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Abstract. In this work the effect of static stability on the development of atmospheric turbulence is
investigated. This influence is considered quantitatively by generalizing Prandtl's semi-empirical
theory, i.e., by using a correcting factor in the form of a universal function of the Richardson number.
An evaluation of the thickness of the layer of dynamic turbulence under various external conditions
is successfully achieved quantitatively.

List of symbols

A Austausch coefficient = QK
cP specific heat at constant pressure
D dissipation of turbulent energy into heat
E' kinetic energy of turbulent fluctuations
Fs flux of quantity s
g acceleration due to gravity
k von Karman's constant
K coefficient of turbulence (eddy transfer coefficient)
Ks eddy diffusivity
Kr eddy thermal diffusivity
1 mixing length
L = v3/kgu
Pr = CLp/=
q heat flux
Ri = g/T (aO/8z)/(0v/Z)2

Ric, critical Richardson number
s gravimetric concentration of a substance
T absolute temperature; also: transformation of energy from mean flow into

turbulent energy
u = -q/cPeT

U potential energy of the flow
v mean velocity
v' velocity fluctuation
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v, = (zte)1/2 friction velocity
z height coordinate

a = KT/K
a. = K,IK

/ = (oRic,)-1

Ya adiabatic lapse rate
= z/L£
= RilRi,,

0 potential temperature
2 molecular thermal conductivity
it molecular viscosity
r = fi
e density
z surface stress

1. Introduction

The problem of the dependence of the eddy diffusivity in the atmosphere on the
gradient of the wind velocity, the distribution of temperature, and the height above
ground-level is investigated in the present work.

The empirical data cited in meteorological literature concerning the distribution of
the average wind velocity (see Brunt, 1941) show that the temperature distribution
term defining the degree of atmospheric stability is a highly important factor.

Theoretical research on turbulence in an incompressible environment with in-
homogeneous density (Prandtl, Tollmien, Taylor and others; see Goldstein, 1938)
always leads to a definite dimensionless criterion characterizing the influence of
environmental heterogeneity on turbulence:

a In Q/az
g (av/az) 2 (1)

where g is the acceleration of gravity, e is the density of the fluid, av/az is the mean
velocity gradient.

Richardson (1920) showed that an analogous criterion for the terrestrial atmo-
sphere - the compressible environment - has the following appearance:

g aOlaz
Ri = g ao/az (la)

T (Ov/az) 2

where 0 is the potential temperature and T is the mean absolute temperature. The
Richardson number Ri determines the qualitative character of turbulence in the
atmospheric boundary layer. Three cases ought to be discussed here:

(1) Richardson number, positive: Ri>O. The stratification is stable, hindering the
development of turbulence. Turbulence is completely suppressed when Ri is larger
than some critical value (Ri),,. The value of this critical number is estimated by various
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authors on the basis of theoretical considerations. However, reliable values for (Ri),,
can be anticipated only from appropriate treatment of the experimental data.

(2) Richardson number, negative: Ri <0. The potential temperature decreases with
height, i.e., the gradients are superadiabatic and the stratification is unstable. The
energy of the turbulence is increased at the expense of the energy of instability.

(3) The limiting neutral case: Ri=O. The distribution of temperature with height is
adiabatic. The stratification is neutral and does not influence the development of
vertical movement (turbulence). The turbulent processes in such an atmosphere
basically occur exactly as in an incompressible environment with a constant density.
This case is considered in greater detail in the so-called 'semi-empirical' theory of
turbulence.

In the present work an attempt is made to generalize the basic equations of the
semi-empirical theory of turbulence to the case of a diabatic atmosphere, by introducing
a correction factor which depends on the Richardson number.

With the aid of the resulting equations, the problem concerning the distribution of
wind and temperature in the surface layer is examined. It turns out that for the stable
case the eddy diffusivity increases linearly with height near the Earth's surface and
approaches asymptotically a constant at a height of several dozen meters. The order
of magnitude for the maximum value of the eddy diffusivity also agrees with reality.

2. The Semi-Empirical Theory of the Neutral Atmospheric Surface Layer

Turbulent processes in a uniform liquid may be described by Prandtl's equation with
an accuracy completely satisfactory for practical applications:

= v12
(6)2 (2)

composing the basis of the semi-empirical theory of turbulence (cf. Velikanov, 1936).*
Here is the turbulent shear stress, is the 'mixing length' according to Prandtl **

and v/az is the velocity gradient.
Later on we will call 'the turbulent length scale' at a given point of the flow. For

the flow over an infinite flat surface, the length scale is proportional to the distance
to the wall:

I = kz (3)

where k is von Karman's constant which can be taken as approximately equal to 0.4.
Prandtl's equations can be obtained from similarity theory. If it is to be assumed

that the Reynolds stress depends only on the gradient of velocity, the density of the
liquid, and the 'scale of turbulence', i.e., a characteristic length, then dimensional

* This reference is to a collection of Russian translations of papers on turbulence which includes,
in particular, classical papers by Prandtl, von Karman, and Taylor.
** See also: Prandtl, L.: 1929, 'Einfluss Stabilisierender Krafte auf die Turbulenz, in Vortrdge aus
dem Gebiete der Aerodynamik nd verwandter Gebiete.
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analysis shows that only Prandtl's formula can be (with accuracy up to a numerical
constant) the unknown relation.

It is possible to include the numerical coefficient in the value 1. Also Formula (3) is
obtained from a similar consideration of dimensionality, since direct proportionality
is the sole relation between two lengths (1, z) which is not changed by the similarity
transformations (the flow over a surface assumes such transformations).

Following Boussinesq's idea, developed in detail in application to meteorology by
W. Schmidt*, it is possible to characterize turbulence with the aid of some condition-
al coefficients of 'turbulent exchange', namely 'eddy viscosity', and 'eddy thermal
conductivity', introducing them formally by analogy with molecular coefficients of
diffusion, viscosity, and thermal conductivity.

The coefficient of eddy viscosity A (Austausch coefficient) is defined by the equation

dv
= A--- . (4)

dz

Formula (4) does not express any physical fact connected with the nature of turbulence
but in essence represents a definition of some new variable - 'the coefficient of eddy
viscosity' A.

Comparing formula (4) with Prandtl's Equation (2), we obtain the following ex-
pression for the coefficient A:

A = l 2 dz (5)

The analog of the kinematic viscosity, introduced by Taylor**

A
K =- (6)

carries the name 'coefficient of turbulence' and in the classical theory of atmospheric
turbulence (of Schmidt, 1925; Richardson, 1920; and others) is usually identified
with the coefficient of eddy diffusivity (see Brunt, 1941).

Instead of shear stress , it is convenient to introduce the 'friction velocity' v,,
defined by

v* = /tlQ. (7)

Thus, with these symbols Prandtl's equation is written

v2, =1 2 dv\ 2

* dzJ
or

dv
1 -- = v (8)

dz

* Schmidt, W.: 1925, Der Massenaustausch infreier Luft und verwandte Erscheinungen, Henri Grand
Verlag, Hamburg.
** Taylor, G. I.: 1915, 'Eddy Motion in the Atmosphere', Phil. Trans. Roy. Soc. A215, 1-26.
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and the coefficient of turbulence K is determined by the formula

K = vl. (9)

The aforementioned 'coefficient of turbulence' K is introduced in a purely formal
fashion and in contrast to the molecular viscosity it represents a variable and depends
both on the dynamics of the flow - i.e., friction velocity - and also on the geometrical
coordinates. Therefore, it makes no sense to use the 'eddy viscosity coefficient' for
purely dynamic calculations, when it is considerably more convenient to employ
Prandtl's Equation (2) directly.

However, in calculating the turbulent transfer of different substances (moisture,
heat, smoke), the methods of 'classical' theory, created by Schmidt, 1925; Taylor,
1915; Richardson, 1920; and others, based on the concept of the coefficient of eddy
diffusivity (coefficient of exchange) can prove helpful if some new supplementary
hypotheses are to be accepted.

A comprehensive description of the basic ideas of the 'classical' theory of atmo-
spheric turbulence may be found in the work of Keller 1930, in which three postulates
are formulated in regard to the properties of transferable substances:

(1) While moving unmixed with the surrounding air, a substance possesses the
property of indestructibility; its quantity in an elementary volume remains unchanged.

(2) The total quantity of a substance is preserved during the mixing of two masses
of air (continuity property).

(3) A substance is 'passive'; its admixture to the environment (to the air) does not
have an essential influence on the development of turbulence.

With these basic assumptions, using a statistical method, the classical theory of
turbulent mixing leads to the usual diffusion equation, describing the transfer of a
substance in a vertical direction during the process of turbulent mixing

as
Fs = -Ks (10)

where Fs is the mean flux of the substance, s is the gravimetric concentration of the
substance, and Ks is the 'coefficient of eddy diffusivity'. Ks does not depend on the
nature of the transported substance, if only it satisfies the aforementioned require-
ments. Ks is some statistical characteristic of turbulence and may depend on the height
above ground-level of the point in the flow under consideration, the wind speed, and
the vertical temperature gradient.

The theory of turbulent mixing, evidently, may be applied without serious objec-
tions to material contaminants suspended in the air (fine dust, smoke, bacteria, mois-
ture, trace elements mixed with the air, etc.), since the three aforementioned conditions
are fulfilled for them with reasonable accuracy.

However, many authors, including even the founder of the theory, W. Schmidt,
go considerably farther and postulate an application of the theory of turbulent transfer
to such 'substances' as momentum and heat. With such a point of view the shear stress z
is interpreted as the flux of momentum and the coefficient of turbulence K, formally
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determined from Equations (4) and (6), should coincide with the eddy diffusivity K,

K, = K = v,l.

Similarly to the determination of K, it is possible to determine a coefficient K T for
processes of turbulent heat exchange on the basis of the equation for turbulent heat
transfer:

q = - ceKT (11)

where q is the mean heat flux, cp is the specific heat at constant pressure of the air, 
is the density of the air, and 80/az is the vertical gradient of the potential temperature.

If Schmidt's hypothesis is to be accepted, in accordance with which the general
equation for turbulent transfer (10) is applicable also to heat, then,

KT = K.

The assumption concerning numerical equality of the exchange coefficients for
momentum, material contaminants, and heat cannot be considered as strictly estab-
lished. While the applicability of the second postulate to the momentum and heat is
indubitable, the fulfillment of the first postulate for momentum is far from evident.
The exchange of momentum between two air masses can occur with a purely dynamic
influence without considerable intermixing of these masses. Also, the third postulate
cannot be strictly applied to heat, inasmuch as the distribution of temperature
affects the development of turbulence.

Therefore, it is possible to speak only about the approximate coincidence of the
order of magnitude of the coefficients K, K,, and KT, but their numerical values can
be different from each other. This agrees with the observations and is quite natural
from the point of view of the similarity theory.

The dynamic coefficient of turbulence K, formally defined with the aid of Formulas
(4) and (6), and Schmidt's coefficients of turbulent diffusion K, and KT have the same
dimension L2 T-1 and simultaneously become zero, when turbulence is absent. The
ratio

K

is a dimensionless parameter which should be some function of the dimensionless
characteristics of a flow.

The only external dimensionless characteristic of a homogeneous turbulent flow
having low velocities, in a weakly compressed liquid not possessing a free interface,
is the Reynolds number.

The semi-empirical theory of turbulence is applied in the range of very high Rey-
nolds numbers when all the dimensionless values - functions of Reynolds numbers -
are roughly equal to their limits as Re-*oo (the 'self-similarity' of the flow). The
Reynolds number under normal atmospheric conditions is extremely large.

Under the given assumptions

a, , const K, = aOsK,
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the equation of transfer (10) acquires the following appearance after the substitution
of the expression for K, in it:

dv ds
0C, ~~i212 - - dr 6 ~~(12)

where oa is the dimensionless coefficient of the order of unity, depending upon the
nature of the substance. It shall be different for momentum, material contaminants
and heat.

In the case of a homogeneous environment, the coefficient %a is equal to unity for
momentum. Its corresponding value for the process of heat transfer is denoted by aT.

Then the equation for the turbulent heat transfer is written

q =-TCpQe2 d ao (13)
dz z

Generally speaking, the coefficient ctX depends upon Prandtl's number for a given
environment

Pr =

where # is the molecular viscosity, and A is the molecular thermal conductivity.

3. Generalization of Equations of the Turbulence Theory

Among the assumptions formulated above, the hypothesis of 'neutrality', i.e., the
passive role of a transported substance, is highly important. This condition is not
fulfilled in many important practical cases, and in the above equations it is necessary
to introduce a correction which accounts for the effect of the transfer of heat or mate-
rial substance on the development of turbulence.

This effect is due to the fact that because of concentration differences in the transfer
of substance, or temperature differences (in the transfer of heat in various points)
of a liquid, supplementary buoyancy forces promoting or hampering the development
of turbulence arise.

For the calculation of this factor a dimensionless criterion is suggested by Prandtl

alIn /av\-2

az \z)/

which is the sole dimensionless combination of the following local characteristics
of a flow with a variable density:

e, ' v
Q. --, g, - -
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An analogous criterion for the atmosphere was suggested by Richardson*

g aO/laz
Ri =-

T (v/az) 2

where a0/az is the gradient of potential temperature. It is possible to write the Richard-
son number in the following form:

Ri (dv- (14)

where y, = 0.01 °C/m is the adiabatic lapse rate.
In light of the considerations of similarity theory, it is natural to assume that all

dimensionless characteristics of a turbulent flow with a variable density (or variable
potential temperature in the case of the atmosphere) are definite functions of a basic
dimensionless parameter, i.e., the Richardson number.

Furthermore, if it is to be postulated that coefficients of exchange for different
'substances' (momentum, heat, moisture, smoke, and so forth), formally defined on
the basis of the turbulent transfer Equation (12), are proportional to each other in the
case of a stratified atmosphere as well, it is sufficient to know the 'universal' function
of the Richardson number (Ri) alone, which is the correction coefficient in the tur-
bulent transfer equation. The coefficient of turbulence under conditions in the atmo-
sphere with an adiabatic distribution of temperature will be designated as Ko (Richard-
son number equal to zero). Then, the coefficient of turbulence K may be expressed
by the formula

K = 0 (Ri) Ko (15)

for an inhomogeneous atmosphere under the same dynamic conditions (the same mean
velocity distribution).

The determination of the dimensionless function 0 is a highly complex task and
requires a deeper study of the structure of turbulence. An attempt to determine
theoretically the function (Ri) is made in Section 5.

However, some general information in regard to the function (Ri) may be
obtained from completely elementary considerations. By the very definition of the
function )(Ri) with Ri=O0, 4(0)= 1. When the Richardson number is increased, the
stratification of the atmosphere becomes more stable and due to this, the intensity of
turbulence is reduced. Therefore, (Ri) is a monotonically decreasing function. In
general, turbulence is not observed for Richardson numbers larger than some critical
value, Ri, and consequently,

4(Ri) = 0 for Ri > Ricr. (16)

A number of theoretical works, regarding the stability of the motion of a non-
uniform liquid, are devoted to the simulation of the value of the critical Richardson

* Richardson, L. F.: 1920, 'The Supply of Energy from and to Atmospheric Eddies', Proc. Roy. Soc.
A97, 354-73.
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number. According to Richardson (1920),

R icr 1;

According to Prandtl, it is equal to . According to the works of Taylor * and Gold-
stein **,

Ric, 4;

According to Tollmien (see Goldstein, 19 3 1)t , Ri ,='4. Corresponding processing
of Sverdrup's data leads to

Ric, = 'f,

which is used later in numerical calculations. The determination of the critical Ri
number is an important problem for atmospheric physics and may be solved only
experimentally on the basis of the processing of reliable data for simultaneous mea-
surements of wind and temperature distribution in the lower layer of the atmosphere
(through observations from towers and captive balloons).

Now using Formula (15) and designating the ratio of the exchange coefficients for
heat and momentum as a, the equations of turbulent friction (i.e., momentum trans-
fer) and of heat transfer shall be written in their final form:

T = O(Ri) i·(17)
dz dz 

q = - oc4 (Ri) cQe l 2 d d- (18)

where
g 0/laz

Ri = l= kz.
T (v/az) 2 = kz.

The formulae obtained may serve for the calculation of the wind and temperature
distribution in the layer near the Earth's surface (the surface layer).

4. The Distribution of the Exchange Coefficient in the Surface Layer

The surface layer plays a dual role in the atmosphere; firstly, friction stress is trans-
mitted through it to the free atmosphere - as a result of the dynamic influence of the
underlying surface on the air mass; secondly, heat exchange between the soil and the
free atmosphere occurs through it.

* Taylor, G. I.: 1931, 'Effect of Variation in Density on the Stability of Supercooled Streams of
Fluids', Proc. Roy. Soc. A132, 499-523.
** Goldstein, S.: 1931, 'On the Stability of Superposed Streams of Fluids of Different Densities',

Proc. Roy. Soc. A132, 524-48.
t It is not clear which work of Tollmien is referred to here. H. Schlichting reported the same result
in 1935 in 'Turbulenz by Warmeschichtung', Proc. Fourth Int. Congress, Appl. Mech., Cambridge.
p. 245, or in Z. Angew. Math. Mech. 15, pp. 313-338.
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The friction stress at the ground and the heat flux across an areal unit of the hori-
zontal surface in a unit of time shall be designated as To and q, respectively. It shall be
assumed that within the surface layer a certain stationary regime is established where-
by external forces are negligible in comparison with the forces of internal (turbulent)
friction and, moreover, the internal sources of heat (the heat of water vapor conden-
sation and the absorption of radiation) are absent. With these assumptions defining
in essence the concept of the surface layer of the atmosphere, the flow of momentum
and heat remains unchanged with height:

t (z) = To = const (19)

q (z) = q0 = const. (20)

The conditions expressed by Formulae (19) and (20) are fulfilled in practice,
evidently with sufficient accuracy, if z is not too great (they determine the surface
layer). Let us write down the equations for momentum and heat transfer:

= o = (Ri)e2 dv dv (17')
dz dz

q = o =- (Ri) c d d (18')

It is convenient to introduce 'the friction velocity' v, and 'the heat flux velocity' in
lieu of T and q into the investigation by defining

V* = (T/i)
1 / 2

,

u =- q/cQT.

Since the height of the surface layer is not great (of the order of a few tens of meters),
the changes of absolute density and temperature within the layer are small and can
be considered negligible. Therefore

v* = *0 = const,

uo = const.

Using the new designations, Equation (18') is divided term by term by (17'), yielding

1 a0 v\-' u
_ _- - const

T zaz av*
whence

0 (Z) = 2v (z) + const. (21)

This equation expresses the result that the distribution of temperature is similar, under
the introduced assumption, to the distribution of the wind in the surface layer.

Using the values v, and u introduced above, it is possible to write Equation (17) in
the following form

{( (Ri)} /12 I d =v. (22)
dz
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Having divided Equation (18) term by term by the cube of the right and left parts of
(22), the following equation for the Richardson number is obtained:

Ri 1 lu

{0 (Ri)} 1 2 = g v3 1 = kz. (23)

Equation (23) may have no more than one solution for Ri, since the left part is a
monotonically increasing function of Ri. Evidently when 1=0

Ri(0) = 0.

Also, since
1 lu 1/2 k gu...,,,

Ri =_g - {(Ri)} = z - {(Ri)} 2

ORi k u k u '(Ri)
_z =- g { (Ri)} l /2 + g - Z 2 (Ri)}12 (24)

and hence
(aRiN k u

aZ = k a 3; (0) = 1. (25)

The value of Ri near ground-level approaches zero (at ground-level itself, Ri=O).
Consequently, in an inhomogeneous atmosphere with a given distribution of the
potential temperature within the surface layer, a sub-layer exists in which the influence
of the atmospheric stratification (stable or unstable) is small and the turbulence is
determined only by dynamic factors (Ri small).

With Expression (25) for the derivative of Ri, it is possible to determine a new
conditional characteristic, i.e., 'the height of the sub-layer of dynamic turbulence'
(length scale).

L, Ri kgu (26)
(OR i) kgu

aZ /z=o
The scale L I determined in such a manner does not depend on the shape of the

'universal' function O(Ri). L1 is directly expressed by zo and qo

cPTT
3/ 2

LI =-kg 1/2 (27)
kg '/ 2q

The value L was calculated by Formula (27) for different conditions. Instead of the
friction velocity v,, the 'wind speed' v, taken as equal to 20 v*, is cited in Table I.
The coefficient 20 corresponds to Taylor's formula

T = 0.0025 QVo.

v0 is related to the wind velocity at a fixed height (Hz 30 m) depending on the rough-
ness of the surface. The heat flux in Table I is given in cal cm- 2 min- '. The quantity h
in Table I is the rate of ice melting produced by heat flux ql (in mm hr- of water
column thickness).
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TABLE I

Height of the sub-layer of dynamic turbulence (in meters)

Iqj cal/cm 2 min 0.01 0.02 0.05 0.1 0.15 0.2 0.3

h mm/hr 0.0754 0.1508 0.377 0.754 1.131 1.508 2.262

u cm/s 2.19 x 10-3 4.38 x 10- 3 10.9 x 10- 3 21.9 x 10- 3 32.8 x 10-3 43.8 x 10- 3 65.7 x 10-3

vo = 20v* v
m/s cm/s

0.5 2.5 0.182 0.091 0.036 0.018 0.012 0.008 0.006
1 5 1.45 9.73 0.29 0.14 0.10 0.07 0.05
2 10 11.63 5.81 2.34 1.16 0.78 0.58 0.39
3 15 39.2 19.6 7.9 3.9 2.6 1.9 1.3
4 20 93.0 46.5 18.7 9.2 6.3 4.6 3.1
5 25 90.8 36.5 18.2 12.1 9.1 6.0
6 30 63.1 31.4 21.0 15.7 10.5

10 50 97.0 72.7 48.4

In the calculation the following values for the constants were used:

k=0.4; c = 0.24calg-'C-' ; g=981cms-2;

T = 290 K; e = 1.29 x 10-3 g cm - 3 .

In the range of the most probable values for wind velocity and heat flux, the length
L, ranged between 8 and 50 m.

Let us now consider the distribution of the Richardson number and the coefficient
of turbulence with height. The following notations are introduced for convenience:

Ri

Ricr

z

L,

1
+ (Ri) = (

cRi,,

where Ric, is the critical Richardson number, ~ is a dimensionless height, and fi is a
numerical constant of the order of unity. In accordance with the previously formulated
properties of the function 4 (Ri), the function k, () satisfies the following conditions:

1° = (0) 1

2° 0,)<

3° p0(?)=0, for r >l.

First the case of a stable distribution of temperature shall be examined, when
Ri>O and the heat flux is directed from the atmosphere to the ground. It is now pos-
sible to write Equation (23) in the following dimensionless form:

(23a)

18 A. M.OBUKHOV

?I{I (,,)I - 112 = g. 



TURBULENCE IN AN ATMOSPHERE WITH A NON-UNIFORM TEMPERATURE

A new function = b (5) is introduced - the results of the solution of the equation

q {0 ()} - 1/2 = 

in regard to . Then the transformation of the solution of (23a) to initial variables
gives the following expression for the Richardson number:

Ri (z) = Ricr, I, (zlL,),
3

L, = 
kgu'

aR ic,,

Using the earlier proven properties of the function 4,, the general statement con-
cerning the function ' is easily obtained

(0)=0; () 1; () > 0;

(6)-1 for ¢-Moo

--- 1 for 0. (28)

Thus, the Richardson number approaches asymptotically its critical value in the sur-
face layer of a stable atmosphere, for z much greater than L,.

The variation of the coefficient of turbulence with height can be also examined. Due
to the definition of the coefficient of turbulence:

2

dv= = dv'

or in dimensionless form

K(4) = d* = k/0, ().

d- L,

But according to Equation (23a) /(b (i)) =t/lf and hence returning to dimensional

Kform kv*L 1 kv*L zform K(z) = q ,P pI(IB.)- (29)

Let us now investigate the height variation of the exchange coefficient for large and
small values of height z (in regard to scale L). With small values of z, z LI, on the
basis of (28),

( Lz) p K (z) kv*z

with large values of z, z L, 4--+ 1,

kv*,L
K (z) k- -.

fl 
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TABLE II

Maximum value of the coefficient of turbulence K. = u4/8lgu

{ql cal/cm2 min 0.01 0.02 0.05

h mm/hr 0.0754 0.1508 0.377

u cm/s 2.19 x 10-3 4.38 x 10-3 10.9 x 10- 3

vo = 20u* V. Km A. K. A. K A,
m/s cm/s

0.5 2.5 0.00182 0.0224 0.00091 0.0112 0.00036 0.00443
1 5 0.029 0.3567 0.014 0.1722 0.006 0.073 8
2 10 0.465 5.7195 0.232 2.8536 0.093 1.1439
3 15 2.35 28.905 1.18 14.514 0.47 5.781
4 20 7.44 91.512 3.72 45.756 1.49 18.327
5 25 - - 9.08 111.684 3.64 44.895
6 30 - - 7.55 93.111

10 50 - - - - - -

Thus, the coefficient of turbulence increases linearly with height for small values of z,
and approaches a maximum value asymptotically for large values of z:

K, kvL (30)

or, after using (27) and the definitions for u and v,

1 V4

Ko - (31)
/3gu

The results of the calculations of K. are cited in Table II; an approximate value
for , B = 1, is used; Ko is given in m2 s-l and the exchange coefficient A in CGS
units.

The theoretical values given in the table for the turbulence characteristics possess
the same order of magnitude as those observed in the atmosphere. Thus, for example
with a wind velocity of vo =5 m s - ', v =0.25 m s -1 and with a heat flux directed
downward,

q = - 0.1 cal cm- 2 min-'

the coefficient of turbulence is

K, = 1.82m 2 s - 1 , Aoo =22.4gcm-' s-'.

The values of the scale L1 (thickness of the sub-layer of dynamic turbulence) and
of the maximum value of the temperature gradient (aO/laz) for the same conditions
are

are L =18.2m, and z ) = 0.31 C (100 m)-

T
- = - 0.69 C (100 m)-'.
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for a stable atmosphere in m2 s-
1, A = KQ g cm-' s- l

0.1 0.15 0.2 0.3

0.754 1.131 1.508 2.262

21.9 x 10-3 32.8 x 10-3 43.8 x 10-3 65.7 x 10-3

Km A. Km A. K. A. K0 Ao

0.00018 0.00221 0.00012 0.00158 0.00008 0.001084 0.00006 0.000738
0.003 0.0369 0.002 0.0246 0.001 0.0123 0.001 0.0123
0.046 0.5658 0.031 0.3813 0.023 0.2829 0.0015 0.1845
0.23 2.829 0.16 1.968 0.12 1.476 0.08 0.98
0.74 9.102 0.50 6.150 0.37 4.551 0.25 3.08
1.82 22.386 1.21 14.883 0.91 11.193 0.60 7.38
3.77 46.371 2.51 30.873 1.88 23.124 1.25 15.38
- - 19.41 238.743 14.53 178.719 9.69 119.19

Thus, the order of magnitude of the temperature gradient calculated according to
K.0 also agrees with observations. In accordance with Sverdrup's observations, the
value Ri, =ll was used during the calculations of the gradient.

The aforementioned variation of the exchange coefficient with height, i.e., a linear
increase at low altitudes with an asymptotic approach to a constant at a certain eleva-
tion, is suggested by some authors, but here, evidently, a theoretical explanation of
this fact is successfully presented for the first time and also a theoretical value is given
for the order of magnitude of K, and L1. The diurnal variation of temperature with a
variable exchange coefficient calculated theoretically by Dorodnitsyn* agrees
well with the data. Dorodnitsyn used a law of height variation of the exchange
coefficient which is similar to the above indicated linear increase up to a height L=
20 m and a constant Ko =8.1 m2 s-1 for greater heights.

In the above developed theory the changes of the shear stress with height were not
considered. Due to the earth's Coriolis force, shear stress decreases with altitude, so
that the height of the 'surface layer', to which this discourse is related, is limited to
100 m or so.

5. An Equation for the Energy Balance in Turbulent Flow with Variable Density

Equation (17) may also be obtained from the examination of a simplified statistical
scheme of turbulence in a non-homogeneous environment on the basis of the energy
balance. In this case an analytical solution is obtained for the dimensionless function
4 (Ri).

* Dorodnitsyn, A. A.: 1941, 'The Theory of the Diurnal Variation of Temperature in the Mixing
Layer', Dokl. Akad. Nauk SSSR 30, 410-3. In this paper the vertical profile of the coefficient K
was assumed to be of the form K(z) = Ko [1 - exp(- zL)].
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To simplify the calculations, an incompressible fluid with a variable density de-
pending upon the temperature will be examined first. The transition to a compressible
environment, i.e., the atmosphere, may be made by substitution of the Richardson
number Equation (la) instead of the dimensionless Prandtl Equation (1) criterion
of stability.

The equation of the balance of turbulent energy for a non-homogeneous fluid may
be written as

dU dE'
-- +-- = T- D (32)
dt dt

where U is the potential energy of the flow, E' is the kinetic energy of the turbulent
fluctuations, T is the transformation of energy of the mean flow into turbulent energy
and D is the dissipation of turbulent energy into heat. An equation of the energy
balance analogous to Equation (32) was utilized by Richardson when he deduced the
basic criteria of turbulence. Such a statement refers to the phenomenon of the growth
or suppression of turbulence in a non-homogeneous environment.

The balance equation will be utilized for the study of a steady-state regime of
turbulence. The dissipation of turbulent energy in a developed turbulent regime shall
be considered (on the basis of similarity considerations at Reynolds number Re- co)

to be directly proportional to the cube of a velocity fluctuation and inversely propor-
tional to a characteristic length, i.e., the scale of turbulence.

If the expression used by Richardson for the change of potential energy dU/dt and
the transformation of the energy of a mean flow is to be accepted, then the equation
of the energy balance may be written as follows:

dE' K g 0
d = K d K T - D (33)
dt T z

where dv/dz is the mean velocity gradient, K is the dynamic coefficient of turbulence
(i.e., eddy viscosity), and Kr is the coefficient of eddy thermal diffusivity.

If the length scale of turbulence (Prandtl's mixing length) is designated as I and the
scale velocity fluctuations as v', then

K = v'l

KT = c'

'3

D =' I

Vl
2

E' =-
2

In the first approximation the numerical coefficients oc and ' shall be considered as
constants. Substituting the above-written expressions in (33), one obtains for the
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stationary regime

E'_ Vl/dV2_ _ l 0 a' v'3
=-v'1(I -cw'I - fl - =O

at \dz] Taz 1
or

V' [_12 ( -12g 'v ' 2 =0 (34)

Equation (34) is broken into two equations:

v' = 0

corresponding to a laminar regime, and

12 [(/d 2 g ao l, = (35)
LkdzI T az

describing the developed turbulent regime.
Equation (35) has a real solution only when

(dv 2 g aO
,dz T azz 

Hence, with a turbulent regime,

O O0/az 1
Ri (/Z) 2 < RiC, =1 (36)

T (avlaz) 2
Cr

and with Ri> Ric, there is a single real solution

v' = 0

corresponding to the laminar regime.
For the turbulent regime, using (35) and (36) it is seen that

I dvl ( Ri \ 1/ 2

(fi')i/2 dz t Ri, (37)

so that a coincidence with Prandtl's well-known equation for Ri=O will be obtained
only if i' = 1.

Thus by examining the energy balance, 01 (e/) is found to be

Ri
~, (t) = (1-C /; r/= Ri (38)

Simultaneously, an approximate value for the critical Richardson number is obtained:

1 K
Ric, = -

KT



The works of Sverdrup (1936) and of Montgomery* must be mentioned, in which
an attempt to obtain the correct function (Ri) is also made. Sverdrup's result is

1

(= + fiRi)" 2

which satisfies the above given formula only for small values of the Richardson num-
ber; thus =l/Ric,. When large Richardson numbers are used, the formula of
Sverdrup is not valid, because it does not describe the critical phenomena when

Ri>(Ri),, and leads to an entirely unrealistic result when Ri-- - 1/fl in the unstable

atmosphere. Sverdrup's observations of the surface layer indicate that

P = 11,
hence

Ric,, = 0.09.

If Equation (38) is accepted, then it is possible to calculate the distribution of the

temperature and wind in the surface layer where the influence of Coriolis force is
negligible. These calculations are given in the following section.

6. The Distribution of Temperature and Wind Velocity in the Surface Layer

The equations of turbulent transfer of momentum and heat (17) and (18) are used for
calculating the wind and temperature distribution and Equation (38) is used for the
correction function 4.

The dimensionless function 4, introduced above (following (23a)) and determining
the variation of Richardson's number, may now be calculated by the solution of
Equation (23):

o )1/4 0 W - (5) · ~~~(39)
(1 - )~/' - ' 1 = ()' (3

Two cases are examined separately:
(1) The stable atmosphere. (Ri>O0, 1>0 ). It is convenient to introduce the auxiliary

parameter, u',

1-r = U'4' ; = 
U

Then the following parametric representation of the function 4p can be given;

1 1
5=*(4; = = ,- U'3; U=0;u'=

U U

= 1 - u'4 ;0 < u' < 1; 5 = cO; u' =0.

A diagram of the resulting function Ri/Ri,r = (z/L) is presented in Figure 1.

* The work that is referred to here is probably Rossby, C. G. and Montgomery, R. B.: 1935, 'The
Layer of Frictional Influence in Wind and Ocean Currents', in Papers in Physical Oceanography and
Meteorology, MIT and Woods Hole Oceanographic Institution, Volume 3, No. 3.
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Fig. 1. The dependence of the coefficient of turbulent K on height for a stable atmosphere.

On the basis of Equation (36) and Equations (29) and (30), also

KL, 0 L 1 L
A differential equation exists for the distribution of wind:

dv v,

dz K (z)
hence

1 dv 1 K 1 1

v, d k K (z) k (4)

For the difference of the wind speeds at two levels one obtains

{2

V (2)i- (Z() 
' _' 

An integral solution is easily obtained by the introduction of the parameter u'. The
values of the function ' (4) and u' () are given in Table III.

The height variation of wind velocity in a stable atmosphere is shown in Figure 2. A
simple investigation shows that for low heights (in regard to Lo) the curve has a loga-
rithmic character, while for greater heights it approaches asymptotically a straight line.

The curve of the temperature distribution with the above mentioned assumptions
is similar to the curve of the wind velocity. From Equation (21) it follows

O(z2) - O(zl) = T k ,' 2 _ _, .
'" v* (Z/1 (L~)
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TABLE III

Values of the universal dimensionless function v/()
and of u'(O) for a stable atmosphere

(0 u'()O (0 u'(O

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.1
1.2
1.3

e.J

45

40

35

E 30

25

e-, 20
M

15

10

5

0.055 1.600 1.4
0.102 2.370 1.5
0.144 2.742 1.6
0.189 3.065 1.7
0.231 3.320 1.8
0.278 3.500 1.9
0.320 3.662 2.0
0.359 3.803 2.1
0.398 3.928 2.2
0.435 4.045 2.3
0.470 4.157 2.4
0.502 4.258 2.5
0.533 4.360 2.6
0.565 4.450 2.7
0.597 4.560 2.8
0.626 4.608 2.9
0.650 4.695 3.0
0.677 4.769 3.5
0.700 4.839 4.0
0.723 4.908 4.5
0.76 5.03 5.0
0.80 5.16 5.5
0.84 5.29 6.0

0.86 5.41
0.88 5.23
0.90 5.63
0.92 5.74
0.93 5.85
0.94 5.95
0.95 6.06
0.96 6.16
0.96 6.27
0.97 6.37
0.97 6.47
0.98 6.57
0.98 6.68
0.98 6.78
0.98 6.88
0.99 6.99
0.99 7.09
0.99 7.60
1.00 8.10
1.00 8.60
1.00 9.10
1.00 9.60
1.00 10.10

0 o 2 3 4 5 6 7 8 9 l0 II

m/ sec
wind speed v in m/sec.

Fig. 2. The distribution of wind velocity in a stable atmosphere.
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(2) The unstable atmosphere. (Ri<O, 1<0, the heat flux is directed upwards). The
function a is again determined by the Equation (39):

I?1
(1 + I~1)1 4-

The auxiliary parameter u' is introduced:

+ Il = '4 ,

11 = U'4 - 1,
U'4

-
1 1

U U

then ' = for 
u'=l for 4=0
u'=co for =oo <U< .

For large values of 

u' _ I 11/ 3 and I11 14 1/ 3 .

Consequently, the exchange coefficient possesses the following asymptotic expres-
sion for an unstable atmosphere:

K (z) = k413 (gu) /3 z4 3 . (40)

The calculations of wind velocity and potential temperature distribution are made
with the above-cited formulae. They are graphically presented in Figure 3. With

IA

I'>

Fig. 3. Distribution of the wind with height in dimensionless coordinates.

Fig. 3. Distribution of the wind with height in dimensionless coordinates.
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large values of z, the wind (and potential temperature distribution) approach asymp-

totically a constant value in an unstable atmosphere.
Once more, when a sufficiently complete theoretical picture of turbulence in the

surface layer is desired, it should be noted that the Coriolis force, which is extremely

important in the calculation of the wind distribution at high altitudes, has been

neglected.

7. Conclusion

The character and intensity of the turbulent processes in the atmosphere depend to a

considerable degree upon the vertical distribution of temperature. Dimensional

considerations show that the influence of the atmospheric stability on turbulence may

be considered approximately by introducing a correction coefficient into a known

equation of turbulent transfer, which depends upon the Richardson number, i.e., a

dimensionless characteristic of atmospheric stability.
The equation obtained during this procedure contains a single 'universal', dimen-

sionless function of the Richardson number 4 (Ri), which, generally speaking, should be

determined from experiment on the basis of a series of simultaneous observations of the

temperature and wind distribution in the surface layer of the atmosphere (up to 100 m).

The general analysis of the equations applied to the problem concerning the

distribution of the exchange coefficient in the surface layer leads to a definite expression

for a length scale L1 (the thickness of the layer of dynamic turbulence). The influence

of the thermal factor on turbulence is negligible for heights small in comparison with

this scale. The exchange coefficient asymptotically approaches a constant, independent

of the particular choice of the universal function 0 (Ri) for heights large in comparison

with L, in a stable atmosphere.
When observational data with regard to the temperature and wind distribution

in the surface layer are processed, the dimensionless heights, expressed in fractions

of the scale L,, ought to be utilized.
When the equation of the balance of turbulent energy and rough assumptions of the

semi-empirical theory of turbulence are utilized, a definite expression for the 'universal
function' is obtained

) (Ri) = Ri) for Ri < Ri,,

c (Ri) = 0 for Ri > Ri,,

where Ri,, is the critical Richardson number, determined from experiment. To check

the results of the theory, reliable material obtained from simultaneous observations

of the wind and temperature in the surface layer (on towers or captive balloons) is

necessary.
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