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ABSTRACT 

For several years, design studies have been under way in the U.S.A. 

9 on a nuclear closed-cycle gas turbine plant (HTGR-GT). This paper presents 
design aspects of the helium turbomachine portion of these studies. Gas 

' 

dynamic and mechanical design considerations are presented for helium tur- 

bomachines in the 400-MW(e) (non-intercooled) and 600-MW(e). (intercooled) 

power range. Design of the turbomachine is a key element in the overall 

power plant program effort, which is currently directed toward the 

selection of a. reference HTGR-GT commercial plant cdilf iguration for the 

U.S. utility market. A conservative design approach has been eniphasized to 

provide maximum safety and durability. The studies presented for the inte- 

grated plant concept outline the necessary close working relationship 

between the reactor primary system and turbomachine designers. State-of- 

the-art technology from large industrial gas turbines developed in the 

U.S.A., considered directly.appl.icable to the design of a helium turbo- 

machine, partfcularly in the areas of design methodology, performance, 

.materials, and fabrfcation methods, is emphasized. 



INTRODUCTION 

It  is p r o j e c t e d  t h a t  by t h e  end of t h e  c e n t u r y ,  
c losed-cyc le  gas t u r b i n e  (CCGT) power p l a n t s  w i l l  be 
o p e r a t i o n a l  i n  t h e  U.S.A. f o r  e l e c t r i c a l  power gener- 
a t i o n  because of (1) t h e i r  a d a p t a b i l i t y  t o  bo th  nu- 
c l e a r  and c o a l - f i r e d  h e a t  snl.lrces, (2 )  t h c i r  very 
high f u e l  u t i l i z a t i o n  e f f i c i e n c y ,  (3) t h e i r  p o t e n t i a l  
f o r  a  h igh  degree of  r e l i a b i l i t y  and a v a i l a b i l i t y  and 
low maintenance, and (4 )  t h e i r  e f f i c i e n t  c o s t -  

, e f f e c t i v e  dry c o o l i n g  where no coo l ing  wate r  is 
a v a i l a b l e .  F u r t h e r  development is l i k e l y  s i n c e  t h i s  

power conversion system seems w e l l  s u i t e d  t o  pro- 
j e c t e d  f u s i o n  and s o l a r  power p l a n t s  of  t h e  twnnty- 
f i r s t  cen tury .  The technology b a s e s  f o r  closed-cycle  
gas t u r b i n e  p l a n t s  a r e  w e l l  e s t a b l i s h e d  by 40 y r  of  

' European o p e r a t i n g  exper ience .  These European 
f o s s i l - f i r e d  p l a n t s ,  wi.th e l e c t r i c a l  power o u t p u t s  of 
up t o  50 MW(e), have demonstrated high degrees  o f  
a v a i l a b i . l i t y  and r e l i a b i l i t y ,  s e v e r a l  uf L.l~r u n i r s  
having opera ted  s u c c e s s f u l l y  f o r  o v e r  100.000 h r .  

' 

T h e , b e n e f i t s  of  t h e  n u c l e a r  gas  t u r b i n e  power 
p l a n t  a r e  c o n s i s t e n t  wi th  meet ing n a t i o n a l  energy 
g o a l s ,  and t h e  high power,conversion e f f i c i e n c y  po- 
t e n t i a l  s a t i s f i e s  i n c r e a s i n g l y  important  r csource  
conserva t ion  demands. The hel ium turbomachine is  t h e  
key element i n  t h e  power conversion system, and t h i s  . 
paper  o u t l i n e s  t h e  e x t e n s i v e  program of des ign  and 
development necessa ry  t o  commercialize t h e  HTGR-GT 
p l a n t  f o r  u t i l i t y  servj.re i n  t h o  l o o t  dccode of t l ~ l s  
cen tury .  

The design of a  new power p l a n t  concept is an 
i t e r a t i v e  p rocess  t o . s a t i s f y  t h e  va r iouo  p c ~ f o r m a u c e ,  
economic, s a f e t y ,  and r e l i a b i l i t y  g o a l s .  and s e v e r a l  
p l a n t  c o n f i g u r a t i o n s  have evolved a s  t h e  program has  
p rogressed  i n  t h e  l a s t  few y e a r s .  The most r e c e n t  

design s t u d i e s  done by General  Atomic Company a r e  f o r  

a  dry-cooled commercial p l a n t  i n  t h e  000- L U  1200- 
MW(e) power range (1) .  I n  t h e s e  power p l a n t  s t u d i e s  

i n t e r c o o l e d  and non-intercooled v a r i a n t s  a r e  be ing  
l n v e s r i g a t e d ,  bo th  be ing  based on dry c o o l i n g  t o  
ensure  maximum s i t e  s e l e c t i o n  f l e x i b i l i t y  w i t h i n  t h e  
U.S.A. Following prev ious ly  r e p o r t e d  turbomachine 
work (2-4), t h i s  paper  addresses  des ign  a c t i v i t i e s  
c u r r e n t l y  i n  p r o g r e s s  i n  suppor t  of t h e  aforementioned 
power p l a n t  s t u d i e s .  

For an i n t e g r a t e d . p l a n t  wi th  t h e  power con,ver- 
s i o n  system i n s t a l l e d  i n s i d e  t h e  r e a c t o r  v e s s e l ,  t h e  
turbomachine cannot  be  t r e a t e d  , a s  an i s o l a t e d  compo- 
n e n t ,  and indeed t h e  des ign  of . t h e  machine and t h e  
r e s o l u t i o n  of t h e  gas f low pa ths  and i n t e r f a c i n g  duct  
connect ions become an i n h e r e n t  p a r t  of t h e  p l a n t  p r i -  
mary system development. I n  suppnr t  nf the p l a n t  
c o n f i g u r a t i o n  s t u d i e s ,  turbomachine concep tua l  ' 

des igns  were done f o r  machines i n  t h e  400-, 500-, and 
600-MW(e) power c l a s s e s  f o r  bo th  intercooler1 and non- 
i n t e r c o o l e d  types .  To span t h i s  power range and t o  
i l l u s t r a t e  t h e  d i f f e r e n c e  between t h e  machine t y p e s ,  
t h e  400-MW(e) (non- in te rcoo led)  and 600-MW(e) ( i n t e r -  
cnoled) des ign  v a r i a n t s  w i l l  be addressed  I n  t h i s  
paper .  

To t h e  n o n - s p e c i a l i s t ,  gas t u r b i n e s  wi th  t h e  
above power r a t i n g s  may seem extremelv l a r g e  cnmpared 

With open-cycle gas t u r b i n e  exper ience ,  where u n i t s  
up t o  100 W ( e )  have been b u i l t .  I n  a c t u a l i t y ,  t h e  
high degree of p r e s s u r i z a t i o n  a s s o c i a t e d  wi th  t h e  
closed-cycle  system r e s u l t s  i n  hel ium turbomachines 
t h a t  a r e  s i m i l a r  i n  o v e r a l l  s i z e  t o  e x i s t i n g  a i r -  
b r e a t h i n g  i n d u s t r i a l  gas  t u r b i n e s ,  b u t  of course  ex- 
h i b i t  much h igher  s p e c i f i c  power because of t h e  h i g h '  
d e n s i t y  and s p e c i f i c  h e a t  of t h e  working f l u i d .  
S ta te -o f - the -a r t  technology from l a r g e  i n d u s t r i a l  gas  

t u r b i n e s  developed i n  t h e  U.S.A., considered d i r e c t l y  
a p p l i c a b l e  t o  t h e  des ign  of a  hel ium turbomachine, 
p a r t i c u l a r l y  i n  t h e  a r e a s  of design methodology, per- 
fo rma~rcr ,  a l a i e r i a l s ,  and t a b r i c a t i o n  methods, I s  
emphasized i n  t h i s  paper .  



CLOSED-CYCLE GAS TURBIIIM: BACKGROUND 

While the  closed-cycle gas turbine i s  not well  
known i n  the  U.S.A., it has demonstrated very high 
fuel  u t i l i za t ion  eff ic iencies  and a high degree of 
r e l i a b i l i t y  i n  the  various European plants tha t  have 
operated f o r  almost a million hours. Since operation 
of the  pioneer plant i n  1939, 40 y r  of experience 
have substantiated the  claim t h a t  t h i s  prime-mover is 
well established (5). Some 20 plants  were b u i l t  f o r  
cod ined  e lec t r i ca l  power and heat production, and 
deta i ls  of the operating experience f o r  those known 
t o  sti l l  be i n  operation have been discussed pre- 
viously i n  Ref. 6. 

Since the helium turbomachine i t s e l f  is t he  
s ingle  most important power conversion loop component 
from t h e  development standpoint, it is germane t o  re- 
view the  appl icabi l i ty  of establiehed technologies. 
The indus t r i a l  technology bases from which the  turbo- 
machine mn benefit  aro shown i n  Fig. 1, which i l lu s -  
t r a t e s  exis t ing hardware. The emphasis i n  t h i s  fig- 
ure r e l a t e s  t o  the  formidable world-wide resources 
which, i f  u t i l ized on an in ternat ional  cooperative 
basis ,  w i l l  make near-term introduction of the  nu= 
clear  gas turbine plant a r ea l i ty .  

While helium turbomachines a r e  noL well known 
i n  the  U.S.A., t he  array shown i n  Fig. 2 i l l u s t r a t e s  
that helium axial flow turbomachines over an impres- 
s ive  power range have been constructed and operated 
successfully in Europe. 

An important helium turbine plant is the  
foss i l - f i red 50-W(e) Oberhausen 2 uni t ,  which was 
b u i l t  by Energieversorgung Oberhausen AG (EVO) i n  
the  Federal Republic of German (7,8). I n  addition 
t o  providing e l e c t r i c a l  power f50 klW(e)] and d i s t r i c t  
heating [54 EIW(t)], t he  EVO plant is being used f o r  
t e s t s  intended to-supply in£ ormation -[f or-the Euro- 

pean Bigh Temperature Helium Turbine (EHT) project] 
on t h e  dynamics of t h e  overall  plant and on the  long- 
term behavior of spec i f i c  components. The selection 
of a r e l a t ive ly  low system pressure for t h i s  power 
plant  y ie lds  a large  volumetric flow of the  helium 
working f lu id ,  and accordingly the  actual  equipment 
is  comparable i n  s i z e  t o  a plant ra ted a t  over 200 
W(e).  An appreciation fo r  the  s i z e  of the  turbine 
is provided by Fig. 3, which shows de ta i l s  of the  
high-pressure rotor  from the  EVO plant.  

Another important plant is the  high-temperature 
helium t e s t  f a c i l i t y  (EHV) a t  Kernforschungsanlage i n  
JUlich, the  Federal Republic of Germany. The opera- 
t ion  of t h i s  helium test plant represents a centra l  
test within the  European HHT Project. Through t h i s  
program, e s sen t i a l  character is t ics  of the  turbo- 
machine a re  t o  be ver i f ied.  The turbomachine con- 
sists of two turbine stages which produce 45 W(e) 
and an eight-stage compressor which absorbs 90 MW(e), 
t h e  difference being supplied by a 45-W(e) synchro- 
nous motor. As a re su l t  of the  compression work, the  
helium can be heated t o  1000°,C (183Z0F), so a heater 
f i r e d  by f o s s i l  fuels  has been eliminated. The cow 
bination of turbine and compressor and t h e  thermo- 
dynamic conditions i n  the  closed Loop resu l t s  in a 
turbomachine with dimensions representative of a 
helium turbine of approximately 300 m ( e )  output. 
The ro to r  f o r  the  EHV plant shown i n  Fig. 4 has a 
bearing span of 5.7 m (18.7 f t )  and weighs about 
60,000 kg (66 tons). The diameters of t h e  bearings 
and sea l s  a r e  representative of a l a rge  commercial 
nuclear gas turbine plant.  

A f u l l  account is given i n  Ref. 9 of the  roles  
of the  BVO plant and t h e  RW f a c i l i t y  i n  the  develop- 
ment of the  European W T  Project. The turbomachine 
design a c t i v i t i e s  outlined i n  t h e  f o l l d n g  sections 
of t h i s  paper a r e  f o r  the  HTGR-GT program in the 

Fig. 1. T*ohnnlogy bnsen f o r  nuclear closed-cycle helium 



Fig. 2. iiellum gae turbd5nlcz-y deaign evalucion 

Fig. 3. High-pressure rotor assembly for Oberhausen 2 Fig. 4. Helium turbomachine rotor assembly for high- 
helitnu turbine plant (courtesy of temperature helium test  fac i l i ty  (HHV) 
Gutehof fnungshtitte S terhade AG) (courtesy af Rrnwn Roveri Companyf 



U.S.A. .However, it  should be mentioned t h a t  a for- 
midable e f f o r t  has a l s o  been expended i n  Europe on 
the  design of the  turbomachinery f o r  t he  HHT Project 
( 10- 13) . 

Since aspects of  t he  ove ra l l  plant design a r e  
presented i n  a separa te  paper f o r  t h i s  meeting (11, 
only a b r i e f  description v i l l  be given here,  with 
emphaeis on the  s ignif icance of prime-mover integra- 
t i on  i n  the  prestressed concrete reactor  wssel (PCRV) 
f o r  turbomachine design. A s  t he  p lant  configuration 
has evolved from an  e a r l i e r  three-loop reference 
design ( 1 4 )  t o  t h e  more recent two-loop arrangement. 
an in tegra ted approach has been re ta ined.  The degree 
t o  wh,ich t h e  turbomachine is  in tegra ted i n  the  PCRV 
is clear ly  shown i n  Fig. 5. 

Pig. 5. Isometric view of HTDR-GT p e r  p l a t  primary 
system showing helium turboeachine in tegra ted 
i n  the PClRIl 

Tn current a tudies  of a two-loop plant ,  both 
intercooled and non-intercooled var iants  a re  being 
evaluated. However. Iur Lhe purpuoea o t  t h i s  paper, 
t he  overa l l  fea tures  of t he  HTGR-GT plant  concept can 
be most simply reviewed by addressing the  non- 
intercoolad version. The plan view of t h e  PcRV i n  
Fig. 6 share the s l i g h t l y  o f f se t  core cavity and the  
t w ~  hor izanta l  turbomachine cav i t i e s  or iented i n  a 
chordal manner. The recuperstor and preconler are  
positioned over t h e  turbomachine cavity;  and i n  the  
case of t he  intercooled var iant ,  the addi t ional  heat  
exchanger is positioned off t o  one s ide  of t he  turbp- 
maehine. The elevation view through the  PCRV shown 
I n  Fig. 7 gives d e t a i l s  of the  major components i n  
the  power conversion loop. An addi t ional  elevation 
vlew 1 n  Fik- 8 ahma thc  het  gas dwL lu which the  
high-temperature helium is  transported from the  
reactor  t o  the  turbine.  

From theae f igure .  it can be seen t h a t  the  
helium turbomachine is t r u l y  in tegra ted i n  the 
reactor  primary system, and thus cannot be designed 
a s  an i so l a t ed  component. In  addition t o  the many 
mechanical in ter faces  in  t he  hor izonta l  cavity,  the  
gas f l w  path di rec t ions  i n  and out of t he  turbo- 
machine play an tmpottmt ro le  i n  the  derelopmeul UP 
the  flow path geometries within the  e n t i r e  primary 
c i r cu i t .  

COOLING WATER 
CAVITIES 

DECAY HEAT 
REMOVAL SYSTEM 

Fig. 6. Plan view of PCRV f o r  two-loop non-intercooled 
HTGR-GT plant showing o r i en ta t ion  of major 
power conversion system componente 

Fig. 7. Elevation view through pmer  conversion loop 
showing turbomachine and heat exchonger(s) 
I n a t a l l a t i h  
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PCRV SUPPORT 

Fig. 8. Elevation view through FGRV shoving core 
cavity and turbine i n l e t  duct 

THERMODYNAMIC CYCLE DATA 

As outlined i n  Ref. 15, s tud ie s  have been con- 
ducted t o  s e l e c t  cycle parameters ( fo r  minim- power 
generating cost)  f o r  both intercooled and non- 
intercooled plant var iants .  For the  purpose of 
i n i t i a t i n g  turbomachine conceptual d e n i m  i n  supporl 
of the  plant configuration s tudies ,  it was necessary 
t o  e s t ab l i sh  comparative cycle data. The t en ta t ive  
values wed  a r e  shown i n  Table 1, and these data  a r e  
f e l t  t o  be very representative f o r  turbomachine design 
purposes. The key differences between the  two cycles 
a r e  shown by the  loop diagram f o r  the  non-intercooled 
plant (Fig. 9) and the  flow path diagram f o r  t h e  
intercooled var iant  (Fig. 10). 

TABLE 1 
HTGR-CT P W  CYCLE DATA 

Fig. 9. Loop cycle  dhgrs ls  f o r  non-intercoobd dry- 
cooled ETGR-CT power plant  

Themadynamic Cycle 

Heat Rejection Mode 

m i e n t  MI. Temp.. 'C ( O F )  

R e c a p r a t o r  Efleetiveoasa 

Appmx. System Pressure Loss 
(APIP). X 

Compressor Flow. k g l s I w ( t )  

C a p r e s s o r  I n l e t  Tap. .  *C (.P) 

Coupreasor I n l e t  Q-sure, 
m a  (pais) 

C a p r e s s o r  Pressurn Rst lo  

C n p r e s r o r  Efficiency. X 

Turbine I n l e t  Temp., 'C (OF) 

Turbine I n l e t  Pressure. 
ws (~1.) 

Turbine Expansion Ratio 

Turbine Efficiency, X 

Tutblna -ling Flow. 2* 

Precooler Water O u ~ l e t  Temp.. 
'C (.F)' 

In ter rvuler  Yarer Outlet Temp.. 
*c  ('P) 

Approx. Cycle Effteinacy, X 

Fig. 10. Flov path diagram f o r  intercooled BmR-GT 
power plant  

From T ~ b l e  1 it can be seen that  the  optimized 
value of t he  compressor pressure r a t i o  f o r  t he  in t e r -  
cooled var iant  is a l i t t l e  higher than tha t  fo r  the  
non-intercooled cycle, and t h i s  r e su l to  i n  an in- 
creased spec i f i c  power. Tha maxfmum system pressure 
of 7.93 MPa (1150 psia)  i e  the  name f o r  both cycles 
and is r e l a t ed  s t rangly  to cost of the PCRV. An 
important parameter inf.1uenchg cycle efficienky is 
t he  turbine i n l e t  temperature, and f o r  both cycles 
a val~rs, OF 85QaC (156ZaP) was aseumed. As shown i n  
Fig. 11, t h i s  temperature is modest compared with tha t  
f o r  most i ndus t r i a l  gas turbines.  T t  is below the 
level  whew turbine  blade ceullng is necessary, and it 
f a c i l i t a t e s  u t i l i s a t i o n  of an exie t ing nickel-base 
a l loy which is used extensively i n  i n d u s t r i a l  gas 
t ~ ~ r b i n e s  . 

Non-Intercooled Intercooled 

Dry-rnnlad 
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For both the  non-intercooled and intercooled 
Whc rleatpns of  hot11 machines a r e  based on u t l l i z s r i o n  of mcooled turbine wchines,  simple and rugged arrangements 
blades. M d  the coolinp flows indicated (8s a perrentage of -pressor 
dlscharpe f l w )  o r e  necessary f o r  cooling t h e  turbine  roror. structure., of S i n ~ l e - ~ h a f t  r t ~ * ~ ~ a r i n g ,  dimcL-drlve turbo- 
and ras ing  t o  a e t i ~ l ~  thr ?Rl.mn-hr l i fe raqul.a-L. machine arrangements were chosen for  the  HTGR-DT 
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11 
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26.7 (80)  
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plant. Simplified cross sections of the 400-M(e) 
non-intercooled and 600-W(e) interwoled machines 
are  shown i n  Pigs. 12 and 13, respectively, and 
d e p i a  detai ls  are  given i n  Table 2. 

For an integrated plant arran-t with 8 

l imitation oa mechine envelope, close cooparation 
between the turbomachinery and primary system 
designers is essential.  Sin- high turbomachinery 
efficiencies a re  required, it is  important that min- 
i m ~ ~  loss  ducts t o  and from the compressor and tur- 
bine be incorporated, which necessitates close atten- 
tion t o  the interfacing of the gas turbine with the 
other coreponents i n  the power convereion loop. Mfn- 
imm loss d u d s  with carefully contoured g e m t r i e s  
t o  give good flow distribution in to  the compressor 
and turbine tend t o  require large volutes and scrol ls .  
Bwewr,  with the instal la t ion of the machine i n  the  
horizontal cavity i n  the PCRV and the  requirement fo r  
miniplizing the bearing span t o  give satisfactory 
rotor dynamic characteristics (i .e. ,  c r i t i c a l  speed 
margin), large flow areas are  not available (as can 
be seen i n  Figs. 12 and 13) , and trade-offs are  nec- 
essary t o  sa t i s fy  both aerodynamic and s tructural  
requirements f o r  the selected primary system. Gas 
dynamic design condderations for  the carspressor and 
turbine a r e  br ief ly discussed below. 

ColDpreeeor Gas Dyaamic Design Considerations 
Since axial  coatpvessor aerothemdynamtc design 

techniques have been well documented, detailed qnaly- 
ses w i l l  not be Qscribed herein. The purpose of 
th i s  paper is instead t o  outline h w  the f lu id  p r o p  
e r t i e s  of h e l i m  influence the flow path geometries 
and t o  emphasize that  the gas dynamic procedures used 
are essentially identical t o  cvnvencional a i r -  
breathing gas turbine practice. 

The choice of working f luid affects  the tufio- 
machine primarily i n  two ways: (1) tne nwnber of 
stages fo r  the attainment of the required compressor 
pressure r a t i o  and high efficiency, and (2 )  the 
machine s i z e  for  a high-pressure closed-cycle s y s t q .  
The specif ic  heat of helium is f ive  times that of 
a i r ,  and since the stage temperature r i se  varies 
inversely t o  the specif ic  heat ( for  a given limiting 

' 

blade speed), it follows that the temperature r i s e  
available per stage when running with helilrm vill be 
only one f i f t h  that of a i r ,  and t h i s  of course re- 
sdts i n  more stag- being required f o r  a helium corm- 
pressor. It is fortunate that' the optimization (for 
maslmqp cycle affictenry) nf a highly meuperrrLed 
closed-cycle system gives a relat ively low pressure 
rat io ,  because the number of compressor stages (18 
and 16 f o r  the non-intercoolad and inter-led 
variants,  respectively, a s  can be seen from Table 2) 
is therefore comparable t o  existing open-cycle indus- 
t r i a l  gas turbines. 

Eubstituilon oi'helium for  a i r  greatly modifies 
aerodynamic requirements by removing Mach number 
limitations. The problem then becomea trying t o  in- 
duce the highest poeeibla gas velncities that atreea 
limited blades w i l l  allow. For the selected single- 
shaft arrangements outlined i n  Table 2, the compres- 
sor  rotational speed is, of c ~ v p . .  f l w d  a t  the gen- 
erator synchronous speed of 3600 rpm for  a 60-Ez 
machine. The s ize  of the machine is thus dictated by 
the choice of blade speed, there being aa' incantlve 
t o  me the highest values possible commensurate with 
s t ress  limits t o  reduce the number of stages, since 
the stage loading factot  is inversely proportional t o  
the square df the blade speed. 

For the  specified thermodynamic conditions, 
detailed gas dyuamir analyses were perlorrwd by 
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Fig. 12. Arrangement of 400-MW(e) non-intercooled turbomachine f o r  HTGR-GT plant 

Rig. 13. Arrangement of 60O-MW(e) intercooled turbomachine fo r  HTGR-GT plant 

United Technologies Corporation (UTC) t o  ident i fy  
optirmrm solutions fo r  the  HTGR-GT turbomachine. 
Details of the selected compressor designs a re  
given in Table 2. HeUum compressors fo r  closed- 
cy& RW t u r h i n ~ a  are aharaeterized by u w l 1  blade 
heights, high hub-to-tip ra t ios ,  and low aspect 
ra t ios .  An important parameter is the rear  s tage 
hub-tn-tip ra t io ,  imd an acceprrd upper lMt fo r  
high efficiency compressors is about 0.90. With 
high-pressure helium, the  blade heights a re  8-11 
and end-wall losses become s ignif icant ;  thds, care- 
f u l  mechauical design is necessary t o  minimize t i p  
clearance effects .  While the  end-wall e f fec t s  have 
an adverse effect  on efficiency, two factors that  
w i l l  part+ally offset  th a ere  the very high i! Reynolds numbers (b  x 10 ) and the very low Mach 
number (0.40). The high-efficiency design solutions 
given in Table 2 have accegtakle gan dynenr%c loading 
factors character is t ic  of conservatively designed 
induwtrial gas turbines and should give a sa t i s -  
factory surge margin. 

Turbine Gas Dynamic Design Catsiderations 
The Properties of helium a f fec t  the  turbine in 

very much the-same way tha t  they influence the  com- 
pressor. That is, fo r  a given overall  expansion 

ra t io ,  the  t o t a l  number of stages f o r  a helium tur- 
bine w i l l  be much greater than f o r  an air-bmathing 
gas turbine. Beciluse i t  is desirable t o  have a s  
high a blade speed as possiblt: i n  ,nr&r tn redwe 
the numbet of stages t o  a minimum, the  most c r i t i c a l  
stress conditions are  those of t h e  f i r s t  s tage since 
the  rotor blade temperature 1s a t  the  &mum value. 

The turbine blade centrifugal stress ( for  a 
given blade geometry) is proportional t o  rpm2 x 
anuulus area, and for  a single-shaft, 60-Hz machine, 
one degree of freedom is los t  t o  t11r designer. A 

conservative ground ru le  established f o r  the  HTGR-GT 
plant is that the  s t r e s s  levels i n  the  primary sys- 
tem components must be commensurate with the  plant 
uparating l i f e  o t  280,UOO br  (i.e., 40 y r  w%th a 
capacity factor of 80%). The preliminary turbine 
desigas with a gas i n l e t  temperature of 850sC 
(15GZSF) \ performed by United Technologies Corpora- 
t ion  and outlined i n  t h i s  paper have been based on 
the  use of an existing turbine blade nickel-base 
alloy tha t  has been used extensively i n  open-cycle 
indus t r i a l  gas turbines. The use of advanced mate- 
r i a l s  (molybdenm alloys, f o r  example) o r  blade 
cooling may be desirable a t  some time in the  future  
when reactor ou t l e t  temperatures a r e  increased above 
present-day values. 



From Table 2 it can be seen that  eight- 4 d  
nine-stage turbine designs were selected f o r  the 
non-intercooled and intercooled plant variants,  
respectively. With t i p  speeds conservative by 
modern industrial turbine practice, it can be seen 
that  helium turbines are  characterized by small 
blade heights. In fact ,  the turbine is substan- 
t i a l l y  smaller than an equivalertt air-breathing tur- 
bine since the enthalpy drop i n  the  helium turbine 
is many times greater (i.e.. very high specif ic  
pwer)  . 
Turbomachiaery Performance Predictioas 

The performance predictions f o r  the helium 
turbomachines discussed i n  t h i s  paper are based on 
established design methodology, and the high com- 
pressor and turbine efficiency values given i n  Table 
2 ref lect  the influence of technology from a demon- 
s t ra ted  advanced-technology industr ia l  gas turbine 
[ V X  100-We) FT-50 engine] as  described i n  Refs. 
16 and 17. The closed-cycle gas turbine plant Is 
sensitive t o  small changes i n  compressor and tur- 
bine efficiencies a s  can be seen in Fig. 14, which 
i l lus t ra tes  performance data fb r  the non-intercooled 
cycle. 

Sloce the design of the nheliw turbomachinery 
for  the HTGR-GT plant dravs heavily on established 
industr ia l  gaa turbine practice, it is germane t o  
compare design parameters. In Table 3, the sal ient  
features of the HTGR-GT turbomachine are  compared 
with the ET-50 100-MW(e) industr ia l  gas turbine. 
The flow path geometries and gas dynamic features of 
these two machinas a re  compared i n  Fig. 15. Mechan- 
i c a l  design comparisons are  discussed i n  the follow- 
ing section. 
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TURBWWINE EIEQlAXlCAL DESIGN CONSIDERATIONS 

Design c r i t e r i a  unique t o  the nuclear applica- 
t ion  had a strong influence on the overall  design of 
the helium turbomachine, and the two variants shown i n  
Figs. 12 and 13 a re  similar enough i n  overal l  con- 
struction t o  be addressed together aa f o l l w s .  Be- 
cause the machine w i l l  become m t a ~ i n a f e d  i n  service, 
the overall  design of the casings and structures must 
be such that remote handling, decontamination, and 
uaintanance procedurea are  applicable t o  such c a d i -  
tioas. Qn f i r s t  consideration, it would appesr that  
these requirements could be sat isf ied with an arrange- 
ment having a full-length s p l i t  casing design. For 
such a configuration (as ahown i n  Figs. 3 and 4, for  
example), the casings could be separated and the rotor 
removed aa a s ingle  -it. However, an important ele- 
ment i n  the design of the turbooachine is the incor- 
poration of containment rings around the rotor  bladed 
sections t o  contain fragments and missiles i n  the m- 
l ikely event of a rotor fai lure .  Use of a full-length 
a p l i t  casing design would require incorporation of 
s p l i t  containment rings, which, as v i l l  be d l  srvsaed 
below, are  6uL Pelc t o  be viable. 

As s h m  i n  Fies. 12 and 13, the turbomachine 
casings are  of the double-wall type fn  which the 
etator  blades of the.turbina and compressor are  sup- 
ported on an inner high-temperature-resistant casing 
and the alignment between the bearing housing and the 
high-temperature c ~ s i n g  is maintaiaed by the cooled 
outer caging. The overall  structure can be appreci- 
ated by studying Fig. 16, which shows the separation 
sequence for  a candidate intercooled machine, The 
way i n  whioh the cadurns are a p l i t  s a t i s f i e s  the 
aforemeatioaed requiremeats of (1) r e m t e  disassembly 
capability and (2) f u l l  circumfezentiel containment 
rings. Key slcments uf che helium turbomachine me- 
chanical design are discussad below. 

Jurbomacbina Rot m r  
A simple two-bearing arrangement was selected 

for  the turbonachine rotor, and man access cavi t ies  
have been provided i d  the PCRV for  inspectton of and 
limited work on the journal bearings. Detailed rotor 
dynamic analyses have confirmed the adequacy of the 
two-bearing srrirngmwt, aud satisf8ctory c r i t i ca l  
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Fig. 15. Comparative s i z e s  of open- and closed-cycle turbomachines 

speed margins have been iden t i f i ed  f o r  the  overspeed 
condition. 

The rotor  is of welded construction. Welded 
rotors  have a long successful h is tory  i n  Europe. The 
view of the  compressor ro tor  Cfor the  non-intercooled 
machine) in Fig. 1 7  ohms the  welded disk construction, 
t he  tangent ia l  blade attachments, and the dual blade 
rows mounted nn pnrh disk. This rlraiyu uiinimizes 
we$ght, machining time, and number of pa r t s  compared 
with more t r ad i t iona l  bolted-up ro to r  assemblies. The 
turbine design shown i n  Fig. 18 a l so  employs the  weld- 
ed rotor  concept. It has an insula ted  case t o  reduce 
materials cost and give t i p  rlearance control.  Tan- 
gent ia l  blade attachments a re  used t o  minimize turbine 
secondary cooling requirements and improve performance. 

Unlike foss i l - f i red  open-cycle gas turbines 
Caircraft  and indus t r i a l ) ,  low cycle fa t igue and hot 
corrosion a r e  not design f a r tn r s  with t h i s  ~ ~ L u L .  
However, creep rupture and high cycle fa t igue a r e  
design considerations. For the  turbine blading, creep 
i s  the  l ife-l imitin):  fac tor .  Tn the  csso of the  tu l -  
bine disks,  f rac ture  mechanics a r e  the  controllfng 
design c r i t e r i a .  A t o t a l  bleed flow from the  compres- 
so r  of 3.6% of the  t o t a l  flaw is required f o r  cooling 
the  hot-end s t ructures .  The turbine casing requires 
0.6% of the  flow, and 3.0% i s  d is t r ibuted i n  the  tur- 
bine welded rotor  assembly t o  give an average disk 
temperature of 3l5 'C (600°F>. For t h e  turbine blading 
Cuncooled), the  s t r e s s  l eve l  is well  within the  l i m i t s  

f o r  1% creep of the  nickel-base a l loy IN-10fl a t  
280,000 h r ,  which i s  the design l i f e  of t h e  blading. 

Aircraf t  and indus t r i a l  gas turbines a r e  de- 
signed so  tha t  i n  the  'event of a blade f a i lu re ,  the 
fragments a re  contained within the  machine casings. 
However, the  casings of these machines a r e  not de- 
signed f o r  containment of a f a i l e d  ruLur f u r  reasons 
of weight l imi ta t ion f o r  t he  a i r c r a f t  application and 
because of economic considerations i n  the  case of 
i ndus t r i a l  applications.  This design pract ice  has 
proved t o  be sound s ince  ro to r  f a i l u r e s  i n  modern gas 
turbines are  r a re  events. 

For the  HTGR-GT plant ,  with the  turbomachine in- 
s t a l l e d  ins ide  the reactor  vessel,  it was f e l t  not 
only t o  be prudent but i n  f a c t  a safe ty  requirement 
t h a t  fragments and mfssiles generated i n  the  unlikely 
event of a ro to r  f a i l u r e  w ~ u l d  he. rnntained within 
the  turbomachine casing. As mentioned previously, 
ro to r  burs t  protection i s  incorporated i n  the  machine 
design i n  thc  form of containment ringa (sometimes 
referred t o  a s  burs t  o r  miss i le  shields) a romd the 
compressor aud turbine rotor  bladed sect ions  (18). 
The procedure outlined i n  Ref. 19 was used t o  analyze 
thc  mechanics of containment of the  eighth-stage disk 
i n  the  400-W(e) helium turbomachine a t  t he  minimum 
burs t  speed condition, which f o r  t h i s  machine is 
150X'of the  3600-rpm operating speed. The analys is  
showed t h a t  a containment r ing of 178-mm (7-in.) 
thickness should be adequate t o  contain eighth- 



stage disk failure. The nature of the energy ab- 
sorption process, which depends upon large p las t i c  
s t r a i n  in ttte cmtainment ring, precludes the use of 
any s o r t  of ax ia l  ~ c h a n i c a l  jo ie t s  i n  the riog and, 
as  lpentioned ear l i e r ,  negates the use of a full- 
length horimmtally s p l i t  casing coafwra t ion .  

lkari- 
Oil-lubricated iournal bearin- were chosen 

since, i n  general, &imwll film thi&essee for  o i l  
bearings were found t o  be about twice as great a s  
thoee for  water beariags with the same lehgth/ 
diameter rat to ,  and ma- allowable %lsalQmaeate 
were found t o  be mare fleldbze than for  water beas- 
ings. Similarly. gas and magnetic beatings were not 
considered feasible fo r  such large systess v i th  rotor 
weights %B eacess of 60,009 kg (66 tons). The jour- 
nal  bearings are  subjected t o  high radial  loading 
durEmg nonaal operation and must be capable of with- 
steading temporary overload due t o  a seismic event. 

Ti l t ing pad bearlags were selected because of ' 
their  self-alfgning s tab i l i ty .  1)etails of the jour- 
nal  beafings for the 400-W(e) machlne a r e  shown i n  
Fig. 19. The b e ~ 4 n g s  are  five-pad t i l t i n g  pad 
designs with a shaft journal diameter of 508 ma 
(20 in.) and a leagtb o-f 406 nm (16 in.). For the 
600-W(e) machine. the diameter is 600 or (24 in.), 
compared with 381 lap (15 in.) f o r  a 100-W(e) open- 
cycle industr ia l  gas turbine (Table 3). me pads a re  
supported on pivots offset  from the pad center i n  the 
direction of rotation t o  enhance the self-actuation 
of the pa& (see Fig. 19). Man accegs cavities a re  
provided i n  the PCBV for  inspection of end l h l t e d  
maintennee work on the journal bearings. The spaces 
i n  which the barfage. are locolted a r e  isolated from 
the main cycle working f luid by shieldiag Ip-e gas 
from the helium purification syetesr is used t o  give 
an acceptable radiological environment fo r  man 
accesa) . 

Integrating the turbomachine i n  the PCRV 
creates some unique requiremenCs fur  the thrust 
bearing. The high pressure level a t  whtch the  plant 
operates produces very high individual forces in 
various parts of t h e  turbomachine rotor assembly, 
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F o r t u n a t e l y ,  most of t h e s e  f o r c e s  t e n d  t o  ba lance  
each o t h e r ,  b u t  s m a l l  d i f f e r e n c e s  i n  a r e a s  exposed t o  

t h e  v a r i o u s  p r e s s u r e s  can produce l a r g e  changes i n  
a x i a l  f o r c e .  Following d e t a l l e d  a n a l y s e s ,  and t o  
provide an adequa te  margin of s a f e t y ,  t h e  des ign  l o a d  
f o r  t h e  400-MW(e) machine was taken t o  be 90.745 kg 
(100 t o n s ) .  To meet t h i s  load ing  requ i rement ,  a  
double-act ing t i l t i n g  pad b e a r i n g  w i t h  a  t h r u s t  col-  
l a r  d iamete r  of 762 mm (30 i n . )  and e i g h t  pads p e r  

s i d e  was designed.  The d r i v e  t o  t h e  g e n e r a t o r  i s  
from t h e  compressor end of t h e  turbomachine, and t h i s  
permits  t h e  t h r u s t  b e a r i n g  t o  be l o c a t e d  e x t e r n a l  t o  
t h e  PCRV. The reason  f o r  e x t e r n a l  p o s i t i o n i n g  of 
t h i s  b e a r i n g  is twofold:  (1) i n s p e c t i o n  and mainte- 
nance a r e  eased ,  and (2)  i t  keeps t o  a  minimum t h e  
number of o i l  l u b r i c a t i o n  systems i n s i d e  t h e  r e a c t o r  
v e s s e l .  Wi-th an o u t e r  diameter  of 762 m (30 i n . )  
and a r o t a t i o n a l  speed of  3600 rpm, t h e  t h r u s t  bear -  

i n g  is s l i g h t l y  beyond c u r r e n t  t h r u s t  hearing exper- 
i ence .  However, i t  is t h e  op in ion  of b e a r i n g  manu- 
f a c t u r e r s  who have been consu l ted  t h a t  t h e  des ign  is  
a t t a i n a b l e  wi th  l i t t l e  more i n  t h e  way of development 

than a  demonstrat ion t e s t .  

Bearing Compartment S e a l s  
With t h e  j o u r n a l  b e a r i n g s  enclosed w i t h i n  t h e  

pr imary coo lan t  system of t h e  r e a c t o r ,  an important  
a s p e c t  of t h e  turbomachine des ign  is t h e  p reven t ion  

o r  minimizat ion of t h e  i n g r e s s  of l u b r i c a n t s  i n t o  t h e  
primary system. I n g r e s s  of o i l  i n t o  t h e  primary sys -  
tem is t o  be avoided o r  minimized, s i n c e  i t  can r e a c t  

i n  a  d e l e t e r i o u s  manner wi th  t h e  r e a c t o r  core o r  be  

d e p o s i t e d  i n  t h e  the rmal  i n s u l a t i o n  o r  on t h e  h e a t  , 

exchanger s u r f a c e s .  A requirement  was e s t a b l i s h e d  
t h a t  t h e  b e a r i n g  compartment l eakage  shou ld  no t  ex- 
ceed 0 .028  m3 ( 1  f t 3 )  p e r  y e a r .  Primary coo lan t  must 
a l s o  be exc luded  from t h e  b e a r i n g  compartment s i n c e  
i t  c a r r i e s  q u a n t i t i e s  of r a d i o a c t i v e  m a t e r i a l  which 

would contaminate  t h e  l u b r i c a t i o n  system. A d e t a i l e d  
s tudy  ( fo l lowing  an i n i t i a l  i n v e s t i g a t i o n  o u t l i n e d  i n  
Ref.. 3) of t h e  b e a r i n g  compartment . s e a l s  and s e r v i c e  
systems i d e n t i f i e d  a  s e a l i n g  system which appears  t o  
be f e a s i b l e  on t h e  b a s i s  of exper ience  wi th  indus- 
t r i a l  gas  t u r b i n e s .  

The s e l e c t e d  c o n f i g u r a t i o n  c o n s i s t s  of t h r e e  
s e a l s  mounted i n  s e r i e s .  The i n n e r  two a r e  helium- 
b u f f e r e d  l a b y r i n t h  s e a l s  which a r e  backed up by a  
fa ' i lu re -ac tua ted  c o l l a r  s e a l .  D e t a i l s  of t h e  b e a r i n g  
l u b r i c a t i o n  and b u f f e r i n g  system a r e  shown i n  F ig .  
20. The s o u r c e  of b u f f e r i n g  hel ium i s  two p a r a l l e l  
supply t a n k s ,  each wi th  i ts  own i s o l a t i o n  v a l v e .  Two 
hel ium-buffered l a b y r i n t h  s e a l s  a r e  p o s i t i o n e d  i n  

both t h e  compressor and t u r b i n e  j o u r n a l  b e a r i n g  
compartments. A view of a  s i n g l e  element of t h e  s e a l  
is shown s c h e m a t i c a l l y  i n  Fig.  21. The s e a l  shown i s  
a  m u l t i s t a g e  l a b y r i n t h  type  with t h e  s t a g e s  i n  r a d i a l  
s t e p s .  These s e a l s  a r e  s i m l l a r  t o  t h e  Ljungstrom 
s e a l s  used s u c c e s s f u l l y  by t h e  Swedish t u r b i n e  indus- 
t r y  f o r  many years .  I n  normal o p e r a t i o n ,  p u r i f i e d  
hel ium is pumped i n t o  t h e  i n l e t  c a v i t y  of each s e a l  
and f lows i n  two d i r e c t i o n s  through t h e  s e a l  assembly. 
Approximately 95% of t h e  b u f f e r i n g  hel ium flows 
through t h e  l a r g e  number of knife-edge s e a l s  and 
l e a k s  i n t o  t h e  primary coo lan t  flow s o  a s  t o  prevent  
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Fig.  20. Bearing l u b r i c a t i o n  and b u f f e r i n g  system f o r  helium turbomachine 
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Fig. 21. D e t a i l s  of l a b y r i n t h  s e a l  i n  b e a r i n g  
compartment of hel ium turbomachine 

backflow of contaminated primary hel ium i n t o  t h e  
bear ing  cas ing .  The b e a r i n g  compartment i s  s e a l e d  
o f f  and permi t s  no through f low,  except  f o r  a  s m a l l  
amount of o i l  and hel ium mixture which flows back t o  
t h e  s e p a r a t i o n  system. 

I n s i d e  t h e  aforementioned twin b u f f e r  s e a l s ,  a 
c o l l a r  c e a l  has  been incorpu 'ated.  Th is  is b a s i c a l l y  
a  c o l l a r  around t h e  s h a f t  a t  a , c l e a r a n c e  s l i g h t l y  
g r e a t e r .  than t h a t  of t h e  l a b y r i n t h  s e a l s .  The pur- 
pose of t h i s  s e a l  is  t o  p reven t  o i l  l eakage  i n t o  t h e  
main hel ium s t ream i n  t h e  even t  of d e s t r u c t i v e  f a i l -  
u re  of t h e  l a b y r i n t h  s e a l s  due t o  b e a r i n g  o r  s h a f t  
f a i l u r e .  I n  a d d i t i o n ,  t l ~ r  system i n c l u d e s  an o i l  
r e t u r n  pump. I t  1,s designed s o  t h a t  dur ing  c a t a s -  
t r o p h i c  f a i l u r e ,  t h e  high-flow supply pump can be 

s h u t  d & n  whi le  t h e  r e t u r n  pump scavenges t h e  b e a r i n g  
.compartment, t h u s  l e a v i n g  a  s m a l l e r  q u a n t i t y  a v a i l -  
able f o r  p o s s i b l r  i n g r e s s  i n t o  t h e  primary system. A 
f a i l u r e  mode and e f f e c t  a n a l y s i s  was performed on t h e  
j s u r l ~ a l  bear-lng l u b r i c a t i o n  and b u f f e r i n g  system, . 

and i t  revea led  no s i g n i f i c a n t  concerns.  

Turbomachine Cevlty S e a l s  
With t h e  i n s t a l l a t i o n  of t h e  turbomachine i n t o  

t h e  h o r i z o n t a l  c a v i t y  i u  c l ~ e  PCRV, t h e r e  a r e  two 
p o s s i b i l i t i e s  ' for  machine-to-primary-system i n t e r f a c e :  
(1) f l anged  connect ions and (2)  compartmental izat ion 

' -o f  t h e  c a v i t y  by means of c i r c u m f e r e n t i a l  s e a l s .  
Flanged j o i n t s  r e q u i r e  very c l o s e  t o l e r a n c e  c o n t r o l  
between t h e  turbomachine. and t h e  v e s s e l  (both of 
which a r e  s u b j e c t  t o  d e f l e c t i o n  due t o  thermal  and 
c reep  e f f e c t s  over  t h e  l i f e  of t h e  p l a n t )  and remote 
mochnnicmo f o r  coup l ing  auld u~lcoupl lng .  Early p r i -  

mary system stkldi e s  i n d i c a t e d  a  preference' f o r  t h e  
s e a l  concept ( a s  shown schemat ica l ly  i n  F i g s .  12 and 
13) based nrl t h e  fo l lowing :  (1) advantage was taken 
of t h e  c a v i t y  compartmentation i n  t h a t  t h c  c a v i t y  
i t s e l f  was u t i l i z e d  a s  t h e  flow boundary, which 
e f f e c t i v e l y  reduced t h e  turbomachine i n l e t  and e x i t  
l o s s e s  b y . v f r t u e  of t h e  inc reased  a r e a  a s s o c i a t e d  
with t h e  " i n t e g r a l "  plenum; (2 )  t o l e r a n c e  ' f l e x i b i l i t y .  
and mntinn romplianco bctvccn t h c  PCRV ailil L I I G  Lur- 
bomachine; and (3 )  eased maintenance procedure ( i . e . .  

. . 
. . i  ' 

e l i m i n a t i o n  of remote r e t r a c t i b n  'and beck-up sys tems) .  

I t  was recognized  i n  e a r l y  i n v e s t i g a t i o n s  t h a t  
t h e ' d e s i g n  of - l a r g e  c i r c u m f e r e n t i a l  s e a l s  wi th  mini- 
mum leakage  c h a r a c t e r i s t i c s  r e p r e s e n t e d  a  formidable 

t a s k .  The p resen t  concep tua l  des ign  i n c l u d e s  u t i l i -  
z a t i o n  of segmented p i s t o n  r i n g  s e a l s  f o r  i s o l a t i o n  

of t h e  va r ious  flow plenums. Although t h e  p e r f o m  
ance  of t h i s  type  of s e a l  is w e l l  known and docu- 
mented, and can be  used a s  a  s t a n d a r d  wi th  which 
o t h e r  types  may be compared, concern e x i s t s  over  use 
of p i s t o n  r i n g s  of  very l a r g e  s i z e .  Current  i n v e s t i -  
g a t i o n s  a r e  aimed a t  t h e  p o s s i b i l i t y  of us ing  a  . leaf  
type  s e a l  which can be a t t a c h e d  t o  t h e  b a s i c  suppor t  

s t r u c t u r e  and s e a l s  a g a i n s t  t h e  machined o u t e r  diam- 
e t e r  of t h e  eng ine  c a s e .  More confidence e x i s t s  i n  

e s t a b l i s h i n g  t h e  roundness of t h i s  c a s e  than  one 
incorpora ted  i n t o  t h e  suppor t  s t r u c t u r e .  

As shown i n  a  s imple  form i n  F ig .  22, t h e  s e a l  
arrangement c o n s i s t s  of  over lapp ing  l e a v e s  i n  two 
l a y e r s  f i x e d  a t  one end t o  t h e  suppor t  s t r u c t u r e ,  
wi th  t h e  f l e x i b l e  l e a v e s  s e a t e d  a g a i n s t  t h e  c a s e  
r i n g .  The system u t i l i z e s  t h e  p r e s s u r e  d i f f e r e n t i a l  
a c r o s s  i t  t o  c r e a t e  a d d i t i o n a l  s e a l i n g  f o r c e  a t  t h e  
i n t e r f a c e ,  thus  m i n i m i z i n ~  leakage .  . 

LA 
VIEW C-C 

BASE STRUCTURE 

Fig. 22. ~ e t a i l s  of turbomachine-to-cavity circum- 
f e r e n t i a l  c a s e  s e a l  des ign  c o n c e p t ,  

M a t e r i a l s  S e l e c t i o n  f o r  Helium Turbomachine Design 
A t  t h e  onse t  of HTGR-GT p l a n t  s t u d i e s  a  phi-  

losophy was es tab l i shed . .based  on conservat ism of 
design and s a f e t y ,  t h a t  t h e  power rnnvers ion  system 
components would be designed f o r  t h e  f u l l  o p e r a t i n g  



l i f e  of  t h e  p l a n t  of 280,000 h r  (40 y r  a t  80% ca- 

p a c i t y  f a c t o r ) .  I t  was recognized t h a t  i n  t h e  c a s e  
of t h e  turbomachine, t h e  t u r b i n e  b l a d i n g ,  f o r  exam-. 

p l e ,  could be rep laced  i n  t h e  40-yr t ime.  Never- 
t h e l e s s , . t h e  aforementioned c r i t e r i o n  was adop ted ,  
and t h e  s t r e s s  l e v e l s  i n  t h e  turbomachine a r e  com- 
mensurate  wi th  t h e  280,000-hr o p e r a t i n g  l i f e .  Thus, 
w h i l e  t h e  t u r b i n e  i n l e t  temperature is modest com- 
pared wi th  c u r r e n t  i n d u s t r i a l  gas  t u r b i n e  p r a c t i c e .  
t h e  long l i f e  requirement  n e c e s s i t a t e s  u t i l i z a t i o n  
of high-grade a l l o y s .  

While t h e  HTGR-GT p l a n t  is a long-term p r o j e c t  
(from concept s e l e c t i o n  t o  commerc ia l i za t ion) ,  c l ~ e  
aforementioned conservat ism was extended t o  m a t e r i a l  

s e l e c t i o n ,  and i t  was f e l t  prudent  t o  base  t h e  des ign  
on e x i s t i n g  m a t e r i a l s  ( i . e . ,  no r e l i a n c e  is made f o r  

m a t e r i a l s  breakthroughs i n  t h e  d e s i g n ) .  From Table  4 
i t  can be seen  t h a t  f o r  t h e  v a r i o u s  elements  of t h e  
turbomachine, e x i c t i n g  m n t e r i n l s  have been s e l e c t e d .  
I t  is  recognized t h a t  a s  b e t t e r  m a t e r i a l s  are 
developed and q u a l i f i e d  f o r  u t i l i t y  s e r v i c e ,  they  
w i l l  be  f a c t o r e d  i n t o  t h e  program i n  a  prudent  
manner. 

TABLE 4 
MATERIALS SELECTED FOR HTGR-CT PLANT TURBOWCHINE 

The long-term behav ior  of m a t e r i a l s  under a  
r e p r e s e n t a t i v e  r e a c t o r  environment is  be ing  charac-  
t e r i z e d ,  and t h e  environmental  e f f e c t s  on m a t e r i a l  
p r o p e r t i e s  a r e  be ing  q u a n t i t i v e l y  e s t a b l i s h e d .  The 
General Atomic m a t e r i a l s  s c r e e n i n g  program r e p r e s e n t s  
on ly  p a r t  of an o v e r a l l  e f f o r t  be ing  c a r r i e d  o u t  by 
s e v e r a l  c o u n t r i e s  t o  e s t a b l i s h  m a t e r i a l s  d a t a  f o r  
advanced &as-cooled r e a c t o r  systems.  To d a t e ,  over  
25,000 h r  have been accumulated i n  c r e e p  and cor- 
r o s i o n  t e s t s  a t  e l e v a t e d  temperature i n  a  repre -  
s e n t a t i v e  hel ium environment of t h e  HTGR-GT primary 
c i r c u i t .  P a r t i c u l a r l y  encouraging a r e  t h e  r e s u l t s  
f o r  t h e  b a s e l i n e  cand ida te  n icke l -base  t u r b i n e  b ladd /  
vane a l l o y  (IN-loo) ,  which shows no apparen t  degrada- 
Llurl i n  p r o p e r t i e s .  ' 

Component 

b m p r e s s o r  
Disks  

;;:;."I 
Vanes 
Cases 
bhnnrs 

h C t S  
Containment Ring 

Turbine 
Disks  . 
Hubs 

Blades  
Vanes 
Blade Tip S e a l s  
High-Temperature Ducts) 
Cases 

Mounts 
DUCLY 
Conrainment Ring 

~ n s u l a c i o n  

Fabr ica t ion-Re la ted  Design  ons side ration's 
I n  view of the prev ious ly  mentioned phi losophy 

EIaterial 

Ladish D6AC L o w  A l l o y  S t e e l  
9 Ni - 4 Co - 0 . 2  C S t e e l  

AM 6414 (AISI4340) L a w  A l l o y  S t e e l  

ASTM A-515 Cr 55 Carbon S t e e l  
ASTM A-387 Gr 1 2  
ASRI A-217 WC6 1 Law 

AMS 5613 (AISI 4 1 0 )  S t a i n l e s s  S t e e l  

Ladish D6AC L a w  A l l o y  S t e e l  
9 Ni - 4 b - 0 . 2  C S t e e l  
PWA 658 (IN-100) Ni-Base A l l o y  
PWA 1447 (MAR-K-247) Ni-Base A l l o y  

AM 5783 (HastellOy S, Coated 

' ASM A-515 Gr 55 Carbon S t e e l  

::: ::ti12] . l a w  a l o y  S C ~ D ~ E  

AM 5613 (AISI 410)  S t a i n l e s s  S t e e l  

PWA 385 (Knowool) 

of conservat ism i n  d e s i g n ,  u t i l i z a t i o n  of '  e x i s t i n g  
m a t e r i a l s ,  and e s t a b l i s h e d  technology,  i t  was ,an ob- 
v ious  g o a l  t o  e s t a b l i s h  a  turbomachine design t h a t  
d id  n o t  r e q u i r e  advancements i n  t h e  s t a te -o f - the -a r t  
wi th  regard  t o  f a b r i c a t i o n  technology (e .g . ,  d i s k  
d iamete r  e x c e r d l i ~ y  c u i ~ r ~ r L  I u r y l u y  l l m l t s  a n d , c a s i n g s  
l a r g e r  than  have been c a s t  t o  d a t e ) .  

For a  s i n g l e - s h a f t  hel ium turbomachine (wi th  a  
r o t a t i o n a l  speed of 3600 rpm) i n  t h e  power range  of 

400 t o  600 MW(e), t h e  r o t a t i n g  s e c t i o n  is compact 
( c h a r a c t e r i z e d  by s m a l l  b l a d e  h e i g h t s )  and,  a s  ou t -  
l i n e d  i n  Table 3 , i s  substant ta l lysmal ler thananequiv-  

a l e n t  a i r - b r e a t h i n g  machine because of  t h e  high degree 
of p r e s s u r i z a t i o n  of t h e  hel ium working f l u i d  ( p a r t i c -  
u l a r l y  a t  t h e  t u r b i n e  e x i t ) .  The e x t e r n a l  dimensions 
of t h e  hel ium turbomachines d i s c u s s e d  i n  t h i s  paper  

a r e ,  i n  f a c t ,  q u i t e  s i m i l a r  ( a s  can be  seen  i n  Fig.  
23) t o  t h o s e  of an e x i s t i n g  a i r - b r e a t h i n g ,  advanced. 

open-cycle i n d u s t r i a l  gas  t u r b i n e  i n  t h e  100-MW(e) 
range.  The f a c t  t h a t  t h e  hel ium t u r b i n e  ( p a r t i c u l a r l y  
t h e  r o t o r  assembly and cas ings )  is comparable i n  s i z e  
t o  e x i s t i n g  machines s u b s t a n t i a t e s  t h e  claim t h a t  con- 
v e n t i o n a l  f a b r i c a t i o n  methods and f a c i l i t i e s  can be 
used. An a p p r e c i a t i o n  f o r  t h e  o v e r a l l  assembly s i z e  
of t h e  FT-50 100 MW(e) open-cycle i n d u s t r i a l  gas  t u r -  
b i n e  can be ga ined  from Fig.  24. 

400 MW(e1 
HTGR 

HTG R 

Fig.  23. O v e r a l l  turbomachine envelope comparison 
f o r  open- and c losed-cyc le  gas  t u r b i n e s  

TURBOMACHINE MAINTENANCE CONSIDERATIONS 

For t h e  i n t e g r a t e d  system i t  is important  t h a t  
turbomachine maintenance a s p e c t s  be cons idered  dur ing  
t h e  p l a n t  concep tua l  des ign  phase .  The primary ob- 
j e c t i v e  of t h e  HTGR-GT maintenance p lan  i s  t o  provide 
f a c i l i t i e s ,  equipment, and components of  reasonab le  
c o s t  t h a t  w i l l  y i e l d  good p l a n t  a v a i l a b i l i t y .  I t  is  

' t h e r e f o r e  a  m a t t e r . o f  p o l i c y  t o  design t h e  r e a c t o r  
and conversion system i n s t a l l a t i o n ,  a s  w e l l  a s  t h e  
r e l a t e d  maintenance f a c i l i t i e s ,  f o r  p r a c t i c a l  opera-.. 

t i o n  f o r  b o t h  planned and unplanned maintenance.  
The turbomachine w i l l  be  s e r v i c e d  i n  scheduled 

i n s p e c t i o n  and maintenance programs t h a t  a r e  in tended  
t:o minimize maintenance c o s t s  while  s t i l l  prov id ing  
assurance  t h a t  t h e  equipment is f u n c t i o n i n g  w i t h i n  
des ign  s t r u c t u r a l  and performance l i m i t s .  Major 
maintenance w i i i  be performed on a  6-yr i n t e r v a l .  
While removal of t h e  turbomachine is cons idered  t o  be 



Big. 24. View of overal l  assembly of FT-50 100-W(e) 
open-cycle industr ia l  gas turbine 

a scheduled maintenance operation, current maintenance 
philosophy fo r  a mature commercial plant is tha t  the  
turbomachine w i l l  be removed only i f  the condition 
monitoring system indicates a problem. The reliance 
on diagnostics t o  indicate operating problems, to- , 

gether with turbomachine maintenance philosophy, is  
summarized i n  Table 5. 

Reliance on Diagnostics TO Indicate Operating P r o b l a  
Tsmpasatrtres 

- Pressures - Vibration Wnitors 

I 
on-line 

- Vi'isual (Fiber Optics) Coaputer 
- ntrect Contact and Gas-Coupled Emission System for 

T r d u c e r s  Condition 
- Claatrmces and Eccentricities Ifonitorins - Magnetic Metal Chip Detectors i n  

Lubricanon Svstem 
- oii<pic.nometric ~ n a l y s i s  - Primary Syrtem Chemisfm 1 
Turbomachine inscallation and removal procedures are ~Labl i shod .  

Cunnmt design requires w access into ehe purged areas for 
coonectiotl/disconnecUo~ of drive coupling, service system line 
flanges. 

Fur a mature comwrcial plant, the turbo~ch ine  m i l l  be replacad 
only i f  the diagnostic system indicates problems. 

Stress l eve l s  i n  the turhomsehine are comensurate with the f u l l  
280,OObhr p u t  oplrrsrltra llfa { L o . ,  m 1 ife-ltwtfed subcoqonmts). 
Journal bearing areas are aacessible for inspection and urlatallle(l 

(bearing pad replacemwnt, etc . ) .  
In s i t u  balancing of rotor is considered possible by OX. 
Alignment of the turboaschine-generator is not conEldered a problem. 
For m y  msintenance operations, experience from Industrial gas 

turbines i a  directly applicable. 

It is recognized tha i  the turbomachine internal 
surfaces w i l l  become radioactively contaminated by 
deposition of helium-borne condensable f iss ion prod- 
ucts. Thus, a prncadwe must be established f o r  
remote removal of a f a i l ed  machine and t e p l a c a r ~ t  
wtth a spare unit .  For a multilaop plant,  downtime 
w i l l  be held t o  a mlnhum by performing turbmachine 

.change-out during a scheduled fefueliilg perlurl. Fal- 
loving a preliminary maintenance study ( 2 0 ) ,  an in- 
depth investigation has been carried out by General 
Atomic Company and United TeChnolugies Corporatian t o  
es tabl ish a procedure (and the  necessary equipment) 
fo r  remote handling maintenance. It has been deter- 
mined tha t  essent ia l ly  a l l  disassembly and decontami- 
nation can be handled remotely, and since t h i s  w i l l  
he a tppic of a forthcoming paper, it is  merely sum- 
marized below. 

The turbomachine is being designed t o  permit 
easy disassembly and rebuilding. A procedure has 
been established fo r  remote disassembly of the  ma* 
chine, and the  v i e w  shown i n  Fig. 25 represents an 
i n i t i a l  operation i n  an on-site maintenance fac i l i ty .  
Par ts  of the  turbine and compressor s t a t o r  cases'are 
of s p l i t  design, and t h i s  together with other  design 
features permits the  capreasor  and turbine rotor  
assemblies t o  be s p l i t  in to  modules a s  i l lus t ra ted  i n  
Fig. 16. Decontamination of each rotor  can be car- 
r ied out separately, since it  is expected tha t  f i s -  
sion product plate-out w i l l  be more severe on the  
turbine rotor  than on the  compressor components. 
Following decontamination of the  major subassemblies, 
the  separate rotor  sections and s p l i t  s t a t u r  cases 
can be disassembled in to  par ts  without the need f o r  
remote manipulators. A goal for  the  rebuilding of a 
w d  turbomachine, with replacement of subcomponents 
as,necessary (perhaps turbine blades i n  the  f i r s t  
stages),  would be t o  perform t h i s  operation i n  a 
straightforward 'hands-on" manner. 

Big. 25. Diagram showing an initial operation i n  the 
remote disassembly of a contimisated hdium 
turbomachine 

For the  direct-cycle BTGB-GT plant ,  the  issue 
uf i n  somice I n n ~ . c t i o u  CIS11 has added importance, 
s ince all the  power conversion system capmenra  aie 
ins ta l l ed  ins ide the  FCRV and a re  thus not accessible 
f o r  di rect  visual  inspection. In-service inspection 
requirements a re  continually becoming more demanding 
t o  sa t i s fy  various code requirements, regulatory 
guides, and licensing commitments and Lo meet u t i l i t y  
owners' needs. Z t  Is therefore prudent t o  consider 
IS1 requirements during the  plant conceptual design 
and t o  pursue a policy of providing k p e c t a b l e  
d ~ s i g n s  where required. While in a very early stage 
of Qvelopment, an on-going stugg has bree aimed a t  
identifying t h e  type of inspection envisioned f o r  
key alemmts In the  major components, Provisions are  
incorporated i n  the  turbomachlae deslgu t o  permit 
borescope inspehtion of highly stressed are= while 
the  turhomachine remains ins ta l l ed  i n  the  PCXV cavity. 
A smmary of the  IS1 d n a t i o n  and eestlng possi- 
b i l i t i e s  f o r  the  turbomachine is given i n  Table 6. 
It should be emphasized that  these poss ib i l i t i e s  
a re  tentat ive  and w i l l  require special  a t tent ion i n  
developing a program of IS1 and t e s t ing  as  the turbo- 
machine and plant &signs mature. 



TABLE 6 
HTGR-CT TURBOMCHINE I S 1  POSSIBILITIES 

TURBOMACHINE DEVELOPMENT 

Region o r  
Subcomponent 

Bear ings  

B lad ing  

Rotor  
Disks  
S h a f t  . 
Coupl ings  
Coupling b o l t s .  
S t r u c t u r e s  and 

s u p p o r t s  

S e a l s  
Welds 

S e r v i c e  sys tem 
p i p i n g  and we lds  

I n s t r u m e n t a t i o n  and 
s e n s o r s  

Mechanical  c l o s u r e s  

(Primary b o u n d a r i e s )  

While no advancement of turbomachinery s t a t e -  
o f - the -a r t  is  needed, s e v e r a l  y e a r s  of in-depth des ign  
work, i n  con junc t ion  w i t h  a comprehensive development 
e f f o r t ,  is necessa ry  t o  r e a l i z e  t h e  g o a l  of p rogress - .  
i n g  from t h e  p r e s e n t  concep tua l  des ign  s t a g e  t o  p l a n t  
commercial izat ion i n  about  15 y r .  I n  t h i s  paper  t h e  
formidable technology bases  f o r  t h e  design of t h e  
helium turbomachine have been emphasized. Another 
po in t  t h a t  should be  made is  t h e  conserva t ive  n a t u r e  
of  t h e  turbomachine by v i r t u e  of t h e  fo l lowing :  

Low t u r b i n e  i n l e t  t empera tu re .  
Low r o t o r  speed.  . 
Known m a t e r i a l s .  
Low s t r e s s  l e v e l s .  
Ilni form t empera tu res .  
Non-corrosive working f l u i d .  
Modest load-fol lowing o p e r a t i o n  cyc le .  
A l l  known technolop,ies. 
I n d u s t r i a l  design p r a c t i c e .  

. The deveibpment of t h e  turbomachine w i l l  essen-  
t i a l l y  c o n s i s t  of e x t e n s i v e  component t e s t i n g  and 
i n s t a l l a t i o n  checkout i n  t h e  PCRV. The fo l lowing  
component t e s t i n g  is planned: 

Bearing and s e a l  t e s t s .  
Lubr ica t ing  system t e s t s .  
Flow d i s t r i b u t i o n  t e s t s .  
Compressor r i g  t e s t s  - 112 s c a l e .  
Tucblne r i g  t e s t s  - 112 s c a l e .  
Disk and r o t o r  b u r s t  t e s t s  - blade  l o s s  t e s t s .  
Shaf t  s e a l  t e s t s .  

M a t e r i a l s  c o m p a t i b i l i t y  t e s t s .  
F u l l - s c a l e  s p i n  t e s t .  

The i n s t a l l a t i o n  checkout ( a t  z e r o  power) i n  t h e  
PCRV w i l l  c o n s i s t  of  t h e  f o l l o y i n g :  

m P r e s s u r i z a t i o n  checks.  
Turbomachine s p i n  and ba lance  t e s t .  

Motoring checkout .  

System s i m u l a t o r  t e s t .  
L u b r i c a t i o n l b u f f e r i n g  system checks.  
Ins t rumenta t  ion 

The r i s e  t o  f u l l  temperature o p e r a t i o n  w i l l  be 

done over  a pe r iod  of a few months wi th  n u c l e a r  h e a t  
i n p u t .  I f  problems a r e  encountered wi th  t h e  turbo-  
machine dur ing  t h i s  pe r iod ,  i t  is p r o j e c t e d  t h a t  they 
can be remedied i n  a s t r a i g h t f o w a r d  and t imely  manner 
s i n c e  t h e  contaminat ion l e v e l  w i l l  be very low, a s  
evidenced by exper ience  a t  t h e  For t  S t .  Vrain HTGR 
p l a n t  where maintenance work was performed on t h e  
hel ium c i r c u l a t o r s  wichouc d i f f i c u l t y .  

Type o f  
Examinat ion 

V i s u a l  

D i r e c t  c o n t a c t  

V i s u a l  

V i s u a l  
S u r f a c e  and v o l u m e t r i c  
D i r e c t  c o n t a c t  

V e r i f i c a t i o n  o f  
c o n t i n u i n g  i n t e g r i t y  

Volumet r i c  o f  p r imary  
b o u n d a r i e s  

S u r f a c e  o r  v o l u m e t r i c  

No s p e c i f i c  I S 1  
Volumet r i c  f o r  s t u d  

b o l t s  > 50.8 mm 

(> 2 i n . )  
V i s u a l  f o r  s t u d  b o l t s  

C 50.8mm ( 5  2 i n . )  

SUMMARY 

Since  closed-cycle  gas t u r b i n e s  a r e  n o t  w e l l  
k n m  i n  t h e  U.S.A., a predominant theme i n  t h i s  paper 
has  been t o  emphasize t h a t  hel ium turbomachines of 
l a r g e  power r a t i n g  [400 t o  600 ~ ( e )  1 b e a r  a c l o s e  
resemblance t o  e x i s t i n g  l a r g e  open-cycle i n d u s t r i a l  
gas  t u r b i n e s .  The aerodynamic procedures used f o r  a 
hel ium turbomachine a r e  e s s e n t i a l l y  i d e n t i c a l  t o  con- 
v e n t i o n a l  a i r - b r e a t h i n g  gas  t u r b i n e  p r a c t i c e .  The 
h igh  degree o f  p r e s s u r i z a t i o n  i n  t h e  closed-cycle  sys- 
tem r e s u l t s  i n  a compact arrangement ,  and i t  has been 
shown t h a t  hel ium turbomachines i n  t h e  400- t o  600- 

W ( e )  range  a r e  s i m i l a r  i n  o v e r a l l  s i z e  t o  e x i s t i n g  
i n d u s t r i a l  gas  t u r b i n e s  i n  t h e  100-W(e) c l a s s .  I n  
a d d i t i o n  t o  e x i s t i n g  mechanical des ign  methodology 
be ing  a p p l i c a b l e ,  an important  a s p e c t  of t h c  above 
s i z e  comparison is t h a t  conven t iona l  f a b r i c a t i o n  
methods and f a c i l i t i e s  can be used f o r  t h e  hel ium 
turbomachine. 

Emphasis has been placed on t h e  formidable 
technology bases  from which t h e  des ign  and development 
of t h e  hel ium turbomachine can b e n e f i t .  While t h i s  
paper  h a s  been predominantly des ign- re la ted ,  i t  was 
f e l t  p e r t i n e n t  t o  comment on e x i s t i n g  hardware and t o  
po in t  ou t  t h a t  l a r g e  m u l t i s t a g e ,  ax ia l - f low hel ium 

Method 

From man a c c e s s  a r e a s  
Borescopes 

F i b e r  o p t i c s  
A c o u s t i c  e m i s s i o n  t r a n s -  

d u c e r s  
O i l  a n a l y s i s  

Remote 

D i r e c t ,  manual 
Gas coup led  a c o u s t i c  
Emission t r a n s d u c e r s  

V i s u a l  i n - p l a c e  o r  d e s i g n  
redundancy w i t h  
m o n i t o r i n g  

No ~ p e c i f i c  I S 1  requ i rement s ,  
Remote u l t r a s o n i c  

Manual 

r equ i rement s ;  however, s h o u l d  be 
Remote u l t r a s o n i c  

Remote 

Design Impact  

Access s p a c e  env i ron-  
ment 

S h i e l d i n g  

Viewing d e v i c e  

a c c e s s i b i l i t y  

Removab i l i ty  o f  tu rbo-  
machine u n i t  f o r  
shop  examina t ion  

A c c e s s i b i l i t y  f o r  view- 
i n g  i n  . p l a c e  o r  i n s t r u -  
mented t o  d e t e c t  change 
v i s u a l  exam d e s i r a b l e  

A c c e s s i b i l i t y  t o  l o c a t e  
t r a n s d u c e r  o v e r  we lds  

Access  t o  w e l d s  

c a p a b l e  o f  d e t e c t i n g  change 

A c c e s s i b i l i t y  t o  l o c a t e  
t r a n s d u c e r .  o v e r  s t u d  

Stud r e m o v a b i l i t y  

Remarks 

Uevelopment o f  s p e c i a l i z e d  
I S 1  methods n e c e s s a r y  

Exper i ence  from i n d u s t r i a l  

g a s  t u r b i n e  a p p l i c a b l e  

Proposed in -p lace  exam by 

borescope  f o r  g r o s s  
de fo rmat ion  

E x i s t i n g  equipment and 
t e c h n i q u e s  g e n e r a l l y  
a p p l i c a b l e  

E x i s t i n g  equipment  

Adap ta t ion  o f  e x i s t i n g  
equipment  

Adap ta t ion  o f  e x i s t i n g  
equipment  

i n  u n i t  performance.  
Adap ta t ion  o f  e x i s t i n g  

equipment  from l i g h t  
w a t e r  r e a c t o r s  



turbomachines have opera ted  s u c c e s s f u l l y  i n  Europe. 

Between now and t h e  y e a r  2000, when i t  is pro- 
j e c t e d  t h a t  t h e  HTGR-GT p l a n t  could become a commer- 

c i a l  o p t i o n ,  i t  is  p o s t u l a t e d  t h a t  s i g n i f i c a n t  tech-  
nology advancements ( m a t e r i a l s ,  aerodynamic, e t c . )  

could impact on t h e  performance of t h e  p l a n t .  During 
t h e  concep tua l  des ign  of t h e  p l a n t ,  however, i t  was 

f e l t  prudent  t o  use  e x i s t i n g  s ta te -o f - the -a r t  tech- .  
nology,  and i n  t h e  c a s e  of t h e  turbomachine, t h e  con- 
s e r v a t i v e  n a t u r e  of  t h e  des ign  (and performance 
e s t i m a t e s )  r e f l e c t s  t h e  i n f l u e n c e  of  technology from 
demonstrated i n d u s t r i a l  gas t u r b i n e s .  Advancements 
i n  m a t e r i a l s  and des ign  methodology and improved com- 
ponent e f f i c i e n c i e s  w i l l  be f a c t o r e d  i n t o  t h e  p l a n t  
a s  t h e  d e s i g n  matures .  

For t h e  HTGR-GT p l a n t  an e x t e n s i v e  program of 
d e s i g n ,  development, and t e s t i n g  is necessary t o  
a c h i e v e  t h e  performance and s t r u c t u r a l  i n t e g r i t y  t o  
q u a l i f y  t h e  equipment f o r  n u c l e a r  power genera t ion .  
This  paper  h ~ s  emphasized s a l i e n t  f a c t o r s  r e l a t e d  t o  
t h e  hel ium turbomachine, s i n c e  i t  r e p r e s e n t s  t h e  
s i n g l e  most important  component i n  t h e  p l a n t .  C r i t i -  
c a l  e lements  of the ' tu rbomachine ,  such  a s  t h e  b e a r i n g s  
and s e a l s ,  have been i d e n t i f i e d ,  and i n  t h e s e  a r e a s  
development work is necessa ry .  The fo rmula t ion  of  

t6st plans  and t h e  des ign  of s p e c i a l i z e d  r i g s ,  from 
which d a t a  w i l l  be needed f o r  t h e  f i n a l  machine den 
s i g n ,  a r e  i n  p r o g r e s s .  

I n  summary, i t  is  p r o j e c t e d  t h a t  r igorous  devel-  
opment a t t e n t i o n  must be given t o  a r e a s  t h a t  impact 

t h e  o p e r a t i o n  of t h e  machine when i n s t a l l e d  i n s i d e  t h e  
r e a c t o r  v e s s e l  ( i . e . ,  b e a r i n g s ,  s e a l s ,  s t r u c t u r a l  
i n t e g r i t y ,  e t c . ) .  However, because of  i b s  o v e r a l l  
s i m p l i c i t y  and modest o p e r a t i n g  temperature,  t h e  
hel ium turbomachine is not  r e g a r d e d ' a s  any more d i f -  
f i c u l t  a development problem than a new high- 
t e m p e r a t u r e . a i r c r a f t  gas  t u r b i n e .  
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