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ABSTRACT
Graphs are used to model many real objects such as social net-
works and web graphs. Many real applications in various fields re-
quire efficient and effective management of large-scale graph struc-
tured data. Although distributed graph engines such as GBase and
Pregel handle billion-scale graphs, the user needs to be skilled
at managing and tuning a distributed system in a cluster, which
is a nontrivial job for the ordinary user. Furthermore, these dis-
tributed systems need many machines in a cluster in order to pro-
vide reasonable performance. In order to address this problem, a
disk-based parallel graph engine called GraphChi, has been re-
cently proposed. Although GraphChi significantly outperforms all
representative (disk-based) distributed graph engines, we observe
that GraphChi still has serious performance problems for many
important types of graph queries due to 1) limited parallelism and
2) separate steps for I/O processing and CPU processing. In this
paper, we propose a general, disk-based graph engine called Tur-
boGraph to process billion-scale graphs very efficiently by using
modern hardware on a single PC. TurboGraph is the first truly par-
allel graph engine that exploits 1) full parallelism including multi-
core parallelism and FlashSSD IO parallelism and 2) full overlap of
CPU processing and I/O processing as much as possible. Specifi-
cally, we propose a novel parallel execution model, called pin-and-
slide. TurboGraph also provides engine-level operators such as
BFS which are implemented under the pin-and-slide model. Exten-
sive experimental results with large real datasets show that Turbo-
Graph consistently and significantly outperforms GraphChi by up
to four orders of magnitude! Our implementation of TurboGraph is
available at “http://wshan.net/turbograph" as executable files.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Search Process; H.2.4 [Database Management]:
Systems—Parallel Databases
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1. INTRODUCTION
Graphs are used to model many real objects such as social net-

works, web graphs, chemical compounds, and biological struc-
tures. Many real applications in computer science, bioinformatics
[23], chemistry [22], physics, health-care, and geology require ef-
ficient and effective management of graph structured data.

The size of real graphs is very large. For example, Facebook
reached one billion users on Oct. 4, 2012. Another example is
the Yahoo Web graph [1] consisting of 1.4 billion vertices and 6.6
billion edges. Graphs with billions of vertices resident in memory
require hundreds of gigabytes of main memory, which is only pos-
sible in very expensive servers [14]. For fast graph retrieval on a
single commodity PC, graphs must be stored in fast external mem-
ory, such as FlashSSDs.

Many scalable systems have been recently proposed to handle
big graphs efficiently by exploiting distributed computing. For
example, GBase [9, 10] is a recent graph engine using MapRe-
duce. It shows that, if the graph is represented as a compressed ma-
trix, matrix-vector computation solves many representative graph
queries including global queries such as PageRank and targeted
queries such as induced subgraph and k-step neighbor queries. How-
ever, distributed systems based on MapReduce are generally slow
unless there is a sufficient number of machines in a cluster. For
example, GBase used 100 machines to answer a two-step out-
neighbor query from a given vertex in the Yahoo Web graph in
about 265 seconds. To solve the inherent performance problem
of MapReduce, several distributed systems based on the vertex-
centric programming model, such as Pregel [17], GraphLab [16],
and PowerGraph [4], have been proposed. In this programming
model, the user only needs to write a function for each graph query
type without the knowledge of distributed programming, which is
invoked for each vertex by the underlying systems. However, ef-
ficient graph partitioning in a distributed environment for all types
of graph operations is very difficult [14]. Furthermore, the user
needs to be skilled at managing and tuning a distributed system in
a cluster, which is a nontrivial job for the ordinary user. These dis-
tributed systems still need many machines in order to provide good
performance.

Recently, a disk-based graph processing engine on a single PC
called GraphChi [14] has been proposed to address the problems of
the distributed graph systems. GraphChi significantly outperforms
all representative (disk-based) distributed graph engines [14]. Graph-
Chi exploits the novel concept of parallel sliding windows (PSW)
for handling billion-scale disk-based graphs. GraphChi also uses
the vertex-centric programming model. Since GraphChi is a disk-
based engine rather than a distributed system, messages passing
through edges are implemented as updating values to the edges.
PSW divides the vertices into P execution intervals, and each exe-
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cution interval contains a shard file which stores all edges that have
the target vertices in that interval. The edges in each shard file are
ordered by their source vertices. PSW processes one shard file at
a time. Processing each shard consists of the three separate sub-
steps: 1) loading a subgraph from disk; 2) updating the vertices
and edges; and 3) writing the updated parts of the subgraph to disk.

We observe that PSW incurs four serious problems. 1) In order
to start updating vertices/edges in a shard file, their in-edges must
be fully loaded in memory. This property hinders the overlapping
of the three steps; 2) All edges in the shard file whose source and
target vertices are in the same execution interval are processed in
sequential order [14], which hinders full parallelism; 3) At each
iteration, a significant number of updated edges can be flushed to
disk. If the size of the graph is very large and/or there exist many
iterations, GraphChi involves a significant amount of disk I/Os. 4)
Even if a query needs to access a small portion of the data graph, it
reads the whole graph at the first iteration. In other words, it results
in poor scalability in terms of the number of threads and poor uti-
lization in terms of total hardware resources (CPU and flashSSD).

We present a general, disk-based graph engine called Turbo-
Graph to process billion-scale graphs very efficiently by using mod-
ern hardware on a single PC. TurboGraph is the first truly parallel
graph engine on a single machine that exploits 1) full parallelism
including FlashSSD IO parallelism and multi-core parallelism and
2) full overlap of CPU processing and I/O processing as much as
possible. Note that multi-core CPUs can process multiple CPU
jobs at the same time, while FlashSSDs can process multiple I/O
requests in parallel by using the underlying multiple flash memory
packages.

We propose a novel parallel execution model called pin-and-
slide, which implements the column view of the matrix-vector mul-
tiplication. By interpreting the matrix-vector multiplication in the
column view, we can restrict the computation to just a subset of the
vertices, utilizing two types of thread pools, the execution thread
pool and the asynchronous I/O callback thread pool (or simply call-
back thread pool) along with a buffer manager. Specifically, given
a set V of vertices, we first identify the corresponding pages for
the vertices and then pin those pages in the buffer pool. Since we
exploit the buffer manager of the storage engine, some pages that
were read before can exist in the buffer pool, and we can guaran-
tee that those pages pinned are to be resident in memory until they
are explicitly unpinned. We next issue parallel asynchronous I/Os
to the FlashSSD for pages which are not in the buffer pool. Note
that we do not wait for the completion of those I/O requests. In-
stead, for those pages already in the buffer pool, multiple execution
threads concurrently process vertices in V that are also in the pages
pinned and their adjacency lists. At the same time, as soon as the
I/O request for each page is completed, a callback thread processes
the CPU processing of the page. As soon as either an execution
thread or a callback thread finishes the processing of a page, it un-
pins the page, and an execution thread issues an asynchronous I/O
request to the FlashSSD. That is, we slide the processing window
one page at a time for all pages corresponding to the input vertices.
This way, we can fully utilize CPU and FlashSSD I/O parallelism
and fully overlap CPU processing and I/O processing.

We also provide parallel, engine-level graph primitives includ-
ing disk-based matrix-vector computation and breadth-first search,
which serve as core graph operations in graph databases. Note that
these operators can be efficiently implemented under the pin-and-
slide model by leveraging the full parallelism and the full overlap.

Our contributions are as follows: 1) We propose a general and
scalable graph engine on a single machine which fully exploits
multi-core parallelism and I/O parallelism and fully overlaps CPU

processing with I/O processing. 2) We propose efficient disk and
memory structures for representing billion-scale graphs, which can
efficiently support both graph traversal and bitmap-based opera-
tions. Note that, when we traverse graphs by accessing adjacency
lists, which is a unique requirement in graph databases, the tradi-
tional IR approach, which stores “vertex IDs” in the posting list,
will eventually fail due to the very large size of the mapping table
which maps a vertex ID to the corresponding disk address, although
it shows good performance for bitmap-based operations such as
bitmap intersection. 3) We propose fast and scalable core graph
operations which implement the pin-and-slide model. 4) Exten-
sive experimental results with large real datasets show that Turbo-
Graph consistently and significantly outperforms the state-of-the-
art methods by up to four orders of magnitude! Our implementa-
tion of TurboGraph is available at “http://wshan.net/turbograph”
as executable files.

The rest of this paper is organized as follows. Section 2 reviews
related work. In Section 3, we propose efficient disk and memory
structures for storing billion-scale graphs. Section 4 proposes the
concept of the pin-and-slide model and gives the detailed imple-
mentation of the model. Section 5 describes how different types of
queries are executed in TurboGraph. We provide empirical eval-
uations and comparisons using large real graphs in Section 6, and
Section 7 summarizes and concludes the paper.
2. RELATED WORK

There is a number of algorithms for a specific type of graph
query, e.g., finding neighborhoods [18], community detection [12],
finding induced subgraphs [2], computing the number of triangles [8],
finding connected components [20], computing subgraph isomor-
phism [6, 15, 5], and PageRank. Most of them are based on a main
memory model that limits their ability to handle large-scale, disk-
resident graphs. Thus, they do not tend to scale well for web-scale
graphs with billions of vertices and edges. To efficiently handle
web-scale graphs and reduce the redundant effort of developing an
algorithm for each query, many scalable and high-level graph sys-
tems [17, 11, 10, 9, 16, 4, 19, 14] have recently been proposed.
They support various kinds of graph queries instead of a specific
graph query and also can handle web-scale graphs with billions of
vertices and edges. They can be classified into distributed systems
and single-machine systems depending on the size of system, and
distributed systems can be further categorized into synchronous ap-
proaches and asynchronous approaches.
Distributed synchronous approaches: PEGASUS [11] and GBase
[10, 9] are based on MapReduce and support matrix-vector multi-
plication using compressed matrices. Pregel [17] is not based on
MapReduce but on the vertex-centric programming model where a
vertex kernel is executed in parallel on each vertex. In this model,
the user only needs to write a function for each graph query type,
which is invoked for each vertex by the underlying systems. Pregel
follows the Bulk-Synchronous Parallel (BSP) message passing model
in which all vertex kernels run simultaneously in a sequence of
super-steps. Within a super-step, each kernel receives all messages
from the previous super-step and sends them to its neighbors in the
next super-step. A barrier is imposed between super-steps to en-
sure that all kernels finish processing messages. All synchronous
approaches above could suffer from costly performance penalties
since the runtime of each step is determined by the slowest machine
in the cluster. Such an imbalance in runtime may be caused by a lot
of factors including hardware variability, network imbalances, and
power-law degree distributions of natural graphs.
Distributed asynchronous approaches: GraphLab [16] is also
based on the vertex-centric programming model but a vertex kernel
is executed in asynchronous parallel on each vertex. In GraphLab,
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Figure 1: In-memory and disk representation of graphs in TurboGraph.

each vertex reads and writes data on adjacent vertices and edges
through shared-memory instead of messages. Since asynchronous
systems update parameters using the most recent parameter val-
ues as input, they can make many kinds of queries converge faster
than synchronous systems do. However, some algorithms based on
asynchronous computation require serializability for correctness,
and GraphLab allows a user to choose the level of consistency
needed for correctness. PowerGraph [4] is basically similar to
GraphLab, but it partitions and stores graphs by exploiting the
properties of real-world graphs of highly skewed power-law degree
distributions. Even though the above asynchronous approaches
have the algorithmic benefits of converging faster, efficient graph
partitioning in a distributed environment for all types of graph op-
erations is an inherently hard problem [14]. Furthermore, the user
must be skilled at managing and tuning a distributed system in a
cluster, which is a nontrivial job for the ordinary user. Trinity [19]
is a memory-based distributed system, which does not use MapRe-
duce, for faster query processing on graphs. Trinity focuses on op-
timizing memory and communication cost under the assumption
that the whole graph is partitioned across a memory cloud. Al-
though this approach is interesting, it requires an expensive high-
bandwidth network hardware in a cluster for good performance.
Single-machine approaches: GraphChi [14] is a disk-based single-
machine system following the asynchronous vertex-centric program-
ming model. GraphChi exploits the novel concept called Parallel
Sliding Windows (PSW) for handling web-scale disk-based graphs.
Since it is a disk-based engine rather than a distributed system, mes-
sages passing through edges are implemented as updating values to
the edges. PSW divides the vertices into P execution intervals, and
each execution interval contains a shard file which stores all edges
that have the target vertices in that interval. The edges in each shard
file are ordered by their source vertices. PSW processes one shard
file at a time. When processing each shard, there are three separate
sub-steps: 1) loading a subgraph from disk; 2) updating the ver-
tices and edges; and 3) writing the updated parts of the subgraph
to disk. Even though GraphChi is very efficient, and thus able to
significantly outperform large Hadoop deployments on many graph
problems while using only a single machine, there are still four se-
rious problems which we have addressed in Section 1. As a con-
sequence, it results in poor scalability in terms of the number of
threads and poor utilization in terms of total hardware resources
(CPU and external memory).

3. EFFICIENT GRAPH STORAGE
3.1 Disk-based Graph Representation

A graph database in TurboGraph contains a list of slotted pages
where each page size is some multiple of 1 MBytes. Each page
consists of consecutively stored records (here, a record means an
adjacency list) and their slots. Each slot, which grows backward

from the end of the page, stores a pair consisting of a vertex ID and
the start offset of the adjacency list corresponding to that vertex ID.
A record ID (RID) consists of a page ID and a slot number.

In the adjacency list, we can store “vertex IDs” by following the
convention of the traditional IR approach. This approach is use-
ful for adjacency list intersection. However, we need to convert a
vertex ID to its corresponding RID when performing graph traver-
sal since the graph is stored in disk. That is, we must maintain
a mapping table for this conversion. However, if there are a bil-
lion vertices in the graph database, the size of the mapping table
is too large to fit into memory. The other choice is to store RIDs
in the adjacency list directly. However, in this case, we need to
map a RID to its corresponding vertex ID. For this purpose, we
propose the RID table whose size is equal to the number of the
total pages in the database. Each entry in the RID table stores
only the start vertex ID in the page. Since the size of this RID
table is very small, we can safely make it resident in memory. The
translation of a RID to the corresponding vertex ID can be done in
O(1). Given a RID (pageID, slotNo), its vertex ID is calculated as
RIDTable[pageID].startV ertexID+ slotNo.

In most cases, the size of the adjacency list is smaller than the
size of a single page, so we store multiple adjacency lists in one
page, which we call “Small Adjacency” list page (SA page). Some-
times, however, the size of the adjacency list of a vertex v may be
larger than one page. Then, we must break it into multiple sub-
lists and store them in several pages. Thus, only one adjacency
list is stored in those pages. We call such pages “Large Adja-
cency” list pages (LA pages). We assume the LA pages of v are
{p′1, · · · , p′k}. Then, in order to keep the mapping information
from v to {p′1, · · · , p′k}, we maintain a so-called Large Record
Page List (LRPL). Here, {p′1, · · · , p′k} is consecutively stored in
the LRPL such that p′1 is stored at the i-th entry of the LRPL, p′2
stored at the i + 1-th entry, and so on. We also let each entry of
the RID table store two additional values — the start offset in the
LRPL, and the total number of the LA pages — in addition to the
start vertex ID. For example, the entry corresponding to p′1 in the
RID table stores (v, i, k), where v is the start vertex ID, i the start
offset in the LRPL, and k the total number of LA pages. The func-
tion GetPages(p) returns p, if p is an SA page; otherwise, it
returns a list of all LA pages for p.

Figure 1 shows an example of the in-memory and disk represen-
tation for a data graph G. For the vertices v0 ∼ v5, their adjacency
lists are stored as small records in pages p0 ∼ p2, while the ad-
jacency list of v6 is stored as a large record which spans the two
pages p3 and p4. The first entry in the RID table is (v0, -1, -1),
which means that the start vertex ID of the first page is v0, and it
is an SA page. The fourth entry corresponding to page p3 is (v6,
0, 2), which means that the start vertex of p3 is v6, and it is one of
the first LA pages, where the start offset in the LRPL is 0, and the
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number of LA pages is 2. That is, in order to access the pages for
the large adjacency list, we first need to access the first and second
entries in the LRPL. In this example, GetPages(p0) returns p0,
while GetPages(p3) returns a list [p3, p4].

When each vertex has attributes, we vertically partition the at-
tribute values of all vertices as the column-oriented DBMS does [21].
That is, we create a file for each attribute, so that only relevant data
can be loaded in memory if necessary. This way, we can increase
cache utilization.

The slotted page is known to be very good for supporting effi-
cient updates. That is, when we first build a database, the storage
utilization of pages is set to X% (≥ 50%). Thus, adding edges to
adjacency lists in a page can be allowed directly by moving records
to the available space within the page and updating the offsets in the
corresponding slots accordingly. When the page is full, we move
some records to a new page and save their RIDs in the original
page. When a moved record needs to be moved to another page,
we can store it in a new page and save the new RID in the origi-
nal page. This way, we can access the moved record with a single
indirection at most. If the number of moved records is larger than
a given threshold, we reorganize the database. When we delete an
edge from an adjacency list, we simply update the corresponding
RID in the adjacency list to NULL. If the number of deletes to the
page is larger than a given threshold, we compact the page when it
needs to be updated.
3.2 In-memory Data Structures and Core Op-

erations
The buffer manager of TurboGraph maintains a buffer pool, ac-

tually, an array of frames, each of which consists of the page-sized
sequences of main memory bytes and some meta information such
as pin count, reference bit, and dirty bit. Note that the RID table
and the LRPL are resident in memory. The core functions sup-
ported by the buffer manager are PINPAGE (pid) and UNPINPAGE
(pid). When we invoke PINPAGE for a given page ID, pid, the
buffer manager first checks whether the page exists in the buffer.
Then, we simply increase its pin-count. Otherwise, it obtains an
empty frame by the LRU replacement policy and loads the page
from disk to the frame. It then increases the pin count of the page
and returns the memory address of the frame where the page was
loaded. If pid is one of the first LA pages, TurboGraph pins all
its LA pages. UNPINPAGE simply decreases the pin count of the
page. If pid is one of the first LA pages, TurboGraph unpins all its
LA pages. The traditional buffer manager maintains a hash table
to translate the page ID to the memory address of the frame. We
observe that this hash table approach could incur significant over-
head for the graph operations that follow edges by accessing the
RIDs in the adjacency list. Thus, we use a different approach here.
Since the page size of TurboGraph is at least one MByte, i.e., large
enough, the number of pages required even for billion-scale graphs
is small enough that the whole page table can fit in memory. Thus,
we use the traditional page table approach used in the operating
system, which uses an array instead of a hash table. In Figure 1,
two pages, p2 and p1, are in the buffer pool, and the corresponding
entries in the page table have the values of 0 and 1, respectively.

TurboGraph additionally provides a core function, PINCOMPU-
TEUNPIN(PageID pid, list<RID> RIDList, UserObject uo), in
order to allow asynchronous I/Os to the FlashSSD. Here, pid is the
ID of a page to read from disk, RIDList the list of RIDs to pro-
cess, and uo, the user object passed by a user. More specifically, uo
contains several variables or methods including Compute, which
is a user-defined function for processing the RIDList. Calling this
function first reserves, i.e., pre-pins, available frames and issues
asynchronous I/O requests to the FlashSSD. When the I/O is com-

pleted, a callback thread processes the vertices in the RIDList by
invoking the user-defined function uo.Compute. After processing
all vertices in the RIDList, the callback thread unpins the page
p0. For example, in Figure 1, when an execution thread invokes
PINCOMPUTEUNPIN(p0, [v1], uo), the buffer manager pins one
free frame, the third one in the buffer, delivers the asynchronous
I/O for p0 to the FlashSSD, and returns the control to the execution
thread so as to continue to execute its remaining task. When the I/O
for p0 is completed, the callback thread invokes uo.Compute(v1,
Iterator(v1.adj)), where the iterator is used to iterate through the
adjacency list v1.adj using one of its methods, GETNEXT. After
the processing of all requested adjacent lists in p0 including v1.adj,
p0 is unpinned.

4. DISK-BASED PARALLEL GRAPH COM-
PUTATION

Suppose that a graph G = (V , E) is represented by an adjacency
matrix M(G), where vi is the i-th vertex in G. Let M(G)i the i-
th column vector of M(G). When we have a column vector X
(|X| = |V |), we can define the matrix-vector multiplication be-
tween M(G) and X (Y = M(G)×X) as Y =

∑|V |
i=1 M(G)i×Xi

in the column view.
Depending on applications, which can define their own multipli-

cation and summation semantics, we can generalize both operators
with the user-defined function Compute. Without the loss of gen-
erality, M(G)i is represented as vi.adj which is the adjacency list
of Vi.

Unlike the previous approaches in [9, 10] which interpret the
matrix-vector multiplication in the row view, by interpreting it in
the column view, we can restrict the computation to just a subset of
vertices, vI[1] ∼ vI[k]. The j-th vertex in this subset corresponds
to vI[j].adj. Then, this generalized matrix-vector multiplication is
represented as in Algorithm 1.

Algorithm 1 Matrix-Vector-Multiplication(G = (V,E), X, I , Y )
1: for i = 1 to |I| do
2: Compute(vI[i].adj,XI[i], Y )

3: end for
The pin-and-slide model is a new computing model for effi-

ciently processing this generalized matrix-vector multiplication in
the column view. In Section 4.1, we explain the key concept of the
pin-and-slide model mainly under the assumption that the vectors
X and Y are indicator vectors where the values are zero or one.
Since X is an indicator vector, we can derive I from X. In Section
4.2, we extend the basic pin-and-slide model to support general
vectors.
4.1 The Pin-and-Slide Model

A pin-and-slide system has a buffer pool, a graph database, and
two types of threads: execution threads and callback threads. When-
ever a thread issues an asynchronous I/O with a callback function
uo.Compute to the buffer manager, the execution control directly
returns to the calling thread, and the buffer manager delivers the
request to the FlashSSD through OS. On completion of the request,
the OS signals any idle callback thread, and the thread invokes
Compute.

The main task of the pin-and-slide model is to efficiently access
all relevant adjacency lists and to invoke uo.Compute for them.
Before accessing the adjacency list of any vertex v, we must pin
the corresponding page, since it may not be resident in the buffer
pool. However, calling PinPage for each adjacency list incurs
nontrivial overhead. Thus, for efficient access to adjacency lists,
we should identify the pages containing those adjacency lists first,
i.e., the requests for the adjacency lists must be converted into those
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for their pages. This way, we can invoke just one PinPage for
each page.

After identifying the pages of interest, we check whether any of
them exist in the buffer pool. This step is also important for perfor-
mance, since the buffer manager may replace those pages accord-
ing to its replacement policy if we access them arbitrarily. After
identifying them, we need to pin them in the buffer pool, so we
can guarantee that they are to be resident in memory until they are
explicitly unpinned.

A large adjacency list spans across multiple LA pages, and thus,
we need to pay attention to them when we pin the large adjacency
list. For instance, after pinning some of the LA pages, if the current
thread is unable to find any available frame unpinned in the buffer
pool, we must wait until the other threads unpin some pages. To
avoid this problem, we first identify partially loaded LA pages (PL
pages) before pinning them. Only after all LA pages for a large
adjacency list are fully loaded, we safely pin them. Here, if there
are multiple, partially loaded, large adjacency lists, we do not in-
voke PINCOMPUTEUNPIN for them arbitrarily. Instead, we select
the adjacency lists which could maximize the performance. This
poses an interesting question: “Which LA pages should be loaded
and pinned first to maximize the buffer utilization?”

We model this as an application of the 0-1 knapsack problem.
An item corresponds to the PL pages for a large adjacency list, and
the benefit for the item is the number of the total LA pages for the
adjacency list. The size of the item is defined as (the number of
the total LA pages − the number of its PL pages). The size of
the knapsack corresponds to the number of unpinned pages in the
buffer pool. The goal is to maximize the benefit of all items in
the knapsack. It is well-known that the greedy solution adding the
items into the knapsack in decreasing order of the benefit-to-size
ratio until the knapsack is full, is a good approximated solution to
this problem. For those PL pages in the knapsack, we issue parallel
I/Os to the FlashSSD for the remaining pages to be loaded.

After this step, if there are available unpinned pages in the buffer
pool, the main thread issues asynchronous I/O requests to the Flash-
SSD. Next, for those pages pinned, multiple execution threads in-
cluding the main thread concurrently process vertices and their ad-
jacency lists in the buffer pool by executing the user-defined func-
tion. At the same time, as soon as the I/O request for each page
is completed, a callback thread processes the vertices and their ad-
jacency lists in the page. As soon as either an execution thread
or a callback thread finishes the processing of a page, it unpins it,
and an execution thread issues an asynchronous I/O request to the
FlashSSD. Here, if the page is the first LA page, we unpin all LA
pages, since there is only one vertex for those pages, and the vertex
has been processed completely. In this way, we slide the processing
window one page (or multiple pages in the case of LA pages) at a
time for all pages corresponding to the input vertices. In this way,
we can fully utilize CPU and FlashSSD I/O parallelism and fully
overlap CPU processing and I/O processing.

Algorithm 2 shows the detailed steps of our pin-and-slide model.
Its inputs are a bit vector for X and a user object uo which contains
a user-defined function Compute as one of its methods. The out-
put is a bit vector for Y , which will be generalized in Section 4.2.
Since we use bit vectors for the graph, we can support billions of
vertices with just a small amount of memory. For example, to sup-
port 1.4 billion vertices of the Yahoo Web graph, the size of the
bit vector is only 168.5 MBytes. The algorithm initializes three
concurrent vectors SAPList, LAPList, and pinnedList. The
algorithm first groups X by page ID and obtains a list of page IDs,
PList (Line 2). Next, we identify a list of page IDs of partially
loaded, large adjacency lists, PLPList (Line 3). In Lines 5 ∼

Algorithm 2 PINANDSLIDE (BitVector X, UO uo, BitVector Y )
1: Variable ConcurrentVector SAPList, LAPList, pinnedList
2: group X by page ID into PList; /* when an adjacency list is large, its

first LA page is in the PList*/;
3: identify a list PLPList of partially loaded LA pages from PList;
4: PList = PList - PLPList;
5: for each PageID pid in PList do
6: if (GetPages(pid) are in the buffer) /* if they are fully loaded*/ then
7: PinPage(pid); /* only pinning */
8: PList.remove(pid);
9: pinnedList.insert(pid);

10: end if
11: end for
12: order PLPList by benefit

size
/*Here, we use the knapsack principle.*/

13: for each PageID pid in PLPList do
14: if (# of pages to load more for page pid <= # of unpinned pages in

the buffer) then
15: PinComputeUnpin(pid, GetRIDList(GetPages(pid), X), uo);

/*note that Y can also be accessed by uo.Y*/
16: PLPList.remove(pid);
17: end if
18: end for
19: divide PList•PLPList into SAPList and LAPList; /*• is the list con-

catenation operator*/
20: sort LAPList by |GetPages(pid)| s.t. pid ∈ LAPList in ascending or-

der;
21: PList← SAPList•LAPList;
22: IssueParallelRead(PList, X, uo, Y);
23: parallel for each PageID pid in pinnedList do
24: parallel for each vertex v in GetRIDList(pid, X) do
25: uo.Compute(v, iterator(v.adj), Y);
26: end parallel for
27: UnpinPage(pid);
28: IssueParallelRead(PList, X, uo, Y); /*sliding*/
29: end parallel for
30: while |PList| > 0 do
31: IssueParallelRead(PList, X, uo, Y); /*pin-and-slide for the remain-

ing pages*/
32: end while

Algorithm 3 ISSUEPARALLELREAD(PageList PList, BitVector
X, UO uo, BitVector Y )

atomic {
while (# of unpinned pages in the buffer pool > 0) do

remove PageID pid from PList;
PinComputeUnpin(pid, GetRIDList(GetPages(pid), X), uo); /* is-
sue parallel I/O*/

end while
}

11, we pin already loaded pages, which are SA or LA pages, in
the buffer pool. In Lines 12 ∼ 18, we issue parallel asynchronous
I/Os for a PLPList according to the 0-1 knapsack algorithm we
have explained. Here, GetRIDList(pid,X) returns a list of RIDs
whose vertex IDs are masked in X. As soon as those pages are
loaded, the callback threads process them. Next, we find two lists
of page IDs, SAPList and LAPList, one for small adjacency
lists and the other for the large ones (Line 19). Then, we sort the
LAPList by the number of LA pages in ascending order, so that we
read a smaller set of LA pages first in the next step (Line 20). If
there are available frames, we issue parallel asynchronous I/Os by
calling ISSUEPARALLELREAD, which is described in Function 3
(Line 22). We note that ISSUEPARALLELREAD uses a latch free
approach which exploits hardware-level atomic operations for con-
sistency and performance. For those pages pinned in Lines 5 ∼
11, the multiple execution threads access the adjacency lists in the
pages pinned (Lines 23 ∼ 29). After processing each page, we un-
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pin it and issue parallel asynchronous I/Os by calling ISSUEPAR-
ALLELREAD (Line 28). After consuming all pre-pinned pages, the
main thread repeatedly invokes ISSUEPARALLELREAD for the re-
maining pages, while the callback threads process those requested
pages in parallel (Lines 30 ∼ 32).
4.2 Handling General Vectors

In this section, we explain how we handle general vectors (as
opposed to indicator vectors) in the pin-and-slide model. For ex-
ample, the input vector for PageRank is an indicator vector having
all 1s, which means we compute PageRank values for all vertices,
but the output vector for PageRank is the vector storing the PageR-
ank values of all vertices at the current iteration. The size of the
general vector may be too large to fit in memory. We call this kind
of general vector large vector.

In addition, for any given vertex v, the user-defined function
uo.Compute may need to access the attribute values of adjacent
vertices of v. For example, for the incoming adjacent vertices of v,
the uo.Compute function for PageRank needs to access two large
vectors, one for the out-degree values and the other for the PageR-
ank values at the previous iteration. We note that the access pattern
for these large vectors is random rather than sequential. We call
these kinds of vectors random vectors. Conversely, since the ac-
cess pattern for the input vector is sequential, we call this kind of
vector sequential vector. Note that, depending on the application,
the output vector can be a random vector as well. As mentioned
in Section 3, a file exists for each vertex attribute. In our graph
database, one large vector is created in disk for each attribute of the
vertex.

Now, we generalize the PINANDSLIDE algorithm so as to handle
large general vectors. The main idea is to adopt the concept of the
block-based nested loop join, which is well-known in the database
area. We regard the set of pages pinned in the current buffer as a
block and also assume that a general vector is partitioned into mul-
tiple chunks such that each chunk fits in memory. Then, we “join”
a block in the buffer with a chunk of each random attribute vector,
and save the results in the corresponding chunk of the output vec-
tor. (We explain the exact meaning of “join” later.) Note that the
memory area for the large vector is separately allocated in Turbo-
Graph, to minimize the buffering effect for these vectors.

After issuing ISSUEPARALLELREAD at Line 22, we know the
range for the output vector that corresponds to the range of graph
vertices pinned in the buffer pool. Here, we allocate a memory
space, which is typically much smaller than the size of those pages
pinned. For example, the size of each element in the output vector
storing a PageRank value is four bytes for a float type or eight bytes
for a double type, which is much smaller than the average size of
the adjacency lists.

In order to join the current block with the first chunk of each
random vector, we need to read the first chunk of each random
vector before invoking PINCOMPUTEUNPIN. Therefore, in Line
15, we only secure free frames for partially loaded LA pages and
read the first chunk of each random vector before Line 22. After
that, we issue asynchronous I/Os for those partially loaded pages.
Note that, in Lines 30∼32, the callback threads join the remaining
blocks with the random vector. Thus, we also need to read the first
chunk of each random vector before Line 31.

Now, we explain how to “join” the current block with the re-
maining chunks of each vector. When we join the current block
with the first chunk of each vector, at Line 25, some adjacent ver-
tices of v may not be in the range of the first chunk of each random
vector. Thus, the user-defined function may not properly complete
its job for those adjacent vertices. Therefore, we need a systematic
approach to solve this problem. In TurboGraph, we pass the range

R of the current chunk to the user-defined function, and the func-
tion only accesses the attribute values of the adjacent vertex whose
ID is in the range R. Here, the user-defined function invokes GET-
NEXT to iterate through the adjacency list. GETNEXT returns a
special return code ON_GOING when the current adjacent vertex is
out of the range R. If the return code of GETNEXT is ON_GOING,
the user-defined function stops processing the adjacency list and
returns to the calling thread with the special return code. The main
thread pushes into a queue those iterators having the special return
codes. Now, the queue is regarded as a block, and thus, we can
join this block with the remaining chunks. We repeat this process
until the queue is empty. This additional task needs to be executed
before Line 30 and after Line 31.

Now, we explain when we can slide the execution window of the
pin-and-slide model for handling large vectors. When we finish
processing the last chunk of the random vector, we can safely slide
the execution window by the size of the pinned pages in the buffer.

Example 1. We explain our pin-and-slide model handling gen-
eral vectors by using a PageRank query. Figure 2 illustrates all
steps in the pin-and-slide model for the first iteration of PageRank.
We assume the same graph database as Figure 1. There are two
large attribute vectors, outDegree and prevPR, where the former
stores the out-degree values of vertices, and the latter the PageRank
values at the previous iteration. At the very beginning, all elements
of prevPR are just 1

|V | = 1
7
≈ 0.143. The elements of the large

output vector are initialized with zero.
• Step 1: After first reading pages from disk into the buffer (e.g.,

{p0, p1, p2}), we read the first chunk of each attribute vector
into memory. Then, we join between block1 and chunk1,
i.e., apply uo.Compute(vi, Iterator(vi.adj)) to all pairs
of vi and available vj ∈ vi.adj, which exist in block1 and
chunk1. Then, we write the computation results, which are
not complete yet, to the corresponding chunk1 of the output
vector.

• Step 2: We read chunk2 of each attribute vector into mem-
ory, join between block1 and chunk2, and update the results
of chunk1 of the output vector, which now has complete val-
ues.

• Step 3: Since we complete the processing for block1, we
read new pages from disk (e.g., {p3, p4}), i.e., do sliding
to block2. Then, we join between block2 and chunk1 and
write the results to chunk2 of the output vector.

• Step 4: We do the final join and update chunk2 of the output
vector.

After the above iteration, we obtain the PageRank values of [0.099
, 0.099 , 0.099 , 0.099 , 0.099 , 0.099 , 0.403], which are used in
the next iteration.

5. PROCESSING GRAPH QUERIES
In this section, we describe query execution in TurboGraph,

which, like GBase, supports both targeted and global queries. The
targeted queries traverse only on a small fraction of the graph, while
the global queries traverse the whole graph [9]. As targeted queries,
GBase has formulated seven different types of queries, which in-
clude neighborhood, induced subgraph, egonet, K-core, and cross-
edges. We describe those seven targeted queries by using our pin-
and-slide model, whereas GBase describes the queries by using
their matrix-vector multiplication model.

5.1 Targeted Queries
Our PINANDSLIDE algorithm can be regarded as a full paral-

lelism and full overlap version of a single step of the breadth-first-
search (BFS) operation. Therefore, we denote the PINANDSLIDE
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Figure 2: An example of a PageRank iteration in the PINANDSLIDE algorithm.

algorithm as BFSf (Vq), where Vq is an input set of vertices, and
f is a user-defined function. For a given G = (V,E), BFSf

applies the user-defined function f to every edge e = (v, w) s.t.
v ∈ Vq ∧ (v, w) ∈ E and then returns a union of outputs of f ,
i.e., BFSf (Vq) =

⋃
v∈Vq∧(v,w)∈E f((v, w)). There could be var-

ious kinds of user-defined functions. In this paper, we introduce
three user-defined functions for describing seven targeted queries
in Equations (1), (2) and (3). The term fnh is usually used for de-
scribing neighborhood queries, fwnh is used for describing egonet
queries, and fis is used for describing induced subgraph queries.

fnh((v, w)) = {w} (1)
fwnh((v, w)) = {v, w} (2)

fis((v, w)) =

{
{(v, w)}, v ∈ Vq ∧ w ∈ Vq;

{}, otherwise.
(3)

In terms of implementation, the input set of vertices Vq is passed
as a bit vector, and the output of the BFSf operator is also set on
the same bit vector.
T1: 1-step neighbors. The first query is to find 1-step (out-)neighbors
of a query vertex v. The 1-step (in-)neighbors of v can be obtained
in the same way by using the adjacency list of in-edges instead of
out-edges. We can find this by using the BFSf operation as fol-
lows:

NH1(v) = BFS1
fnh

(v). (4)
T2: K-step neighbors. The next query is to find k-step (out-)neighbors
of a query vertex v. The k-step neighbors of v, NHk(v) can be
defined recursively by (k − 1)-step neighbors of v, NHk−1(v) as
follows:

NHk(v) = BFSk
fnh

(v) = BFS1
fnh

(BFSk−1
fnh

(v)). (5)

T3: Induced subgraph. The next query is to find an induced sub-
graph for a given set of vertices Vq ⊆ V , which is defined as a
graph whose vertices are all in Vq and whose edges are also adja-
cent in G. We can find it simply by using the user-defined function
fis as follows : IS(Vq) = BFS1

fis(Vq). (6)

T4: 1-step egonet. The 1-step egonet of a vertex v is defined as the
induced subgraph that includes v and its 1-step neighbors. Thus,
we can find it easily by using both fnh and fis as follows:

EG1(v) = BFS1
fis(BFS1

fwnh
(v)) (7)

where the user-defined function fwnh(v) is used for including
both v and its 1-step neighbors, i.e., ’within 1-step neighbors.’
T5: K-step egonet. The k-step egonet of a vertex v is defined as the
induced subgraph that includes from v to its k-step neighbors, i.e.,
’within k-step neighbors.’

EGk(v) = BFS1
fis(BFSk

fwnh
(v)). (8)

T6: K-core. K-core of a graph means a maximal connected sub-
graph where all vertices have a degree of at least K. This requires
a preprocessing step and a global query with an induced subgraph
query as follows:

1. Find a set C of vertices with a degree ≥ K from G.
2. Compute GK = IS(C).
3. Find connected components of GK , where each is a K-core.

T7: Cross-edges. The cross edges mean the edges crossing between
two disjoint sets of vertices V1 and V2. They can be computed in a
similar way as GBase as follows :

1. Compute three induced subgraphs: IS(V1), IS(V2), IS(V1 ∪V2).

2. Let E1, E2, and E12 be the set of edges in IS(V1), IS(V2), and
IS(V1 ∪ V2), respectively. The cross edges are E12 − E1 −E2.

5.2 Global Queries
Under our pin-and-slide model, global queries are performed by

repeated execution of the PINANDSLIDE algorithm with an ini-
tial input vector having all 1s. The pin-and-slide model supports
a wide range of global queries. It covers all global queries that
GBase [10, 9] supports, i.e., degree distribution, PageRank, Ran-
dom Walk with Restart(RWR), radius estimations, and discovery of
connected components. We have already explained briefly how our
model processes the PageRank query in Example 1. In addition, it
also supports global queries corresponding to matrix-matrix multi-
plication such as counting triangles, which is beyond the scope of
this paper. Our contribution here is that our model significantly im-
proves the performance of global queries, which requires accessing
entire billion-scale graphs, as well as targeted queries, even though
it runs in just a single machine.

6. EXPERIMENTS
We evaluate the performance of TurboGraph compared with the

state-of-the-art graph processing engine, GraphChi. We choose
GraphChi since it significantly outperforms existing (disk-based)
distributed graph engines [14]. We use three types of queries, breadth-
first search, targeted queries, and global queries. As targeted queries,
we use 1-step out-neighbor query, 2-step out-neighbor query, and
egonet query as in [9, 10]. We measure the average elapsed time of
five randomly selected query nodes as in [9, 10]. As global queries,
we use the PageRank query and connected component query, where
we report the top-20 PageRank values after computing all PageR-
ank values and the number of connected components, respectively.

6.1 Experimental Setup
We use three real datasets for the experiments, LiveJournal [3],

Twitter [13], and YahooWeb[1]. The LiveJournal dataset is about
an online social networking site with 4.8M vertices and 69M di-
rected edges. The Twitter dataset contains 42M vertices and 1.5B
edges. The YahooWeb dataset contains a web graph from Yahoo!
with 1.4B vertices and 6.6B edges.

We conduct all the experiments on the same PC with Intel i7
6-core 3.2GHz CPU and 12 Gbytes DRAM. This PC is equipped
with two 512GB SSDs of Samsung 840 Series, one for running
Windows 7 and the other for running Ubuntu Linux. Note that
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TurboGraph can be compiled in Windows, while GraphChi can
be compiled in Linux. Considering that disk I/O performance in
Ubuntu is better than that in Windows 71, we expect that the per-
formance gap between TurboGraph and GraphChi would increase
in the same Linux environment. We plan to port our source code to
the Linux environment.

We use six execution threads as a default setting for all compared
systems. We disable hyper-threading, so that the maximum number
of hardware threads is six.

6.2 Breadth-First Search
The purpose of this experiment is to show whether our pin-and-

slide model efficiently supports breadth-first search by varying the
buffer size and the number of execution threads. If there is suffi-
cient memory available, one may use a fast in-memory based graph
engine. Thus, we additionally perform experiments with a state-of-
the-art in-memory graph BFS engine Green-Marl [7] which opti-
mizes the BFS query. Note that the in-memory graph engines can
be typically implemented much faster than disk-based ones, since
there is no translation between memory address and disk address.

6.2.1 Varying the Buffer Size
Figure 3 shows the elapsed times for LiveJournal and Twitter by

varying the buffer size. We could run Green-Marl with the buffer
sizes of 700 MBytes and 7 GBytes for LiveJournal and Twitter,
respectively. Note that TurboGraph can execute BFS queries for
YahooWeb in a reasonable time, while Green-Marl failed due to
lack of memory, and GraphChi did not finish in a reasonable time.
Thus, we report the results for LiveJournal and Twitter. Note that
the Y-axis is in log scale. We use these buffer sizes for the re-
maining experiments. TurboGraph outperforms GraphChi by up
to 19.62 and 16.31 times for LiveJournal and Twitter, respectively.

100

101

102

300 500 700

A
vg

. e
la

ps
ed

 ti
m

e(
se

c.
)

Buffer size(MBytes)

GraphChi
Green-Marl

TurboGraph

(a) LiveJournal.

101

102

103

104

3 5 7

A
vg

. e
la

ps
ed

 ti
m

e(
se

c.
)

Buffer size(GBytes)

GraphChi
Green-Marl

TurboGraph

(b) Twitter.
Figure 3: Varying buffer size.

Note that the database sizes of TurboGraph for LiveJournal and
Twitter are about 710M bytes and 12 GBytes, respectively. As the
buffer size increases, the pin-and-slide model of TurboGraph uti-
lizes the buffer pool in a very smart way and improves the per-
formance accordingly as the buffer size increases. However, lack-
ing this kind of feature, GraphChi shows results indicating that its
performance remains almost constant regardless of the buffer size.
Green-Marl first loads the whole graph in memory and executes
BFS. Although Green-Marl is specially designed for in-memory
graph engines, TurboGraph outperforms Green-Marl by a small
margin. Note that Green-Marl can not support billion-scale graphs
due to its large memory requirement.
6.2.2 Varying the Number of Execution Threads

Figure 4 shows the elapsed times for LiveJournal and Twitter
by varying the number of execution threads. For this purpose, we
need to pre-load the whole graph in memory for TurboGraph and
Green-Marl. However, it is very hard to pre-load the graph for
GraphChi. GraphChi requires making only one shard file to pre-
load the whole graph into memory. However, if there is only one
1http://www.phoronix.com/scan.php?page=article&item=ubuntu_win7_ws&num=4

shard file, GraphChi processes all edges serially. Therefore, in-
stead of making one shard file, we use the standard sharding mech-
anism, run experiments, and exclude the elapsed time for the disk
I/Os from the total elapsed time. The authors of GraphChi took
the same approach [14] to analyze the performance for varying the
number of execution threads.
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Figure 4: Varying # of execution threads.

Both TurboGraph and Green-Marl increase the BFS perfor-
mance as the number of execution threads increases. As we see in
the figure, TurboGraph achieves better speedups than Green-Marl,
although Green-Marl marginally outperforms TurboGraph since
it is an in-memory graph engine. When we test with an eight-
core PC, TurboGraph marginally outperforms Green-Marl. On
the other hand, GraphChi shows poor performance as we increase
the number of execution threads. The similar phenomenon has also
been reported in [14]. This results show that, TurboGraph fully
utilizes multi-core parallelism, while GraphChi does not.
6.3 Targeted Queries

Figure 5 shows the elapsed times for the three targeted queries.
TurboGraph significantly outperforms GraphChi for the targeted
queries by up to four orders of magnitude. For the YahooWeb
dataset, the elapsed times of GBase for one-step out-neighbor query,
two-step out-neighbor query, and the egonet query were about 100,
265, and 395 seconds, respectively, when it used 100 machines.
Note that the elapsed times of TurboGraph for these queries are
about 0.18, 0.47, and 0.58 seconds. Since these targeted queries
access a small fraction of the graph, TurboGraph can directly tra-
verse those targeted vertices. Thereby, TurboGraph outperforms
GraphChi by up to 10830.48, 1940.90, and 1573.62 times for one
out-neighbor query, two out-neighbor query, and the egonet query,
respectively.
6.4 Global Queries

Figure 6 shows the elapsed times for the two global queries,
PageRank (10 iterations for LiveJournal and Twitter and one it-
eration for YahooWeb) and connected component queries. Note
that these queries in GraphChi are implemented by the authors of
GraphChi. TurboGraph outperforms GraphChi for the PageR-
ank query by up to 27.69 times. This shows that the pin-and-slide
model of TurboGraph efficiently processes the general large vec-
tors. Note that the Y-axis in Figure6(c) is in log scale.

For counting the number of connected components in the Ya-
hooWeb dataset, GraphChi requires more than 265 rounds of itera-
tions, while TurboGraph can count the number of connected com-
ponents by scanning the whole graph just once, by exploiting the
pin-and-slide model using a large vector that stores component IDs.
Therefore, TurboGraph outperforms GraphChi by 144.11 times.

7. CONCLUSION
In this paper, we presented a fast, parallel graph engine called

TurboGraph for efficiently processing billion-scale graphs on a
single PC. We proposed a notion of the pin-and-slide model which
implements the column view of the matrix-vector multiplication. It
utilizes two types of threads, execution threads and callback threads,
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Figure 5: Average elapsed time (Targeted queries).
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Figure 6: Average elapsed time (Global queries).

along with a buffer manager. In this model, we first identify the cor-
responding pages for the query vertices and then pin those pages in
the buffer pool. We next issue parallel asynchronous I/Os to the
FlashSSD for pages which are not in the buffer pool. Without wait-
ing for the completion of those I/O requests, multiple execution
threads concurrently process vertices that are in the pages pinned
and their adjacency lists. As soon as the I/O request for each page
is completed, a callback thread performs the CPU processing of the
page. As soon as either an execution thread or a callback thread fin-
ishes the processing of a page, it unpins the page, and an execution
thread issues an asynchronous I/O request to the FlashSSD.

In addition, we provided parallel, engine-level graph primitives
including disk-based matrix-vector computation, which serve as
core graph operations in graph databases. These operators have
been efficiently implemented under the pin-and-slide model by lever-
aging the full parallelism and the full overlap.

Through extensive experiments on large, real graphs, including
billion-node graphs, we showed that TurboGraph outperforms the
state-of-the-art algorithms by up to four orders of magnitude. Over-
all, we believe we provide comprehensive insight and a substantial
framework for future research.
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