiplications, t
p�̃

(s→m)
=c�

(m,s) t−1
p �

s
c�

(s,m),

which would require (N2
s ) operations per entry.

The use of co-incidence, rather than alignment, prob-

abilities for the generation of extrinsic information is

motivated by the fact that the coincidence probabilities,

which are the sum of probabilities for matching, inser-

tion and deletion events in the alignment, propagate

pairing proclivities to inserted base pairs that change the

lengths of helices, whereas alignment probabilities would

restrict the extrinsic information to only the conserved

base pairs.

Utilizing the induced base pairing proclivity matrices,

the extrinsic information for base pairing for xm is com-

puted as:

t
p�̃

m
= t

pα
m

∑

s∈N \m

(1 − ψm,s)
t
p�̃

(s→m)

(2)

where t
pα

m is a normalizing factor chosen to ensure

that the maximum value in t
p�̃

m
is unity. The factor (1 -

ψm,s) in (2) weights the contribution of xs to the extrin-

sic information for xm using the sequence identity, ψm,s,

for sequences xs and xm. The sequences that are highly

similar to xm, have a lower contribution to extrinsic

information than those with lower similarities. In the

extreme case that a sequence xs is the same as the

sequence xm, ψm,s = 1, and the weighting factor (1 - ψm,

s) sets the contribution of the extrinsic information to

zero, which is desirable because in this setting, sequence

xs contributes no useful extrinsic information for folding

of xm. Figure 4 illustrates the process for computing

extrinsic information t
p�̃

m
for the mth sequence xm in

the tth iteration in a flow chart format.

The aggregation of proclivity matrices and normaliza-

tion of the aggregate proclivity matrix for computation

of extrinsic information for xm requires ((K − 1)N2
m/2)

and (N2
m/2) operations, respectively. The total number

of computations for evaluating the extrinsic information

Figure 3 Illustration of induced base pairing proclivities formulated in (1). Heavy lines represent the sequences with nucleotide positions

indicated by thick dashes. The dashed lines between k and l, and between i and j represent potential base pairing interactions. The probability

of base pairing between k and l is shown as pπ
s(k, l). The dashed arrows indicate the co-incidence of k with i and l with j. The base pairing

probability of nucleotides at k and l in xs induces base pairing proclivities for nucleotides at i and j in xm based on alignment co-incidence

probabilities cπ
(m,s)(i, k) and cπ

(m,s)(j, l) resulting in an induced proclivity t−1
p π s(is, js)cπ

(m,s)(i, k)cπ
(m,s)(j, l).
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for all sequences, utilizing (2) for each sequence, is:

∑

m∈N

⎡

⎣

N2
m

2

∑

s∈N \m

d2 + (K − 1)
Nm

2

2
+

Nm
2

2

⎤

⎦ (3)

The asymptotic time complexity of extrinsic informa-

tion computation for all sequences is O(K2d2N2), where

N is the longest sequence length. The memory complex-

ity is O(KN2) for storage of the extrinsic information

matrix for the set of K sequences.

Modified Partition Function for Updating Base Pairing

Probabilities

At the tth iteration, an updated estimate of the base pairing

probability matrix t
p�

m for the sequence xm is obtained

from the extrinsic information t
p�̃

m
and the nearest neigh-

bor thermodynamic model for xm, which, in TurboFold,

encapsulates the intrinsic information for folding of xm. A

modified Boltzmann distribution is used to model the

probability distribution of secondary structures on xm,

where the probability of structure Sm is modeled as

P(Sm) =

exp

(

−
�G̃(S)

RT

)

∑

S’m
exp

(

−
�G̃(S’m)

RT

)

=
1

Z̃(xm)
exp

(

−
�G̃(Sm)

RT

)

,

(4)

Figure 4 Flowchart for the computation of extrinsic base pairing information for xm. The induced base pairing proclivity matrices,

denoted by {t
p�̃

(m→s)
}s∈N \m, are computed utilizing the base pairing probability matrices, {t−1

p �
s}s∈N \m (lower triangular matrices), and

the posterior co-incidence probabilities {cΠ
(m,s)}. The extrinsic information, t

p�̃
m
, is computed as the normalized weighted sum of the induced

proclivity matrices. The lines in pairing probability matrices represent helices composed of pairs with relatively high pairing probability. Lines in

co-incidence probability matrices represent relatively probable regions of sequence alignment.
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where R is the gas constant, T is the absolute tem-

perature, and

�G̃(Sm) = �G0(Sm) − γ
∑

(i,j)∈Sm

log(t
pπ̃

m(i, j))
(5)

is a modified free energy change for structure Sm (on

xm). Here ∆G0(Sm) is the Gibbs free energy change of

folding for Sm, which is obtained using the nearest

neighbor thermodynamic model with the free energy

parameters from [17,19]. The extrinsic information for

base pairing contributes to the modified free energy in

(5) as a pseudo-free energy term for each base pair in S

and g denotes the relative contribution of this extrinsic

information relative to the intrinsic information repre-

sented by ∆G(Sm). The denominator in (4) represents a

modified partition function for xm defined as:

Z̃(xm) =
∑

Sm

exp

(

−
�G̃(Sm)

RT

)

(6)

The probability of base pairing between nucleotides at

indices i and j in xm is formulated as the summation of

the probabilities of structures of xm that contain (i, j):

t
pπ

m(i, j) =
∑

Sm ;
(i,j)∈S

P(Sm)
(7)

The base pairing probability matrix t
p�

m is computed

efficiently via a modification of the dynamic program-

ming algorithm for partition function calculation [30,31]

that uses the nearest neighbor thermodynamic model.

Specifically, the pseudo-free energy term in (5) repre-

sents an a priori probability (t
pπ̃

m(i, j)γ ) for the base pair

(i, j), which in the modified dynamic programming algo-

rithm contributes an addition of the pseudo free energy

γ log(t
p�̃

m)) when considering pairing between nucleo-

tides (i, j). The computation of modified partition func-

tion for all sequences has O(KN3) time complexity and

O(KN2) memory complexity, where N is the longest

sequence length.

Structure Prediction Utilizing the Base Pairing

Probabilities

The base pairing probabilities computed by TurboFold,

{
η
p�

s}s∈N , are utilized for structure prediction via two

methods. The first method thresholds the base pairing

probability matrix to determine the base pairs whose

estimated probabilities are higher than a significance

level Pthresh. This yields a corresponding structure

S
∗
m = {(i, j) ∋

η
pπ

m(i, j) > Pthresh} (8)

composed of base pairs deemed significant. Any

choice of Pthresh greater than 0.5 guarantees that S
∗
m is a

valid secondary structure [31]. For Pthresh ≤ 0.5, S
∗
m may

contain base pairs that form pseudoknots or may con-

tain multiple base pairs for a nucleotide.

The second method, TurboFold-MEA, predicts the

structures via maximum expected accuracy algorithm

[24-26]. Given the base pairing probabilities
η
p�

m for xm,

the maximum expected accuracy structure is determined

as in (10), where η
uπ

m(i) is the probability that nucleo-

tide at i is not paired with any other nucleotides. η
uπ

m(i)

is computed as:

η
uπ

m(i) = 1 −

Nm
∑

j=i+1

η
pπ

m(i, j) −

i−1
∑

j=1

η
pπ

m(j, i) (9)

The computation of maximum expected accuracy

structure is accomplished via a dynamic programming

algorithm. The prediction of structures for all the

sequences has O(KN3) time and O(KN2) memory com-

plexity, where N is the length of longest sequence.

S
∗
m = argmax

Sm

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

(i,j)∈Sm

2 ·
η
pπ

m(i, j) +
∑

∀i;
i unpaired in Sm

η
uπ

m(i)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(10)

Time and Space Complexity

The time and space complexity of TurboFold can be

described in terms of the operations required for the

one time initialization and the operations required for

the h computationally identical iterations. For the initia-

lization, the estimation of posterior co-incidence prob-

ability matrices and the pairwise sequence identities for

all sequence pairs requires O(K2N2) computations. In

order to store the co-incidence probability matrices

computed in the initialization, O(K2dN) memory is

required. Over the h iterations, for all the sequences,

updates of the extrinsic information require O(hK2N2d2)

computations and the modified partition function eva-

luations require O(hKN3) computations. The storage

requirement for the iterations is O(KN2). These require-

ments for TurboFold can be contrasted with Sankoff’s

algorithm, which requires O(N3dK) computations and O

(N2dK) memory, when used with a banded constraint on

the nucleotide alignments for reducing computation by

“cutting corners” [32]. Thus, the time and memory

requirements for Sankoff’s algorithm increase exponen-

tially with increasing number of input sequences,

whereas the time requirement for TurboFold increases

proportional to the square of the number of input
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sequences, and memory requirement increases linearly

with the number of input sequences.

It should be noted that, in each iteration, the base

pairing probability computations for each sequence are

performed independently. Therefore the base pairing

probabilities for all sequences can be computed in paral-

lel using K processors. In the current implementation of

TurboFold, the user can specify the number of threads

that will be used to compute the base pairing probabil-

ities in parallel. The POSIX threads library is utilized for

implementation of parallel computations.

Measures for Accuracy of Predicted Structures

The structure prediction accuracy is evaluated in terms

of sensitivity and positive predictive value (PPV) of the

predictions. For a sequence xm, the sensitivity of the

predicted structure is the ratio of number of correctly

predicted base pairs to the number of base pairs in the

known structure and the PPV is the ratio of the number

of correctly predicted base pairs to the number of base

pairs in the predicted structure. A base pair between

nucleotides at im and jm in the predicted structure is

assumed to be correctly predicted if there is a base pair

(im, jm) or (im - 1, jm) or (im + 1, jm) or (im, jm -1) or

(im, jm + 1) in the known structure, which is consistent

with prior methodology for accuracy assessment

[18,33,34]. This scoring reflects the uncertainty in struc-

ture determination by comparative analysis and thermal

fluctuations in structure.

Selection of Parameters

The number of iterations, h, and relative weight of

extrinsic information, g, in the modified free energy in

(5) are selected empirically based on experiments. To

select the parameters, the prediction accuracy of Turbo-

Fold is evaluated with different values for g and h on

four training datasets. The datasets include two tRNA

datasets from the compilation of tRNA sequences and

structures by Sprinzl [35] and two 5S rRNA datasets

from the 5S Ribosomal RNA Database [36], respectively.

For each family, 250 sequences are chosen randomly

and divided into combinations of K sequences, where

the process is repeated independently for K = 5 and K =

10, yielding two training datasets per family (corre-

sponding to K = 5 and K = 10). The number of itera-

tions, h, is varied from 0 to 5. Figure 5 shows the plots

of sensitivity versus PPV of structure prediction via Tur-

boFold-MEA with varying h for tRNA and 5S rRNA

datasets. The reported sensitivity and PPV for each

family is the average sensitivity and PPV of predictions

over K = 5 dataset. The average sensitivity versus PPV

plots for changing h over the K = 10 dataset are

included in the Supplementary Data (Additional file 1).

Increasing the number of iterations increases both sensi-

tivity and PPV for both families. Increasing the number

of iterations, however, also linearly increases the compu-

tation time required for TurboFold. Because the

increases in sensitivity and PPV are marginal for h > 3,

the number of iterations is chosen as h = 3.

For selecting g, the structure prediction accuracy of

TurboFold-MEA is evaluated, utilizing h = 3, with a set

of values for g such that g/RT Î {0.001, 0.05, 0.1, 0.2,

0.3, 0.5, 0.8, 1.0, 1.2}. Figure 6 shows the plots of sensi-

tivity versus PPV of structure prediction with changing

value of g/RT over K = 5 datasets. The sensitivity versus

PPV plot for predictions over K = 10 datasets are

included in Supplementary Material (Additional File 1).

Increasing g increases PPV for both datasets. Further-

more, g/RT ≈ 0.3 maximizes sensitivity of structure pre-

diction for both datasets. Increasing g above 0.3 RT

introduces a tradeoff between sensitivity and PPV. g =

0.3 RT is therefore used in the TurboFold benchmarks.

A version of the TurboFold source code that was used

to obtain the benchmarking results presented here can

be found as Additional File 2.

Results

Three sets of experiments are performed for comparing

TurboFold with other programs: 1) Experiments for

assessing accuracy of structures predicted from thresh-

olding of base pairing probabilities as computed by Tur-

boFold; 2) Experiments for assessing accuracy of

structures predicted from TurboFold-MEA; 3) Experi-

ments for comparing time and memory requirements of

TurboFold with other programs. Datasets for bench-

marking experiments are generated as follows: 200

RNase P sequences are randomly selected from the

RNase P Database [37], then the sequences are split into

sets of K sequences such that 2 ≤ K ≤ 10. The average

sequence length is 336 nucleotides and the average pair-

wise identity, as determined from the alignments com-

puted by ClustalW 2.0.11 [38], is 50%. The random

selection and division into combinations of K sequences

(for 2 ≤ K ≤ 10) is also performed with 200 tmRNA

sequences [39,40] (average length of 366 nucleotides

and average pairwise identity of 45%), and 30 telomerase

RNA sequences [41] (445 nucleotides and 54% pairwise

identity), 400 SRP sequences from the SRPDB [42] (187

nucleotides and 42% pairwise identity), 400 tRNA

sequences from the compilation of tRNA sequences by

Sprinzl et al. [35] (77 nucleotides and 47% pairwise

identity), and 400 5S rRNA sequences from the 5S Ribo-

somal RNA database [36] (119 nucleotides and 63%

pairwise identity). This procedure yields 9 datasets for

each family and 54 datasets in total. The datasets are

available as Additional File 3
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Performance Benchmarks for Estimated Base Pairing

Probabilities

The accuracy of structures predicted by thresholding of

base pairing probabilities estimated by TurboFold, is

compared with three other methods that estimate base

pairing probabilities:

1. LocARNA [43] is structural alignment algorithm

for multiple sequences that utilizes pairwise struc-

tural alignment computations progressively for

prediction of the structural alignment. Version 1.5.2a

is utilized, with Vienna RNA Software Package ver-

sion 1.8.4, in probabilistic mode to generate base

matching probabilities with consistency transforma-

tion (’-probabilistic -consistency-transformation’

option). Given K input sequences, the single

sequence reliabilities as computed by LocARNA are

utilized as estimates of base pairing probabilities.

2. RNAalifold [44] is a structure prediction algo-

rithm that takes a sequence alignment of the input

Figure 5 Sensitivity versus PPV for TurboFold as a function of iteration count. Plots of sensitivity versus PPV for structure prediction by

TurboFold with increasing number of iterations, h, for: (a) tRNA and (b) 5S rRNA training datasets with K = 5. Note the discontinuities in the

axes which are indicated by the breaks. The 0th iteration utilizes no extrinsic information and is therefore the average accuracy of single-

sequence MEA structure prediction.

Figure 6 Sensitivity versus PPV for TurboFold as a function of g/RT. Plots of sensitivity versus PPV for structure prediction by TurboFold with

increasing value of g/RT for: (a) tRNA and (b) 5S rRNA training datasets with K = 5.
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sequences. The structures are predicted via maximi-

zation of a score that is based on free energy

changes and covariation from the sequence align-

ment. RNAalifold also estimates the base pairing

probabilities for sequences via computation of a par-

tition function for the alignment. The version

included in Vienna RNA Software Package version

1.8.4 is utilized with command line option ‘-p’ for

computation of base pairing probabilities with Clus-

talW 2.0.11 [38] for computation of input sequence

alignment.

3. Single sequence partition function computation

[30,31], which computes the base pairing probabil-

ities of a given RNA sequence in the equilibrium

ensemble of secondary structures. The partition

function computation as implemented in RNAstruc-

ture version 4.5 [31,45] are utilized in benchmark

experiments.

For each method, for a given threshold Pthresh, the

structure formed by base pairs whose estimated prob-

abilities exceed Pthresh, is computed. The sensitivity and

PPV of this structure are then evaluated with respect to

the known structure. The threshold probability Pthresh is

varied from 0.04 to 0.96 in steps of 0.04 to obtain num-

ber of sensitivity vs PPV points which are then plotted

along a curve, one for each method. Figure 7 shows the

plots of sensitivity versus PPV for the four methods

over the datasets for two choices of number of

sequences, K = 3 and K = 10.

For the RNase P, tmRNA, telomerase RNA, and SRP

datasets, TurboFold has higher sensitivity for a fixed

PPV, and higher PPV for a fixed sensitivity than the

other methods. In addition, the PPV versus sensitivity

plot for TurboFold approaches the top right corner, cor-

responding to ideal (sensitivity, PPV) = (1.0, 1.0), closer

than the other three methods evaluated. The accuracy

of TurboFold and LocARNA are comparable over tRNA

datasets. Over 5S rRNA datasets, the accuracy of Turbo-

Fold is comparable to that of RNAalifold. The predic-

tion accuracy of RNAalifold, however, depends

significantly on the accuracy of the input alignment

computed by ClustalW. Over datasets with high average

pairwise identity, which are easier to align, predictions

of RNAalifold are higher in accuracy than over datasets

with lower average pairwise identity. Figure 7 illustrates

this: Compared to other methods, the accuracy of

RNAalifold predictions is highest for the 5S rRNA,

whose average pairwise identity is significantly higher

than average identities of other datasets. Additionally,

the accuracy of RNAalifold for the K = 10 dataset is

lower than for the K = 3 datasets when average

sequence identity is low. TurboFold demonstrates a

better performance with K = 10 than with K = 3 for all

sequence families, as expected.

Structure Prediction Accuracy of TurboFold-MEA

The structure prediction accuracy of TurboFold-MEA is

compared with eight other structure prediction methods

listed below.

1. RAF [27] is a structural alignment algorithm that

utilizes progressive pairwise alignments to predict

the structural alignment. RAF utilizes a simple scor-

ing scheme based on base pairing probabilities (as

computed by CONTRAfold 2.02 [25]), alignment

probabilities (as computed by CONTRAlign 2.01

[46]), and a set of weights learned from a dataset of

multiple structural alignment dataset for structural

alignment prediction. Version 1.0 is utilized with the

default command line option for prediction (’-pre-

dict’ option).

2. LocARNA [43] Version 1.5.2a (with Vienna RNA

Software Package version 1.8.4) is utilized.

3. CentroidAlifold [47,48] is a structural alignment

method that takes an input sequence alignment and

combines the base pairing information and input

sequence alignment to predict structures for each

sequence. The input sequence alignment is gener-

ated by ClustalW 2.0.11 [38].

4. RNASampler [49] is an iterative sampling algo-

rithm that predicts conserved helices in input

sequences for structure prediction. RNA Sampler

was used with default options.

5. RNAcast [50] analyzes the folding space of input

sequences in terms of abstract shapes and finds the

optimal abstract shape that is common for all the

structures and uses the optimal shape to generate

consensus secondary structure. RNAcast is used with

40% free energy energy cut-off threshold, as in [34],

because RNAcast fails to determine consensus struc-

tures for some datasets for higher thresholds.

6. FOLDALIGNM [51] is a method for progressive

structural alignment of RNA sequences. FOLDA-

LIGNM version 1.0.1 is run with FOLDALIGN ver-

sion 2.1.1 [52]. The java heap space is set to 10

gigabytes (with ‘-x 10000’ option).

7. MASTR [53] is a Markov chain Monte Carlo algo-

rithm for structural alignment of a given set of RNA

sequences. The default command line options are

used for MASTR.

8. MXScarna [54] is a method for structural align-

ment of multiple RNA sequences. MXScarna pro-

gressively aligns the sequences using an efficient

pairwise structural alignment algorithm for deter-

mining the set of stems in the sequences that
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Figure 7 Sensitivity vs PPV of TurboFold compared against LocARNA, RNAalifold, and single sequence partition function. Sensitivity

versus PPV of base pairs with probabilities, as computed by single partition function, LocARNA, RNAalifold and TurboFold, over: (a) RNase P, (b)

tmRNA, (c) telomerase RNA, (d) SRP, (e) tRNA, and (f) 5S rRNA. The RNase P, tmRNA, telomerase RNA, SRP, tRNA, and 5S rRNA datasets have

sequence similarity of 50%, 45%, 54%, 42%, 47%, and 63%, respectively.
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optimizes a scoring function evaluated from precom-

puted probabilities of base pairing and alignment.

Version 2.1 is used in the predictions.

9. CentroidHomfold [55] is a method that takes as

input a target RNA sequence and (K - 1) sequences

that are homologous to the target sequence and pre-

dicts a structure for the target sequence. For an

input set of K sequences, predictions for each

sequence are obtained by running CentroidHomfold

K times with each of the sequences serving as the

target sequence once with the remaining (K - 1)

sequences as the homologous sequences. Centroid-

Homfold version 1.0 is used.

10. Free energy minimization [19,45] as implemented

in RNAstructure version 4.5 is used for single

sequence structure predictions.

Structure prediction accuracies of all the methods are

evaluated over the 54 testing datasets. Some of the

methods failed to complete on some of the datasets

because of rather large memory requirements. These

methods are therefore excluded from the reported

results for the corresponding cases in the following

description.

Figure 8 shows the sensitivity versus number of

sequences (K) and PPV versus number of sequences for

the RNase P, tmRNA and telomerase RNA testing data-

sets. Among the methods benchmarked, TurboFold-

MEA performs the best in terms of sensitivity for all

these datasets except for RNase P dataset, where Turbo-

Fold-MEA and CentroidHomfold perform comparably

in sensitivity. In addition, TurboFold-MEA is one of the

best four methods in terms of PPV for all the RNase P

and the telomerase RNA testing datasets.

Figure 9 shows the sensitivity versus number of

sequences and PPV versus number of sequences for the

SRP, tRNA, and 5S rRNA datasets. For the SRP datasets,

TurboFold-MEA performs the best in terms of sensitiv-

ity and performs comparable to the other methods in

terms of PPV. Sensitivity and PPV of TurboFold-MEA

predictions for the tRNA and the 5S rRNA datasets are

comparable to the other methods. The relative sensitiv-

ity and PPV of TurboFold-MEA with respect to other

methods does not change compared to the plots in

Figures 8 and 9, when the results are separated into

groups based on average sequence identity though all

methods have higher sensitivity for datasets with higher

sequence identity compared to datasets with lower iden-

tity. Results are included in Supplementary data.

Comparison of Time and Memory Requirements

The methods are also compared in terms of memory

and time requirements. For this purpose, three datasets

are generated by randomly selecting 50 RNase P

sequences and then dividing the RNase P sequences

into K = 3, K = 5, and K = 10 sequence combinations.

It should be noted that the range of the run times

required by all the methods is large (from several sec-

onds to many hours). The timing and memory bench-

marks are performed over the datasets chosen from

RNase P family because for these datasets, the time and

memory requirements for all methods are large enough

to enable reliable estimation. The experiments are per-

formed on a compute cluster for which each node is

equipped with two quad-core Intel Xeon 3.0 GHz pro-

cessors and 16 GB of main memory running Red Hat

Enterprise Linux Server release 5.4. Table 1 shows the

time requirements of the methods that executed suc-

cessfully. The memory requirements of FoldAlignM,

MASTR, RNAcast and RNA Sampler exceeded the

available main memory on the utilized node. For each

method, the reported time requirement is the CPU time

spent by the method, as reported by the portable batch

system (PBS) running on the cluster. Comparing the

two multi-sequence methods that provide base pairing

probability estimates and do not require an input align-

ment, it can be seen that TurboFold is faster than

LocARNA. RNAalifold has the smallest runtime on all

the datasets. TurboFold-MEA runs slower than all

methods except LocARNA. In addition, the computa-

tional requirements of LocARNA scale up fastest as the

number of sequences K increases. RAF also shows a

similar behavior, but the scaling is not as steep as

LocARNA. Increasing the number of input sequences

increases the time requirements of TurboFold-MEA

though these requirements increase by a smaller scaling

factor compared to the increase for RAF and LocARNA.

Table 2 shows the memory usage of each method. For

each experiment, the memory usage is determined from

the memory reported by the PBS. TurboFold has lower

memory requirements than LocARNA and RAF. Cen-

troidAlifold and RNAalifold have the lowest memory

requirements. The memory requirements of all the

methods increase with increasing number of sequences.

As in Table 1, as the number of input sequences

increases, memory usage increases by the largest scaling

factor for RAF and LocARNA.

Discussion

The computation of extrinsic information in TurboFold

is similar to several previous approaches for combining

homology information for multi-sequence alignment

and structure prediction. For example, the method pro-

posed in [55] approximates base pairing probabilities via

a computation similar to the extrinsic information com-

putation. TurboFold, however, is fundamentally differ-

ent. Whereas the method in [55] is non-iterative and

directly utilizes the approximated probabilities for
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Figure 8 Sensitivity and PPV of structure prediction vs number of sequences. Part I. Sensitivity and PPV of structure prediction versus

number of sequences for RNase P ((a) and (b), respectively), tmRNA ((c) and (d), respectively), and telomerase RNA ((e) and (f), respectively)

datasets. Methods that did not complete execution for a dataset because memory requirements exceeded available resources are excluded from

the corresponding plots.
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Figure 9 Sensitivity and PPV of structure prediction vs number of sequences. Part II. Sensitivity and PPV of structure prediction versus

number of sequences for SRP ((a) and (b), respectively), tRNA ((b) and (c), respectively), and 5S rRNA ((d) and (e), respectively) datasets. Methods

that did not complete execution for a dataset because memory requirements exceeded available resources are excluded from the

corresponding plots.
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structure prediction via a Nussinov style [56] dynamic

programming algorithm, TurboFold iteratively updates

the extrinsic information and recomputes probabilities

of base pairing, alternating between these steps in order

to refine the estimates of posterior base pairing prob-

abilities. As shown in the Results Section, the iterative

procedure offers a significant improvement over a single

computation. Also, the consistency transformation [57]

is utilized by LocARNA for re-estimating the alignment

probabilities in the progressive alignment via a proce-

dure similar to extrinsic information computation. This

procedure, unlike the method in [55], updates only the

probabilities of alignment and the structure predictions

are not explicitly updated. LocARNA can, however, per-

form iterative refinement to update the predictions of

structures and alignment. Another difference is that the

other methods use posterior alignment probabilities

whereas TurboFold uses posterior co-incidence probabil-

ities. It was observed (data not shown) that the structure

prediction accuracy of TurboFold decreases when pos-

terior alignment probabilities are utilized for generating

extrinsic information instead of posterior co-incidence

probabilities. In addition to combining information from

homologous sequences, the extrinsic information can be

generated experimentally. For example, in [58], the abil-

ity to use chemical mapping data is integrated into sin-

gle sequence free energy minimization where it

contributes to the structure prediction as an experimen-

tally derived extrinsic information and is utilized in a

non-iterative manner.

A major difference between TurboFold and most

available programs is that TurboFold does not rigidly

enforce commonality of secondary structure for the pre-

dictions across the multiple input sequences. This flex-

ibility of TurboFold is in sharp contrast with algorithms

in the Sankoff framework [32], where typically common-

ality of topology is rigidly enforced during the joint

structure prediction process. The lack of a pre-defined

model for commonality of secondary structures also dis-

tinguishes the method from alternative methods such as

RNAcast [50,59] and RNA Sampler [49] that use repre-

sentations of secondary structure to explore topologi-

cally equivalent foldings of multiple RNA sequences.

When predicting structures for homologous sequences

that have diverged significantly from each other, the

ability of TurboFold to allow variable structure elements

in some sequences offers an advantage. Variable struc-

ture elements are common in conserved RNA secondary

structures [60]. One such example is the variable loop

in tRNA, which can make a fifth arm in what is often a

four-arm structure. An example of such a case in RNase

P is shown in Figure 10, with the known secondary

structures for three RNase P sequences, ESH17b-7 (Gen-

Bank accession number U28126), Synechococcus

PCC6717 (X97392), and Nocardiodes NSP41 (AF110042

[37]). The known structure for Nocardiodes NSP41 in

Figure 10(c) diverged from the other structures with a

four-way external loop between 5’ and 3’ ends. On the

other hand, structures for ESH17b-7 and Synechococcus

PCC6717 contain an external loop that contains a single

branch with 5’ and 3’ dangling ends. Thus, the second-

ary structure for Nocardiodes NSP41 is topologically dif-

ferent, in terms of branching configurations, from the

secondary structures for ESH17b-7 and Synechococcus

PCC6717.

Figure 11 shows the structures for ESH17b-7, Synecho-

coccus PCC6717, and Nocardiodes NSP41 as predicted

by TurboFold. The external loop with multiple branches

in the structure of Nocardiodes NSP41 is correctly pre-

dicted. Furthermore, the external loops in structures of

ESH17b-7, Synechococcus PCC6717 are also correctly

predicted.

Figure 12 shows the structures for ESH17b-7, Synecho-

coccus PCC6717, and Nocardiodes NSP41 as predicted

by RAF. Although most of the predicted base pairs are

consistent with the base pairs in known structures, the

predicted structures are substantially different from the

known structures in terms of the branching

Table 1 Computation time

Runtime (seconds) for

K = 3 K = 5 K = 10

TurboFold-MEA 136.75 277.9 517.0

RAF 8.25 50.8 214.6

LocARNA 746.44 2815.9 11395.8

CentroidAlifold 2.0 3.7 6.8

RNAalifold 0.2 0.3 0.6

MXScarna 1.5 2.9 5.8

CentroidHomfold 15.9 54.2 210.0

The time requirements (in seconds) of methods on timing/memory datasets.

Each column shows the time requirements of the methods on a dataset,

indicated by number of sequences.

Table 2 Memory usage

Memory Usage (Megabytes) for

K = 3 K = 5 K = 10

TurboFold-MEA 111.4 161.9 235.1

RAF 184.1 381.1 518.2

LocARNA 204.2 195.9 296.3

CentroidAlifold 48.4 49.6 50.1

RNAalifold 49.5 49.1 49.7

MXScarna 47.0 46.9 47.1

CentroidHomfold 52.6 55.6 51.2

The memory usage of the methods on timing/memory datasets. Each column

shows the memory usage of the methods on one dataset, indicated by

number of sequences.
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Figure 10 Known structures for ESH17b-7, Synechococcus PCC6717, and Nocardiodes NSP41. Known structures for ESH17b-7,

Synechococcus PCC6717, and Nocardiodes NSP41 from the RNase P database [37]. 5’ and 3’ ends of sequences are indicated by “5’” and “3’”. A

heavy line between two nucleotides indicate the base pairing interaction between the nucleotides. A pseudoknot is indicated by a long thick

line that connect the smaller thick lines, which are drawn along the paired nucleotides in the pseudoknot.
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Figure 11 TurboFold structure predictions for ESH17b-7, Synechococcus PCC6717, and Nocardiodes NSP41. Structures for ESH17b-7,

Synechococcus PCC6717, and Nocardiodes NSP41 as predicted by TurboFold. The heavy lines between nucleotides represent the correctly

predicted base pairs and thin lines between nucleotides represents incorrectly predicted base pairs. The colors of thick lines indicate the

probability of base pairing for the nucleotides as computed by TurboFold.
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Figure 12 RAF structure predictions for ESH17b-7, Synechococcus PCC6717, and Nocardiodes NSP41. Structures for ESH17b-7,

Synechococcus PCC6717, and Nocardiodes NSP41 as predicted by RAF. The heavy lines between nucleotides represent the correctly predicted

base pairs and thin lines between nucleotides represents incorrectly predicted base pairs.
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configurations of the structures: The external loop with

multiple branches is predicted in all the structures. In

addition, RAF predicts a 7 way multibranch loop

between nucleotides at 29 - 174, 34 - 181, and 12 - 159

in structures of ESH17b-7, Synechococcus PCC6717, and

Nocardiodes NSP41, respectively. The known structures

comprise a helical domain at those nucleotides posi-

tions, which are followed by two 4 way multibranch

loops. Note that the topologies of these domains are

correctly predicted by TurboFold. TurboFold predicts

individual RNA secondary structures using extrinsic

information from homologous sequences. This problem

is closely related to but not identical to the problem of

predicting consensus structures for the homologs. The

benchmarks in Figures 8 and 9 are scored on the known

secondary structures of individual RNAs rather than on

the consensus structures and therefore somewhat unfair

to consensus structure methods included in the tables;

ideally consensus structure methods should be scored

only on consensus structures. The benchmarking meth-

odology is adopted in order to facilitate comparison of

the methods despite the fact they address different pro-

blems. An alternative method would be to convert the

consensus predictions into individual RNA structure

predictions by folding the RNAs while using the consen-

sus structure as a constraint. This allows non-conserved

pairs to be added as long as they are consistent with the

consensus and improves sensitivity at the cost of PPV.

The method, however, introduces additional dependence

on how exactly the constrained folding is performed and

is therefore not considered here.

The inverse similarity weighting (1 - ψm,s) in (2) is a

good choice despite the fact that fact that, under this

weighting, larger weights are assigned to highly diverged

sequences can often not be aligned well. This is because,

unlike methods that determine one alignment and

incorporate it in jointly folding sequences, the alignment

information in TurboFold is probabilistic and incorpo-

rated in the form of nucleotide co-incidence probabil-

ities. For highly diverged sequences, these co-incidence

probabilities are smaller in magnitude and diffused over

a wider region. Though the inverse similarity weighting

(1 - ψm,s) in (2) assigns larger weights to highly diverged

sequences, they do not exercise a strong influence when

the extrinsic information is computed by averaging

across multiple sequences in (2). The experimental

results for SRP sequences, whose predicted average pair-

wise identity is 42%, are in agreement with this observa-

tion. Compared with other methods TurboFold

predictions provide the highest sensitivity.

The concept of iterative updates utilized in TurboFold

is motivated by iterative error-correction coding meth-

ods in digital communications [61], especially Turbo

decoding [28,62]. For the case of two RNA homologs,

based on the analogy with turbo decoding, the concep-

tual framework for iterative estimation of RNA second-

ary structures and alignments was previously introduced

by the authors in [63], albeit without a practical realiza-

tion and also with significant differences in details. Both

TurboFold and Turbo decoding rely on multiple encod-

ings of common underlying information, which the esti-

mation (decoding) procedures seek to recover. In

TurboFold a (largely) common secondary structure is

“encoded” by nature in the form of multiple homolo-

gous sequences and the goal of the estimation is to

recover this common secondary structure. In Turbo

decoding, a common digital data stream is deliberately

encoded by multiple, usually two, encoders prior to

communication over a channel and the receiver seeks to

recover the common digital data stream. Both problems

benefit from iterative update procedures that are

enabled by re-framing decoding or prediction in terms

of estimating corresponding probabilities. Specifically, in

TurboFold, the formulation of the RNA folding problem

as a base pairing probability estimation problem, as

opposed to the problem of estimating one or more con-

sensus secondary structures, allows propagation of prob-

abilistic information from one sequence to the other

and iterative updates. It is also noteworthy that in Tur-

boFold the extrinsic information is incorporated as a

free energy modification in the partition function for

estimating single sequence base pairing probabilities

with minimal computational cost, which is analogous, in

Turbo decoding, to the method for insertion of extrinsic

information as a pseudo prior [62] in the decoding pro-

cedure for the recovery of a single encoded stream.

There are also obvious differences between TurboFold

and Turbo decoding. Whereas, in Turbo decoding, the

encoding of the data is designed manually for explicitly

enabling recovery at the receiver, there is no such expli-

cit design for the multiple homologs that form the input

to TurboFold. This apparent disadvantage is, however,

offset in part by the fact that typically many more

homologs are available for an ncRNA sequence for use

in TurboFold whereas in Turbo decoding use of more

than two encodings levies a cost in power and data rate

that is usually not justified by relatively minor perfor-

mance gains that these additional encodings enable.

The main limitation of TurboFold is its inability to

predict sequence alignments that conform to the pre-

dicted secondary structures. In parallel with previously

proposed iterative decoding of RNA structural align-

ment in [64], the most natural extension of TurboFold

for prediction of sequence alignment is via an integra-

tion of a probabilistic model for alignment into the

existing iterative structure prediction. A probabilistic

model for alignment already exists in the hidden Mar-

kov model. The iterations, however, do not update the
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co-incidence probabilities of alignment. The integration

of probabilistic alignment model into the iterative pre-

diction is currently a future consideration.

Conclusion

TurboFold, a new method for secondary structure pre-

diction for multiple homologous sequences, is presented

in this paper. TurboFold estimates base pairing prob-

abilities for each of the sequences via an iterative proce-

dure that utilizes extrinsic information from other

sequences and intrinsic information from a thermody-

namic nearest neighbor model for RNA folding. Experi-

mental results demonstrate that the iterative updates in

TurboFold offer a significant improvement over both

single sequence computations and over non-iterative

multi-sequence computations of base pairing probabil-

ities. The base pairing probability estimates from Turbo-

Fold outperform alternative multi-sequence methods for

estimating base pairing probabilities. TurboFold can be

downloaded, either as source code or precompiled bin-

aries as part of the RNAstructure package for Microsoft

Windows, at http://rna.urmc.rochester.edu.

TurboFold Algorithm

input : A set of K homologous RNA sequence {xm}m∈N ,

N = {1,2, ..., K}.

output: Posterior base pairing probability estimates

{
η
p�

m}m∈N for each RNA sequence in the set.

begin

for m ¬ 1 to K do

for s ¬ 1 to K do

// Compute the alignment co-inci-

dence probabilities and sequence identi-

ties via a hidden Markov pairwise sequence

alignment model

Compute cΠ
(s,m) and ψs,m;

end

end

// Iterate (h +1) times.

t ¬ 0;

while t ≤ h do

for m ¬ 1 to K do

// Compute extrinsic information

for base pairing

if (t == 0) then

// Use uniform unity initializa-

tion for extrinsic information
t
p�̃

m
← [1]Nm×Nm

;

else

Compute t
p�̃

m
utilizing {c�

(s−m),t−1
p �

s}s∈N \m

(details in Figures 2, 3, 4);

end

// Compute base pairing probabil-

ities via modified partition function

computation

Compute t
p�

m utilizing t
p�̃

m
and nearest neigh-

bor thermodynamic model;

end

t ¬ t + 1;

end

end

Algorithm 1: TurboFold: Iterative probabilistic struc-

ture prediction

Additional material

Additional file 1: Supplementary Material for “TurboFold: Iterative

Probabilistic Estimation of Secondary Structures for Multiple RNA

Sequences,”. This file contains supplementary information for the

manuscript that provides details for the computation of the

normalization factor,
t
pα

m
, in Eqn. (2), plots of sensitivity versus PPV for

predictions of TurboFold over tRNA and 5S rRNA training datasets with K

= 10 for varying values of h, number of iterations, and g, weight of

extrinsic information, parameters, and plots of number sequences (K)

versus sensitivity and versus PPV for testing datasets stratified in terms of

sequence identity.

Additional file 2: Zip file with TurboFold source code. Version of the

TurboFold source code at time of publication of this paper.

Additional file 3: Zip file of datasets. Datasets used in the

benchmarking of TurboFold and other algorithms.
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