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Abstract 
Characterization of freestream disturbances and their effect on laminar boundary layer 

transition is of great importance in high-speed wind tunnel testing, where significant differences 

between the behavior of scale-model and free-flight transition have long been noted. However, the 

methods traditionally used to perform this characterization in low-speed flows present significant 

difficulties when applied to supersonic and especially hypersonic wind tunnels. The design and 

theory of a focusing laser differential interferometer (FLDI) instrument, originally invented by 

Smeets at the Institut Saint-Louis in the 1970s and used recently by Parziale in the CalTech T5 

shock tunnel, is presented. It is a relatively-simple, non-imaging common-path interferometer for 

measuring refractive signals from transition and turbulence, and it has a unique ability to look 

through facility windows, ignore sidewall boundary-layers and vibration, and concentrate only on 

the refractive signal near a pair of sharp beam foci in the core flow. The instrument’s low cost and 

ease of implementation make it a promising alternative to traditional hot-wire anemometry and 

particle-based methods for turbulence characterization. Benchtop experiments using a turbulent 

supersonic air jet demonstrate its focusing ability, frequency response, unwanted signal rejection, 

and ease of use. The instrument is used to optically interrogate the flow in the Penn State University 

Supersonic Wind Tunnel and USAF AEDC Hypervelocity Tunnel 9 for measurement of the 

overall intensity and spectra of freestream disturbances. Precise characterization of the strength 

and spectral content of the disturbances provides insight into their nature and potential effect upon 

boundary layer transition. A special feature of the FLDI instrument used here is the replacement 

of traditional fixed Wollaston prisms with variable Sanderson prisms for laser-beam separation 

and recombination. 
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Chapter 1:   Introduction 
 Turbulence, and the transition from laminar to turbulent flow, are poorly-understood but 

crucially important features of fluid dynamics: they dramatically change the behavior of flows and 

their interactions with their surroundings. Accurate characterization of turbulence is important for 

modeling this behavior. Turbulent energy in the freestream of a flow is known to couple into 

laminar boundary layers on objects in the flow[1], and can influence if and where on the object 

those boundary layers may transition to turbulence. In high-speed wind tunnels, turbulence 

encountered by models in the wind tunnel flow is typically somewhat stronger than that 

experienced in free-flight. This poses a problem not only for engineering testing of scale models, 

but also in verification of computational models, where the behavior of the two cases will not 

match unless the inlet conditions of the simulation realistically model the turbulence in the wind 

tunnel. Measurement of flow turbulence, and its parameterization, is therefore necessary for 

accurate comparison of wind tunnel, computational, and free-flight conditions. 

 Traditionally, hot wire anemometry (HWA) is used for these turbulence measurements. 

However, there are cases where it is unsuited for use in a particular flow. Other options for 

quantitative measurements of turbulence, such as LDV/PIV or pressure fluctuation measurement, 

have their own associated difficulties and limitations. 

The focusing laser differential interferometer (FLDI), developed in this thesis, is a non-

intrusive optical technique that can make high-frequency-response measurements of turbulence in 

high-speed flows. It provides a "point-like" measurement, comparable to HWA, and can be applied 

in many cases so long as there is optical access: unlike LDV and PIV, FLDI does not require that 

the flow be seeded with particles, since it tracks fluctuations in the density of the flow, instead of 

particle motion. 
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The FLDI instrument is not a new concept, having been originally developed in the early 

1970's, however no comprehensive theory of its behavior exists. This thesis presents techniques 

for the design, implementation, and characterization of FLDI, and it develops a new theoretical 

description of the frequency-response characteristics of the FLDI instrument. The FLDI technique 

is applied in this research to the measurement of turbulence intensity and spectra in high-speed 

wind tunnels and in a reference turbulent air jet, for comparison with the literature. 

1.1   Motivations for Characterizing Turbulent Flowfields 

In wind tunnel testing, it is well known that turbulence in the freestream affects the 

behavior of laminar-to-turbulent transition of boundary layers on objects in the flow, which can 

lead to discrepancies between the wind-tunnel model’s aerodynamics and those of a full-scale 

prototype in free flight. The transition to turbulence has dramatic effects on heat transfer, skin 

friction, flow separation, and other aerodynamic properties. However, the process of transition and 

the mechanisms by which energy is fed into boundary layers to induce transition are not well 

understood.  

Schneider[2] examines measurements of transition Reynolds numbers of sharp cones in 

free-flight and in various high-speed wind tunnel facilities, demonstrating dramatic differences in 

the locations of boundary-layer transition between free-flight and wind tunnel tests. He notes that 

ground-test data are ambiguous, since they are collected at much higher freestream disturbance 

levels than in flight, and the boundary-layer transition mechanisms in noisy flows are generally 

poorly understood and are often much different than those in low-noise flight. These high-noise 

mechanisms are presumed to be the cause of the much-earlier transition to turbulence noted in 

wind tunnel testing. Conventional supersonic and hypersonic wind tunnels are reported by 

Schneider[2] to have pressure fluctuation levels 10 to 100 times greater than free-flight conditions, 
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although he notes that the techniques used to measure these disturbance levels vary in frequency 

response and that there is considerable difficulty in interpretation of the data. “The difficulty of 

making low-noise, high-frequency measurements is second only to the difficulty of fabricating a 

quiet tunnel.”[2] 

Equally difficult to the interpretation of measured wind-tunnel noise data is determining 

the effect of the noise on boundary-layer stability, which has dominant frequencies where energy 

from the freestream appears to couple into the boundary layer. It may be that, even when a wind-

tunnel has a high level of freestream noise, the disturbance level at the frequencies associated with 

boundary layer instability waves might be low enough to avoid transition in some cases. The high-

frequency-response measurement of disturbance levels and spectra in wind-tunnel and free-flight 

testing is necessary for understanding these mechanisms. Any prediction of how a model might 

perform in free-flight will depend heavily on the accuracy of these measurements and their 

interpretation. 

 

1.2   Laufer’s Work on the Origins of High-Speed Wind Tunnel Noise 

Uberoi explores the effect of a wind-tunnel nozzle contraction on the turbulence intensity 

in a subsonic flow[3]. He notes that vorticity in the supply section of wind tunnels is the primary 

variable for turbulence in this case. In subsonic flow, as the nozzle contracts and the mean velocity 

of the flow increases, the vortex filaments of the flow in the direction of mean flow, corresponding 

to velocity fluctuations perpendicular to the mean flow, are stretched by the contraction ratio, c. 

Meanwhile, vortex filaments perpendicular to the mean flow direction, corresponding to velocity 

fluctuations in the direction of mean flow, contract by √𝑐. Neglecting viscous effects, the strength 

of these incoming vortices remains constant. In this case, the strength of turbulent fluctuations in 
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these directions changes inversely to the effect on vorticity: velocity fluctuations perpendicular to 

the mean flow increase from the inlet condition by a factor of √𝑐, while fluctuations in the direction 

of mean flow decrease by a factor of c. The resulting effect of contraction in a subsonic nozzle on 

velocity fluctuations is shown in Eqs. 1.1a,b. 
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Here, u is the velocity fluctuation in the mean flow direction, while v and w are the fluctuations 

perpendicular to this direction, and subscripts 1 and 2 represent conditions before and after the 

contraction. 

This model is extended to supersonic flow by taking density changes in the flow into 

account. In this case, velocity fluctuations along the nozzle axis scale as before, but fluctuations 

perpendicular to the mean flow direction scale by the factor √𝑐𝜌2/𝜌1. The effect of a contraction 

on velocity fluctuations in supersonic nozzles is shown in Eqs. 1.2a,b.  
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The density of an accelerating flow drops in supersonic flow, compared to the stagnation condition, 

calculated by the compressible isentropic flow relation:  
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Here, ρ is the density of the flow at Mach number M, and γ is the ratio of specific heats of the fluid. 

At high Mach numbers the density ratio can be much smaller than 1 𝑐⁄ , such that both the u and v 

components of velocity fluctuations will be reduced in strength by the nozzle contraction. 

Additionally, with the high contraction ratios required for supersonic nozzles, the vorticity may be 

compressed to scales where Uberoi’s inviscid assumption may not hold, and these vortices may 

dissipate into heat. 

Laufer’s work on the experimental characterization of freestream disturbances in 

supersonic wind tunnels serves to motivate much of the research into the characterization of 

freestream turbulence[4]. It was well known that, in subsonic wind tunnels, turbulence in the 

freestream strongly influences the laminar-to-turbulent transition Reynolds number of boundary 

layers on models in the flow. However supersonic wind tunnel research showed that freestream 

disturbances differed in cause and behavior from those in subsonic tunnels. Laufer found that, at 

higher Mach numbers, the correlation between velocity fluctuations in the supply section of 

supersonic tunnels and the transition Reynolds number on models in the test section was not 

significant. A tenfold increase in these supply-section velocity fluctuations had no significant 

effect on transition on models beyond Mach 2.5, despite having a large effect at lower Mach 

numbers. Hot-wire anemometry measurements that Laufer performed in the Jet Propulsion 

Laboratory’s 18 x 20 in. supersonic wind tunnel showed that the observed test-section fluctuations 

could not be due to transverse velocity fluctuations of turbulence, nor could they be due to pure 

temperature fluctuations in the flow. This conclusion is supported by knowledge that the 

contraction ratio from the supply section to the nozzle (for the JPL tunnel, this was 40:1 at M = 1.6 

and 1500:1 at M = 5) effectively squeezes vortices in the supply section until they are below the 

Kolmogorov length scale[3] so that they dissipate before reaching the test section. Instead, if the 
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hot-wire fluctuation measurements were assumed to come from a pure sound field, this model is 

then consistent with the measurements. Laufer therefore finds that the source of the sound field 

must be turbulence in the boundary layers on the walls of the wind tunnel nozzle, the influence of 

which which is radiated into the freestream. He warns (in 1961) that the difficulty in characterizing 

this sound field and its effect on the stability and transition of boundary layers on models may 

render measurements of transition Reynolds number meaningless in supersonic wind-tunnel 

testing. Laufer’s work[4] is an often-cited masterpiece of understanding turbulence in high-speed 

wind tunnels. 

 

1.3   Aeroacoustics and Radiated Tunnel "Noise" from Boundary Layers 

Lighthill’s founding work in aeroacoustics forms the basis of the theory explaining how 

turbulence generates a sound field, and demonstrates that an eddy moving downstream radiates 

circular acoustic wavefronts at a semi-angle equal to the Mach angle, with a direction of 

propagation defined by the complement of this Mach angle[5,6]. Ffowcs-Williams[7] builds on 

Lighthill’s work to develop an aeroacoustic theory to explain the formation of Mach-wave fields 

radiated by supersonic turbulent shear flows such as those observed by Laufer. In his theory, 

Ffowcs-Williams relates the strength of the radiated Mach-wave field to measurements of surface 

pressure, showing excellent agreement with Laufer’s[4] experimental results. Ffowcs-Williams 

identifies two sources of the sound-wave radiation noted by Laufer: eddy Mach wave radiation, 

and shivering Mach waves. Eddy Mach wave radiation behaves as quadrupole and dipole acoustic 

sources, and originates at the boundary layers that develop along the walls of a supersonic de Laval 

nozzle. Shivering Mach waves occur due to flaws in the nozzle wall, producing standing waves 

that are modulated to “shiver” by passing eddies of the nozzle-wall turbulent boundary layer. These 
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two sources form the basis of the modern understanding of freestream disturbances in high-speed 

flows. 

 

1.4   Boundary Layer Transition due to Freestream Disturbances 

Saric[8] provides background into boundary layer receptivity theory, which explains how 

energy from freestream turbulence couples into a boundary layer’s spectrum, potentially tripping 

it into turbulence. Boundary layer stability is a critically-important field in fluid mechanics. 

Nonetheless, Saric[8] stresses that there is currently no mathematical model that will accurately 

predict the transition Reynolds number of flat-plate laminar boundary-layers or other geometries, 

despite decades of research. Many disparate features of flows come together to make the problem 

so difficult: freestream turbulence, the roughness of surfaces over which they flow, boundary-layer 

interaction with acoustic waves, etc. 

Despite the difficulty in fully modeling boundary layer stability, emphasis has been placed 

on understanding the initial, individual sources of boundary layer disturbances and their impact on 

boundary layers. Fundamentally, all disturbances from the freestream that interact with boundary 

layers will influence the transition of those boundary layers to a greater or lesser degree: this 

process is called receptivity. The amplitude, frequency, and phase of those disturbances all must 

be considered in determining how strong their effect on a boundary layer may be. Morkovin et 

al.[9] illustrate different paths for how energy disturbances of different amplitudes may couple into 

laminar boundary layers, and their transition to turbulence, seen in Fig. 1: 
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Figure 1.1: Receptivity paths that disturbance energy may  

follow to initiate transition in boundary layers[9] 

 

Very weak disturbances follow path A, driving primary-mode disturbances in boundary 

layers. These disturbances are treated by linear stability theory[10], where they are modeled by 

coupling them into the linearized unsteady Navier-Stokes equations. For these disturbances, the 

growth of the primary-mode fluctuations in the boundary layer is slow, and they are heavily 

affected by pressure and temperature gradients, as well as by changes in mass flux near the surface. 

Saric notes that many studies consider only these primary modes, arguing that the freestream 

disturbances in free-flight are typically very weak.  

This approximation fails in some wind-tunnel testing, however, because of the 

substantially-higher freestream disturbance levels encountered in wind tunnels compared to 

external flows, even in so-called “quiet” wind tunnels. While linear stability theory can be used to 

predict the growth of second-mode fluctuations in some flows, stronger disturbances than those 

that directly drive primary modes (disturbances following paths B, C, and D) may require much 

more complicated analysis to understand their effect on transition to turbulence. The spectral 
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properties of these disturbances have a very large effect on the degree to which they influence 

boundary layer transition. Schlichting[11] developed an early theory for the behavior of these 

second-mode instabilities, called Tollmien-Schlichting (T-S) waves, and noted that the relative 

length scales of a disturbance and the boundary layer it influences have a major effect on their 

impact on transition: disturbances with much shorter or longer wavelengths than the boundary-

layer scales do not have much effect. This observation drives the need for frequency-resolved 

measurements of disturbance strength. 

To characterize the acoustic disturbances known to be present in high-speed flows, 

Kendall[12], building on the work of Laufer[4], performed wind tunnel experiments demonstrating 

boundary layer transition in supersonic and hypersonic flow. He used hot-wire anemometry to 

measure the spectra of freestream disturbances and boundary layers on flat plates in flows with 

Mach numbers ranging from 1.6 to 8.5. The freestream spectra measured in the wind tunnel are 

deconvolved from their associated boundary layer spectra, resulting in a plot of the amplification 

ratio of the spectra seen in the boundary layers compared to the freestream as a function of 

frequency. The turbulence spectra in Kendall’s results showed energy content to well over 100 

kHz, and the second-mode amplification peaks occurred at similarly high frequencies. Higher 

Mach number flows are thus shown to require higher frequency response to adequately resolve 

these amplification peaks. For the hot-wire anemometry system Kendall used, the frequency 

compensation circuit limited the frequency response of his measurements to around 50 kHz for 

freestream measurements and 100-200 kHz for measurements in the boundary layer, in order to 

maintain amplifier stability. 
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1.5   Difficulties in High-Speed Testing 

As mentioned earlier, hot-wire anemometry (HWA) is the most commonly used method of 

measuring turbulence in wind tunnel testing. However, high-speed flow poses a particular 

difficulty, discussed by Kovasznay[13]. Hot-wire anemometry is sensitive to variations in both mass 

flux, 𝜌𝑢, and stagnation temperature, T0, in high-speed flow. The hot-wire overheat ratio, as 

described in Eq. 1.4, has a large effect on the extent to which any variations in flow stagnation 

temperature affect the output of the anemometer.  

 𝜏 = 𝑇𝑤 − 𝑇𝑟𝑇0  (1.4) 

 
Here, Tw is the temperature of the heated wire in operation and T0 is the stagnation temperature of 

the flow. Tr is the recovery temperature of the unheated wire: the mean temperature the wire attains 

when exposed to the flow. This temperature is usually slightly less than the stagnation temperature, 

but is much higher than the static temperature of the flow, and is calculated using the following 

relationship[14]:  

 
𝑇𝑟𝑇 = 1 + 𝑟 𝛾 − 12 𝑀2 (1.5) 

 

This can also be expressed in terms of the stagnation temperature:  

 
𝑇𝑟𝑇0 = 1 + 𝑟 𝛾 − 12 𝑀21 + 𝛾 − 12 𝑀2  (1.6) 

 
In this calculation, γ is the ratio of specific heats in the fluid, M is the freestream Mach number, T 

is the static temperature of the flow, and r is the so-called “recovery factor.” For gases, r is 

approximately equal to Pr1/2 in laminar flow, and Pr1/3 in turbulent flow, where Pr is the molecular 

Prandtl number of the fluid[15]. For air, where Pr ~ 0.7 over a wide range of temperatures, this 

gives r = 0.84 for laminar flow and r = 0.89 for turbulent flow. With high overheat ratios, where 



11 

 

τ >> 1, stagnation temperature fluctuations change the hot-wire output very little, and the 

anemometer measures essentially only the mass flux component. Low overheat ratios where where 

τ < 1, on the other hand, can be greatly affected by temperature fluctuations when present, and 

therefore have severely reduced frequency response[16].  

In oxidizing gas mixtures, the oxidation temperature of the hot-wire probe material is a 

major limiting factor to overheat ratio, because the operating temperature of the probe must be 

below this temperature. For tungsten wires, which are commonly used due to their durability, the 

oxidizing temperature limit is typically considered to be around 300°C, and wires are typically 

held at 250°C in routine testing to avoid oxidation[17]. In unheated wind tunnels, where the 

stagnation temperature of the flow is around ambient temperature, this limits the overheat ratio of 

the wire to around 0.8, at which Smits et al.[16] predict that the sensitivity of the HWA system to 

temperature fluctuations will be roughly equal to the sensitivity to mass flux fluctuations. 

Problems from oxidation due to high overheats can be postponed by the use of platinum 

and platinum-alloy wires. According to Lomas[17], the oxidation temperature of pure platinum wire 

is around 1100°C, although it is significantly weaker than tungsten wire, limiting its use to low-

speed flows. Platinum alloys, particularly the alloys with iridium or rhodium, have high oxidation 

temperatures (~800°C[17]) but do not sacrifice as much strength as pure platinum. The ultimate 

tensile strength (UTS) of tungsten at room temperature is around 1000 MPa[18], while pure 

platinum has an ultimate tensile strength of only ~125 MPa[19]. Typical alloys of platinum are those 

with 20% iridium or 10% rhodium. The alloy with 10% rhodium (90% Pt, 10% Rh) has a UTS of 

~300 MPa, while the alloy with 20% iridium (80% Pt, 20% Ir) has a UTS of ~700 MPa, 

significantly reducing concerns about the strength of the hot-wire compared to that of tungsten 

wire. 
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In non-oxidizing gas mixtures, the temperature limit from oxidation can of course be 

ignored. Instead, the limiting temperature of the wire is the maximum temperature that the 

anemometer system can achieve based on the bridge electronics, or, in extreme cases where the 

wire is very thin or the bridge is very powerful, the melting point of the wire material. In this case, 

tungsten is definitely the better material, boasting the highest melting point of all elements, around 

3400°C[18]. Platinum and the alloys mentioned previously, on the other hand, have melting points 

of only ~1800°C. 

Because of the extreme difference between static temperature and stagnation temperature 

in hypersonic flow, almost all hypersonic wind tunnel facilities must heat the supply gas to avoid 

gas liquefaction. For nitrogen, with a specific heat ratio of 1.4, the stagnation temperature of a flow 

at Mach 10 is 21 times that of the static temperature. The liquefaction point of nitrogen at 

atmospheric pressure is 77.4 K. For a wind tunnel to achieve Mach 10 flow, while running nitrogen 

as a working fluid, with one atmosphere of static pressure and no liquefaction, the stagnation 

temperature must be at least 21 times that: around 1630 K. In this case, the best overheat that a 

hot-wire probe can achieve for a turbulent flow is about 1.4 for a tungsten wire and 0.4 for a 

platinum wire. Atmospheric static pressure is unrealistically high, but even at a static pressure of 

5 mbar (500 Pa), the liquefaction point of nitrogen drops only to around 50 K, giving a required 

stagnation temperature of 1050 K at Mach 10. With this stagnation temperature, tungsten wires 

should be able to achieve adequate overheat if the bridge electronics are of very high power, with 

a possible overheat ratio of 2.6, while platinum wires may achieve an overheat ratio of around 1.1. 

While these overheat ratios may be adequate for rejecting the temperature fluctuations compared 

to that of the mass flux fluctuations, high wire temperatures nonetheless significantly reduce the 
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yield strength of the wires, which may preclude their use in a wind tunnel even if adequate overheat 

ratios can be achieved. 

A single hot-wire probe operated at constant overheat cannot differentiate between the 

effects of the mass flux and stagnation temperature fluctuations in the anemometer output. 

Walker[20] describes two methods to overcome this difficulty: a single wire with varying overheat 

ratios over the course of a wind-tunnel run (or several runs), or a dual-wire setup where each wire 

is at a different overheat ratio. With either of these methods, it is possible to generate a calibration 

that will isolate the effects of the stagnation temperature variation in the flow from the mass flux 

fluctuation, by constructing so-called mode diagrams. Masutti et al.[21] use this technique, 

alongside high-speed Pitot pressure measurements, to attempt to characterize the freestream 

disturbance level of the VKI H3 Mach 6 Wind Tunnel at the von Kármán Institute for Fluid 

Dynamics in Belgium. This facility uses dried air as its working fluid, and the high disturbance 

level of the tunnel necessitated the extra strength of 9 µm diameter platinum-plated tungsten hot-

wire probes. The combination of these two features limited the maximum overheat ratio of the 

wires to 1.4. To achieve an appreciable difference in the response of the two wires, while 

maximizing their frequency response, the second wire was set at an overheat ratio of 1.1. The 

frequency response of this setup was found by square-wave testing to be around 25 kHz for the 

wire with overheat ratio 1.4, and 10 kHz for the wire with overheat ratio 1.1. 

1.6   AEDC Hypervelocity Tunnel 9 

The sponsor of this research, the USAF Arnold Engineering Development Center, is 

interested in developing methods of characterizing free-stream disturbances in Hypervelocity 

Wind Tunnel No. 9: the primary high-Reynolds-number hypersonic ground testing facility for the 

Air Force and the Department of Defense[22]. The 1.5 m diameter tunnel is capable of speeds up to 



14 

 

Mach 14, stagnation temperatures and pressures of 1700°C and 190 MPa, and test times up to 15 

seconds. In addition to the high stagnation temperature and pressure in the tunnel, instruments 

must contend with boundary layers or free shear layers on the order of 0.25 to 0.6 m thick at the 

tunnel walls. Instrusive instruments must also be able to withstand the tunnel’s starting shock wave 

and fine particulate matter in the freestream generated by disintegration of the graphite heaters 

used to heat the flow. Non-intrusive optical instruments must cope with low freestream densities, 

two to three orders of magnitude below atmospheric conditions. Tunnel 9 is a good example of a 

hostile environment for flow instrumentation. 

Lafferty and Norris[23] note the impracticality of the hot-wire anemometry technique in 

Tunnel 9 due to the high stagnation temperatures involved and large swings in dynamic pressure. 

Noting that fluctuating quantities in the freestream, such as density, pressure, or velocity, are 

generally believed to be proportionally related to one another, they use a surface-mounted pressure 

transducer (Kulite XT-140a) on the tip of a Pitot probe to quantify tunnel noise by pressure 

fluctuation levels. A protective screen mounted in front of the pressure transducer limited the 

frequency response of the transducer to only 20 kHz. Even with this low frequency response, 

measurements of root mean square (RMS) pressure fluctuations were successfully made at Mach 

numbers of 8, 10, and 14, and at a range of unit Reynolds numbers. The results fell within a 

reasonable range compared to those of similar facilities. 

Bounitch et al.[24] extend this testing with the addition of PCB 132A31 pressure 

transducers, which are capable of much higher frequency response than the Kulite transducer, 

giving a range of 11-1000 kHz for frequency response. Testing at M = 10, Re/L = 2×106 / ft (6.6×106 

/ m) showed that RMS noise levels measured by the Kulite transducer from 0-25 kHz averaged 

3.65% of static pressure, while noise levels from the PCB transducer from 25-1000 kHz averaged 
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3.32%. The total noise level, found by taking the RMS of these two values, was 4.94%. Extension 

of the frequency range of the disturbance level measurement from 0-25 kHz to 0-1 MHz resulted 

in only a 35% increase in the measured disturbance level; most of the disturbance energy in the 

flow is at relatively low frequencies. From laminar boundary layer stability theory, however, it is 

expected that stability is most affected by frequencies somewhat greater than 25 kHz at the flow 

conditions encountered in Tunnel 9. Computational models by Berridge[25,26] predict an 

amplification peak around 200 kHz for Tunnel 9 at Mach 10 for a unit Reynolds number of 

6.5×106 / m. Over the full operating range of the tunnel, the amplification peak ranges between 

about 60 and 500 kHz. Measurements of not only disturbance strength but also the spectra of 

disturbances are necessary for meaningful characterization of tunnel noise, as mentioned before. 

A numerical simulation of pitot-tube response to freestream noise was performed by 

Hornung and Parziale[27]. Results show a Mach-number-dependent amplification of freestream 

noise level, which is worst at lower Mach numbers. The effect of this amplification is not clear, 

but the authors conclude that “The results emphasize the superiority of optical methods over pitot 

pressure for measuring noise.” 

Part of the difficulty presented by this problem is that invasive measurement techniques, 

like hot-wire anemometry or the pressure transducers mentioned previously, must take the effect 

of boundary layers and bow shocks in front of the transducers into account. While the effect of 

these phenomena on overall signal strength is fairly well characterized[28], their effect on the 

"flatness" of frequency response is not. They necessarily cannot measure a true freestream 

spectrum. 

 Non-invasive optics, like the shadowgraph, schlieren, and interferometry techniques, have 

long been a mainstay of wind tunnel testing for qualitative, and sometimes quantitative, 
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measurements. These techniques are useful because interpretation of the images they produce is 

generally intuitive, allowing the visual examination of shocks and instabilities in flow fields. The 

path-integrating nature of these methods leads to the observation of whole-field phenomena, 

however, rather than the local variations of flow properties that are sometimes required. A major 

consequence of this feature of these techniques is that phenomena such as boundary layers on the 

periphery of the flow often overpower the refractive strength of the phenomena of interest, 

requiring the sensitivity of the optics to be reduced to keep the images within their limited dynamic 

range. To successfully measure disturbances in the freestream of a wind tunnel, an optical system 

must be arranged such that it can "see through" these boundary layers and measure primarily the 

disturbances in the core of the wind tunnel flow. 

The “focusing”-schlieren technique can be used to significantly reduce the depth-of-field 

of the optics to limit the strength of unwanted boundary effects[29,30]. However, doing so comes 

with an associated reduction in sensitivity. This technique uses a large extended light source and 

cutoff grids to produce a schlieren image where the refractive index gradients at the focus of the 

instrument are well resolved, but those that are off-focus are blurred, significantly reducing their 

contrast. With a large-enough source so that the depth-of-field of the instrument adequately rejects 

boundary layer noise, global measurements of density fluctuations can be made with high-speed 

cameras. At the time of this writing, however, frame rates are somewhat limited: the fastest 

commercially available cameras are capable of approximately one million frames per second 

(1 MHz) and only at significantly reduced frame sizes and pixel bit depths (for example, 64x16 

12-bit pixels at one million frames per second for the Photron FASTCAM SA5). While the framing 

speed and pixel count of high speed cameras will undoubtedly improve with time, they are 

currently inadequate for the measurement of very-high-speed, small-amplitude fluctuations. 
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One method to avoid the requirement of extremely-high-speed cameras is the schlieren 

deflectometry method developed by McIntyre et al.[31] and extended by Alvi et al.[32] McIntyre’s 

device uses a standard schlieren optical system, but the image is projected onto two ground glass 

screens, where fiberoptic probes sample the image intensity at a known position and a relative 

displacement from one another. Alvi extends this device by replacing the standard schlieren optics 

with a focusing-schlieren setup to minimize the effect of boundary layer noise in a wind tunnel on 

the output. This focusing-schlieren deflectometry technique has been used by Garg and Settles[33] 

to measure convective velocity in boundary layers in the Penn State University Supersonic Wind 

Tunnel, and by VanDercreek[34] to examine second-mode instability waves in laminar boundary 

layers in AEDC Hypervelocity Tunnel 9. Garg notes that, while the focusing-schlieren technique 

performs well enough in focusing the image so as to ignore “noise” from outside the region of best 

focus for measurement of a boundary layer velocity profile, it may not be practical to shrink the 

depth-of-field as much as may be needed to adequately reject unwanted signals in some flows. On 

the other hand, it can be shown that schlieren sensitivity is inversely related to the depth-of-field, 

so that very weak disturbances require longer depth-of-focus to resolve, at odds with the 

requirement to minimize unwanted signals by sharpening the depth-of-focus. Despite this 

difficulty, VanDercreek was able to image (using focusing schlieren) and measure (using schlieren 

deflectometry) boundary layer instability waves on the Tunnel 9 transition cone, resolving clear 

instability peaks in the 200-300 kHz range for Mach 10 flow at a unit Reynolds number of 

10×106 / ft (33×106 / m), which correlated well with pressure peaks from the high frequency 

pressure transducer[35]. 
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1.7   Crossed-Beam Schlieren Deflectometry 

While focusing schlieren deflectometry largely reduces interference from signals away 

from best focus, it is a very complicated design to implement. Another schlieren deflectometry 

technique that accomplishes similar results, but is significantly easier to build, is crossed-beam 

schlieren (CBS) deflectometry. The current research began with CBS deflectometry and then later 

moved on to the focusing laser differential interferometer (FLDI) instrument. Nonetheless, CBS 

deflectometry is an important preliminary step, and is therefore described next in more detail. 

Recognizing the limitations of hot-wire anemometry, particularly in the analysis of high-

speed flows, Fisher, Krause, and Wilson[36-38] developed the optical crossed-beam correlation 

technique for quantifying turbulent properties in cases where HWA may not be applied reliably. 

This includes cases when intrusive measurements are not acceptable in a flow, or when the 

temperatures involved are too high to allow adequate HWA wire overheat. With the crossed-beam 

technique, the intensities of two laser beams, intersecting in the flow at some angle relative to one 

another, are measured by photodetectors. These measurements represent an optical-path-integrated 

signal of the scalar quantity of interest over the length of the each of the beams. They encounter 

uncorrelated turbulent boundary layer disturbances near where each beam enters and exits the test 

section, but pass through a volume close to the intersection where the disturbances experienced by 

the two beams are highly correlated. By taking the cross-correlation of each signal, the majority 

of the integrated “noise” on the signal from outside this correlated volume is removed, leaving the 

correlated portion of the two signals intact, corresponding to the disturbances local to the region 

where the beams cross. 

Fisher’s initial work in developing this technique uses water droplets suspended in a 

subsonic M = 0.2 jet, although later he uses UV light at 185 nm, which is absorbed readily by 

oxygen at moderate pressures, to probe the properties of a turbulent, supersonic jet. Wilson, 
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meanwhile, utilized infrared light generated by glowbars at an effective temperature of 1100 K 

and filtered by a monochromator to resolve the 4.3 µm absorption band of CO2 for measuring the 

sound source intensity of jet noise. In all three cases the authors noted unwanted contributions of 

scattered light to the measured absorption signals, as well as fluctuations due to variation in the 

absorptivity of gases based on temperature and pressure. 

 A natural extension of this crossed-beam technique that would limit the problems 

encountered above with direct intensity measurements is to measure the refractive displacement 

of each beam. Funk and Johnston[39] take the instrument used by Wilson for his UV absorption 

experiments and add knife-edges before the photodetectors, while replacing the UV sources with 

HeNe lasers, to perform crossed-beam schlieren measurements. They note that the schlieren 

system appears more promising than absorption or scattering because the sensitivity of the device 

is adjustable by manipulating the cutoff, and because the signals themselves are more easily related 

to the local density of the flow, simplifying interpretation. 

Meanwhile, Wilson and Damkevala[40] revisit this problem and utilize the crossed-beam 

Schlieren technique to establish the mathematical relationships between the signals measured 

experimentally in subsonic jets (U = 100 to 210 m/s) to the statistics of turbulent properties. 

Martin[41] examines the application of the crossed-beam schlieren technique to the analysis of 

scalar turbulence generated by a heated grid, which should be approximately isotropic and 

homogeneous, and gives an extensive explanation of how the spectra generated from the 

photodiode signals are processed.  

All of the CBS studies presented so far were pre-digital, and were greatly limited in 

frequency response by the analog cross-correlators and tape-recording equipment available to the 
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authors at the time (approximately 80 kHz maximum for Fisher’s recording equipment). This 

generally precluded their ability to examine higher-speed phenomena. 

Grandke[42,43] leverages developments in high-speed digitization and desktop workstations 

to improve the crossed-beam schlieren correlation method. The digitizer used for Grandke’s 

research was capable of around 25 MHz maximum frequency response, several orders of 

magnitude higher than previously available. The crossed-beam correlation technique was applied 

to examine heated grid turbulence and the turbulent wake of a cylinder in one study[42] and a 

subsonic round turbulent jet in another[43]. In both cases the result was compared to hot-wire 

surveys, showing excellent agreement. While Fisher and Wilson note that the convective velocities 

measured by the crossed-beam correlation method appear to be somewhat slower than the mean 

flow, Grandke’s instrument measures convective velocities very close to the mean flow velocity, 

which he attributes to better measurement of small-scale structures in the turbulent flows because 

of his instrument’s improved frequency response. 

Rather than using knife-edges to perform traditional schlieren measurements, the CBS 

technique used in an early phase of the present research measures beam deflection directly using 

position-sensitive diodes. This is an improvement upon the knife-edge design, because it allows 

for compensation of fluctuations in laser power and absorption of beam power in the test section, 

but otherwise provides an output that is directly comparable to the knife-edge setup. This 

instrument is described further in the Apparatus section of this thesis. 

 

1.8   Focusing Laser Differential Interferometry 

For reasons described later in the Results section of this thesis, crossed-beam schlieren 

deflectometry was found unsuitable for freestream disturbance measurements in high-speed wind 

tunnels. Attempts to apply focusing methods to the CBS instrument, to reduce its sensitivity to 
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tunnel-wise boundary layer disturbances, were not successful. Ultimately, crossed-beam schlieren 

was abandoned in favor of a different technique, focusing laser differential interferometry. 

Focusing laser differential interferometry (FLDI) is a technique originally developed by 

Smeets and George of the French-German Research Institute Saint-Louis in the mid-1970s[44-48]. 

The FLDI instrument is a variation of the lateral-shearing interferometer, which gives a single-

point measurement (rather than a global measurement, as with focusing schlieren imaging) of the 

local refractive index gradient, similar to deflectometry. However, as a focusing technique, its 

sensitivity to disturbances away from best focus is significantly reduced. Smeets and George 

describe a large variety of uses for FLDI, demonstrating its use for measurements of acoustic 

disturbances, turbulence, density profiles in boundary layers, electron densities in plasmas, etc. 

Despite this broad applicability of the FLDI technique, it appears rarely in the literature, even 

compared to the crossed-beam schlieren technique. Moreover, Smeets and George presented the 

instrument in broad terms of its function and applicability, but without any detailed optical 

analysis. 

Recently, however, the FLDI technique was used by Parziale for characterization of 

boundary layer transition in the CalTech T5 reflected-shock tunnel[49-52]. Turbulence spectra of 

boundary layers on a 5-degree-half-angle cone in high-enthalpy Mach 5.5 flow are measured and 

compared to measurements of the turbulence spectra in the freestream flow, showing the 

amplification factor of boundary layer spectra due to second-mode instability waves. Parziale 

demonstrates the high frequency response of the FLDI instrument by resolving instability 

amplification peaks out to around 2 MHz, well beyond the best-case frequency response of about 

1 MHz of the surface-mounted pressure transducers mentioned earlier. In addition to single-point 

measurements, Parziale describes two-point FLDI measurements, intended to track the motion and 
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growth of turbulent spots propagating along the boundary layer of the cone. Cross-correlation of 

the two signals gives an estimate of the velocity of the spot in the boundary layer, by measuring 

the time delay of the point of maximum correlation. These turbulent spots were found to propagate 

at a velocity very close to the velocity at the edge of the boundary layer. 

 

1.9   Goals of the Present Study 

Unlike the case of more common quantitative techniques, there is very little published 

theory for the behavior of the focusing laser differential interferometer. No comprehensive study 

of the frequency response or away-from-focus signal rejection of the instrument exists, and no 

generally applicable methods to calibrate an FLDI instrument have been described. Without a solid 

theoretical foundation, quantitative measurements of turbulence using this technique, particularly 

the characterization of turbulence spectra, are somewhat suspect. This thesis aims to describe a 

general theory by which the sensitivity of an FLDI instrument can be estimated, and presents 

calibration techniques for accurate in-situ measurements of the optical properties of the instrument. 

To this end, a theoretical model for the response of the FLDI instrument to turbulence and 

simple methods for measurement of the beam separation and beam diameter of an instrument are 

presented. This allows calibration of the instrument for direct quantitative measurements of 

turbulent properties. 

The theory is verified using measured and simulated turbulence spectra from a round 

turbulent jet, which is a well-characterized turbulence source that is common in the literature. 

Measurements are made of freestream turbulence spectra in the Penn State supersonic wind tunnel 

(PSUSWT) at Mach 3 and in AEDC Hypervelocity Tunnel 9 at Mach 10, demonstrating the 
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usefulness of the FLDI technique for characterization of these spectra. Finally, possible 

improvements to the instrument are identified for future work. 

Chapter 2:   Experimental Apparatus and Facilities 

2.1   FLDI Optics - Basic Layout 

 

 
Figure 2.1a,b: Basic layout of FLDI instrument and a photograph of the instrument used for the present 

research. Here, the instrument is set up to measure the turbulence profile of a round turbulent jet. 

 

A basic focusing laser differential interferometer consists of a laser, some method of 

expanding the laser beam, two field lenses to focus that beam within the desired test area, two 

birefringent prisms to split and then recombine two beams to perform the interferometry, and some 

detector to sense the polarization and phase of the output. The layout of the instrument developed 

during the present research is shown above in Fig. 2.1a, with a photograph of the instrument shown 

in Fig. 2.1b. A photograph of the transmitting side of the FLDI instrument is shown in Fig. 2.2, 

and a photograph of the receiving side of the FLDI instrument is shown in Fig. 2.3. 
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Figure 2.2: Photograph of the transmitting side of the FLDI instrument. Here, a helium-neon laser is 
projected through a 100x microscope object. The expanding beam passes through a polycarbonate 

“Sanderson” prism to create the two perpendicularly-polarized beams of the interferometer. A Nikon camera 
lens is used for the field lens. 

 

Figure 2.3: Photograph of the receiving side of the FLDI instrument. Here, the second field lens collects the 
FLDI beams on the far side of the test area. The two perpendicularly-polarized FLDI beams are recombined 

in the second Sanderson prism. The beam is collimated by a small security camera lens. A Berek compensator 
adjusts the phase of the recombined beam. Finally, the beam passes through a polarizing beam-splitter cube, 

where two photodiodes measure the intensity of the resulting interference patterns. 
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A Thorlabs 0.8 mW HeNe laser was used as the source for the instrument detailed in this 

research. This laser was chosen due to its thin 0.48 mm 1/e2 beam diameter rating, as beam 

diameter is critical to the frequency resolution of the device. The beam quality of such HeNe lasers 

is excellent, which reduces the importance of spatial filtering somewhat. This HeNe laser is 

strongly polarized, with a polarization ratio of 500:1. A 100x microscope objective is used to 

expand the laser beam to fill the aperture of the field lens as much as possible, combined with a 5 

μm pinhole to spatially filter the beam. 

For bench testing with a round turbulent jet, and for use in the Penn State supersonic wind 

tunnel, Nikon 50mm f/1.2 camera lenses are used for field lenses. These modern, high-quality 

lenses allow for large beam diameters outside of the test area, without introducing large aberrations 

to the beam, which would otherwise reduce the quality of the beam focal point. For testing in the 

much larger AEDC Hypervelocity Tunnel #9, two large 200-mm-focal-length triplet lenses were 

purchased, which were a good match to the long beam path from the field lenses to the focal point 

in the center of the tunnel. 

The birefringent Sanderson prisms used to split and recombine the laser beam into the two 

perpendicularly-polarized FLDI beams, the Berek phase compensator used to adjust the phase of 

the interferometer output beam for maximum sensitivity, and the polarization measurement 

electronics are described below. 

 

2.1.1   Adjustable Sanderson Prisms for Variable Beam Separation 

 Instead of the traditional Wollaston prisms typically used in previous FLDI instruments, 

stress-birefringent plastic Sanderson prisms[53] are used here, where the divergence angle of the 

prism depends on the stress induced in the prism by loading it in four-point bending. High-quality, 
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low-divergence Wollaston prisms are expensive, typically more than $1000, and for this instrument 

a closely-matched pair must be used. If the divergences of the two prisms differ, the signal response 

of the interferometer will be reduced. Sanderson prisms, on the other hand, are optically equivalent 

to Wollaston prisms at small divergence angles[54], yet are adjustable so that they can be made to 

match one another exactly. They can be also made at a much lower cost than Wollaston prisms. 

The Sanderson prisms must be calibrated to determine their divergence angle for a given applied 

stress, and the method by which this calibration is performed is explained in the Procedures 

section. The theory of the operation of Sanderson prisms is given in the Theory section of this 

thesis (3.6.2). 

A photograph of the interference pattern produced by observing a Sanderson prism under 

stress is shown in Fig. 2.4. This is one of the two identical geometry prisms used for this research. 

The backlighting is polarized light from an LCD computer monitor. A polarizer is mounted on the 

camera and aligned in the same direction as the monitor’s polarization to take a bright field picture 

of the prism. The red component of the original RGB color photograph is isolated here for clarity 

in reproduction of the image in grayscale. 
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Figure 2.4: Interference pattern of a Sanderson prism under stress. The background lighting is provided by 
an LCD computer monitor, which is polarized. A polarizer in front of the camera lens causes the interference 

pattern seen here. 

 

The horizontal bars of the interference pattern in the center of the Sanderson prism are caused by 

the uniaxial state of stress generated in the prism in four-point bending. The two 

perpendicularly-polarized beams that emerge from the prism diverge from one another in the axis 

normal to these horizontal bars. 

 A photograph of one of the two identical Sanderson prisms used for this research is shown 

in Fig. 2.5. It is annotated with the critical dimensions of the prism, described in detail in the 

Theory chapter of this thesis (3.6.2). 
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Figure 2.5: Sanderson prism from Fig. 2.4 viewed without polarizer, annotated with critical dimensions of the 
prism. The use of these dimensions is detailed in Theory section 3.6.2. 

 

Here, L is the distance from the outer load point to the centerline of the prism, while Y is the 

distance between the inner and outer load points. The height of the prism is h, and the thickness of 

the prism is b. 

 

2.1.2   Berek Compensator 

The FLDI instrument is a polarization interferometer which measures subtle shifts in the 

phase of the polarization of two laser beams passing through the test volume. This phase shift is 

related to the difference in optical path length encountered by each beam. To avoid ambiguity in 

calculating the optical path difference in the interferometer, the mean phase shift of the 

interferometer must be shifted to the zero degree point on the sinusoidal response curve of the 
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instrument. This ensures that the instrument will respond identically to phase shifts in either 

direction and maximizes its sensitivity. 

Many different designs for phase compensators exist, with the Soleil-Babinet compensator 

being probably the most well-known. The Soleil-Babinet compensator is a very precise instrument 

and is easy to calibrate, but it is very expensive and its high precision is not strictly required for 

the FLDI instrument. A different design, the Berek compensator, fills the requirements at much 

lower cost. A Newport 5540 “Berek's variable wave plate” was obtained for present purposes. 

 A Berek compensator consists of an optical window made of a birefringent material, cut so 

that the beam is parallel to the c-axis of the crystal (the crystal’s optic axis) at normal incidence. 

At this angle there is no effect from the birefringence of the material. However, tilting the window 

splits the incoming beam according to its polarization, and displaces each resulting beam by a 

slightly different amount due to the differing refractive indices for the two polarizations. Berek 

compensators are typically made either of MgF2 (as is the case with the Newport 5540) or of 

sapphire (Al2O3), so the refractive-index difference between the two polarizations is so small that 

there is negligible separation between the resulting beams. The slightly-different path length 

between the two polarized beams behaves as if it was a small phase difference (0-5 waves over the 

full tilt range of the window, typically) in the original beam. A diagram showing the behavior of a 

Berek compensator, with greatly exaggerated beam separation, is shown in Fig. 2.6. 
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Figure 2.6: Berek compensator diagram showing light entering the compensator window from the left. The 
component of the light with polarization perpendicular to the crystal axis follows the “ordinary” path, while 

the component with polarization parallel to the crystal axis follows the “extraordinary” path. 
 

As seen here, the Berek compensator behaves like the displacement from a tilted window, with 

different refractive indices for the two polarizations. The induced phase difference from the tilt is 

described by Eq. 2.1. 

 2 2
o

2 2

2 sin sin
1 1

e o

tn

n n

  


 
     

 
 (2.1) 

 

Here, φ is the phase difference from the Berek compensator in radians, θ is the tilt angle of the 

window in radians, λ is the wavelength of the laser, t is the thickness of the window, and no and ne 

are the refractive indices for the ordinary and extraordinary rays through the window, respectively.  

It is important to note that this calculation depends on the beam being collimated for its 

passage through the compensator. If the beam is expanding or contracting as it passes through the 

compensator, it will retard different parts of the beam to a greater or lesser degree depending on 

the angle-of-incidence. This error would prevent the Berek compensator from fulfilling its 

necessary function. 
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 The Newport 5540 Berek compensator is a 2-mm-thick MgF2 window. From Dodge 

(1984)[55], the ordinary and extraordinary refractive indices for MgF2 can be determined for a given 

wavelength using a three-term Sellmeier equation: 
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The coefficients Aj and λj for MgF2 are given by Dodge[55], and are repeated here in Table 2.1: 

 

Table 2.1: Sellmeier coefficients for MgF2 from Dodge (1984)[55] 

 o-ray e-ray 

A1 0.48755108 0.41344023 

A2 0.39875031 0.50497499 

A3 2.3120353 2.4904862 

λ1 0.04338408 0.03684262 

λ2 0.09461442 0.09076162 

λ3 23.793604 23.771995 

 

 

Using these coefficients, a plot of phase retardance versus compensator tilt angle for the Newport 

5540 Berek compensator is shown in Fig. 2.7. 
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Figure 2.7: Phase retardance, in waves of 632.8 nm HeNe light, for the Newport 5540 compensator calculated 

using Eq. 2.1. The actual compensator is capable of slightly over 2 waves of retardance over its full 
adjustment range, as seen in Fig. 4.2. 

 

This calibration of compensator tilt angle with retardance is important for use with the 

beam-separation measurement explained in the Procedures chapter of this thesis. 

 

2.1.3   Simultaneous Measurement of P- and S-Polarizations 

 Two Thorlabs DET36 photodetectors are used to measure the polarization shift due to 

refractive index differences between the two laser-beam paths in the FLDI instrument. By using 

two photodetectors it is possible to largely reject electronic noise and stray light, and this allows 

the direct measurement of interferometer phase. The photodetectors are battery biased to further 

reduce susceptibility to electrical noise, especially that from the 60 Hz noise of power mains. The 

interferometer signals measured by the two photodiodes are identical, but 180 degrees out of phase 

from one another. Measurements of the coherence between the signals from each photodiode are 
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used to determine what segments of measured spectra from the instrument are generally free of 

electronic noise. 

 Thorlabs VT1 variable terminators are used to convert the current from the photodetector 

to a usable voltage signal for the data acquisition system, which has high input impedance (1 MΩ, 

13 pF typical). Ideally, the photodiodes would be terminated with RL = 50 Ω loads to match the 

impedance of the cabling, maximizing photodiode frequency response, however this results in very 

small signal voltages for the low-power lasers used in this research. Instead, the terminator 

resistance, RL, was typically set to 1 kΩ resistance, which was found to provide adequate signal 

voltages with minimal effect on frequency response. The procedure used to measure reduction in 

frequency response due to termination resistance is described later in the Procedures chapter of 

this thesis. 

 

2.2   Crossed-Beam Schlieren Optics 

The crossed-beam optical correlation instrument used in early stages of this research uses 

the cross-correlation of the signals measured from two crossed laser beams to measure the 

convective velocity of a turbulent flow. The refractive displacement of the beams due to this 

turbulence is measured using position-sensitive detectors (hence the device is not a true Schlieren 

technique), rather than using photodiodes with pinholes or knife edges as is sometimes reported in 

literature. One beam is actively panned along the flow direction, and the relationship between the 

measured beam displacements, dx, and the time delay estimate from cross-correlation, dt, is used 

to measure the convective velocity of freestream turbulence directly. A schematic of the CBS 

instrument is shown in Fig. 2.8. 
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Figure 2.8: Schematic of the crossed-beam optical correlation instrument presented in this research. A glass 
window is mounted to a servo motor and is used to adjust the separation between the two crossed laser 
beams. The time delay between the two signals is estimated using cross-correlation at a range of beam 

separations to determine the convective velocity of the flow. 

 

Here, θ is the tilt angle of a glass window used to displace beam B to a distance dx (along the flow 

axis) from the centerline of fixed beam A. The dotted line for beam B shows its beam path without 

a turbulent disturbance from the flow, and the solid line shows beam B displaced on the position 

sensitive detector due to turbulence. The distance that beam B is displaced on the detector is δ. The 

position-sensitive detector for beam A is not shown in this diagram for clarity. A photograph of the 

CBS instrument set up to measure centerline velocity decay in a turbulent round jet is shown in 

Fig. 2.9. 

To get a precise estimate of convective velocity, time delay estimation from the cross-

correlation of the two laser-beam signals with known beam separation is used to measure it for 

each test run. One of the laser beams passes through a small glass window (as seen in Fig. 2.8), 

mounted to a servo motor. During a test, the window is rotated over an arc to displace the beam 

along the flow axis without affecting its direction. The amount of displacement is measured as a 

function of time from the detector outputs and is used with the time delay estimation scheme to 

perform a least squares fit to obtain the convective velocity. 



35 

 

 

 
Figure 2.9: Benchtop crossed-beam schlieren instrument set up to measure centerline velocity decay in a 

turbulent round jet. The beam displacement window is visible in front of the laser in the background. 

 

Two ThorLabs PDP90A two-dimensional lateral effect position sensors are used for 

measuring the displacement of the beams. These detectors consist of a large pin-cushion-shaped 

photodiode biased by a common cathode and with anodes in the four corners. Light incident on 

the photodiode’s surface generates a photocurrent in the detector, distributed over the anodes, 

which corresponds to the centroid of the beam. This allows the detector to measure the position of 

a beam on its surface across its entire active area to high precision: despite having an active region 

of 9 mm x 9 mm, the detectors are capable of measuring displacements down to a noise floor of 

less than 1 µm. The laser beam is continuous, so the response time of the detectors to laser beam 

displacements is negligible. Testing with an optical chopper showed the detectors to be capable of 

x 
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a frequency response greater than 10 MHz, which is well above the expected frequency response 

required for this research. 

 

2.3   HWA Setup 

 A TSI IFA 300 constant-temperature hot-wire anemometer system was used for comparison 

with the FLDI instrument's response. The IFA 300, with very small diameter wires for minimum 

thermal mass, is capable of a 300 kHz bandwidth according to its documentation. For the present 

research, 5 μm tungsten wires, copper-clad to improve the wires' survivability, are used to achieve 

reasonably-high frequency response. The hot-wire anemometer Wheatstone bridge voltage is 

measured directly by the data acquisition system, with samples taken simultaneously with the 

output of the FLDI instrument. This allows the direct comparison from individual tests of density 

fluctuation spectra from the FLDI instrument and mass flux fluctuation spectra from the hot-wire 

anemometer. 

 

2.4   Data Acquisition System 

 The data acquisition system used in this research is a PicoScope 5443B, which is a compact 

oscilloscope/DAQ. It is a four-channel model, capable of taking data at bit depths of 16-bits for 

one channel, 15-bits for two channels, or 14-bits for all four channels simultaneously. It can take 

data at up to 125 MS/s-ch (million samples per second per channel), although its sample memory 

is limited to 64 MS, split between the active channels. The PicoScope 5443B additionally includes 

an arbitrary waveform generator, which was used to produce the square wave signals needed for 

calibration of the photodiode frequency response, as detailed in Procedures section 4.5. 
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2.5   Facilities 

2.5.1   Cold Air Jet 

 A cold air jet was used to calibrate and characterize the FLDI instrument. Shop air, supplied 

at 480 kPa absolute pressure to a small nozzle, provided the refractive index disturbance needed 

for this experiment, cooled by expansion into the surrounding air. The nozzle used in this research 

is 1 mm in diameter and is a simple converging nozzle. A pressure regulator allows control of the 

pressure ratio of the jet, and the exit velocity and temperature, to determine the lowest feasible 

density gradient resolvable by the instrument. Translation stages with vernier scales are used to 

position the jet relative to the FLDI instrument's point of best focus. A photograph of the benchtop 

cold air jet test is shown in Fig. 2.10. 

 

 

Figure 2.10: Benchtop cold air jet setup, showing the cold air jet, translation stages, and the path of the FLDI 
beams through the test area. The x-axis is both the axis of FLDI beam separation and the jet axis, and the z-

axis is the axis of the FLDI beam propagation. The y-axis is oriented toward the reader. 
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2.5.2   PSU Supersonic Wind Tunnel 

 Local wind tunnel testing was performed in the Penn State Gas Dynamics Laboratory's 

supersonic wind tunnel, abbreviated here as the PSUSWT. A drawing of the tunnel is shown below 

in Fig. 2.11. 

 

 

Figure 2.11: Penn State Supersonic Wind Tunnel (PSUSWT). The Mach number of the tunnel can be 
adjusted by sliding the floor of the rectangular nozzle back and forth, as shown in the diagram. 

 

The PSUSWT is an intermittent blowdown tunnel with an adjustable sliding-block nozzle, which 

allows a Mach number range of 1.5 to 4.0. The test section measures 6 x 6.5 x 24 in. (15 x 16 x 61 

cm) and is optically accessible from the sides through 8 inch (20 cm) diameter windows. The 

tunnel is supplied by a 200 m3, 20 atm pressure reservoir which permits test runs of 30+ seconds. 

The operating envelope of the PSUSWT is shown in Fig. 2.12 for comparison with AEDC 

Hypervelocity Wind Tunnel 9's operating characteristics, to be discussed next. 
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Figure 2.12: Operating envelope of PSUSWT[56]. Testing for this research was performed at M = 3.0 with a 
stagnation pressure of 100 psia (0.7 MPa), giving a unit Reynolds number of ~60 x 106 / m. 

 

Testing was performed at M = 3.0, with a stagnation pressure of 100 psia (0.7 MPa). At these 

conditions, the unit Reynolds number of the tunnel is approximately 60 x 106 / m, with a freestream 

density of 0.64 kg/m3, U∞ of 598 m/s, and sidewall boundary thickness of approximately 1 inch 

(25 mm). 

 

2.5.3   AEDC Hypervelocity Wind Tunnel #9 

 Testing was also performed at AEDC Hypervelocity Wind Tunnel No. 9, in White Oak, 

MD. A photograph of Hypervelocity Tunnel 9 is shown in Fig. 2.13. 
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Figure 2.13: AEDC Tunnel #9. The tunnel is optically accessible using two sets of rectangular windows on the 
side of the test section. In this photograph, the downstream windows have been replaced with metal plates. In 
this research, the instrument presented here was installed on the upstream windows, while the downstream 

windows were used with the facility’s schlieren system. 
 

Tunnel 9 is, like the PSUSWT, an intermittent blowdown wind tunnel, and is capable of Mach 

numbers of 7 to 14 by interchangeable nozzles. It uses nitrogen gas to avoid real gas effects from 

condensation of the oxygen in air at the low static temperature run conditions encountered in 

Tunnel 9. Ablative graphite heaters are used to heat the gas to 1000+ K, to achieve very high 

freestream velocities and unit Reynolds numbers. This allows the simulation of high-speed flight 

at lower effective altitudes than is possible in most hypersonic facilities. The test section is circular 

and 60 inches (1.5 m) in diameter, however the useful core diameter, uncorrupted by tunnel wall 

boundary layers, is heavily dependent on which nozzle is in use and the operating unit Reynolds 

number. The freestream density of the flow at higher Mach numbers in T9 is substantially less than 

is possible in the PSUSWT. It is between approximately 0.5-7.5 x 10-3 kg/m3 at Mach 10, which 

is the Mach number at which the current tests were performed. In the M = 10 nozzle, the core 

diameter, clear of boundary layer turbulence, is approximately 1.02 m. This means that roughly 

one third of the optical path that the FLDI instrument must look through is corrupted by boundary-
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layer turbulence. Photographs of the FLDI optics installed in Tunnel 9 are shown in Figs. 2.14 and 

2.15. 

 To overcome some of the noise problems experienced with the long cable lengths and 

electrically noisy environment of T9, two Stanford Research SR560 battery-powered preamplifiers 

were used. The SR560 is capable of gain from 1 to 50,000, and has built in high- and low-pass 

filters that can be set from DC to 1 MHz cutoff frequencies. 
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Figure 2.14: Transmitting optics for FLDI instrument installed in Tunnel 9. 
 

 

Figure 2.15: Receiving optics for FLDI instrument installed in Tunnel 9. 
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Chapter 3:   Theory 

3.1   Aero-optics 

 As a beam of light passes through density inhomogeneities in a fluid, these 

inhomogeneities impart aberrations in the beam. The shimmering effect seen when looking past 

hot objects, like cars and roads in the sun, is an example of strong aberrations stemming from the 

density gradient between the hot surface and cooler air. The study of these aberrations and how to 

relate them to the fluid dynamic effects that cause them is a field called aero-optics. All optical 

flow-visualization techniques leverage these aberrations to allow researchers to "see" the density 

field of a flow or one of its derivatives.  

 These optical techniques are often hampered by their path-integrated nature, wherein the 

light beam is affected by all the inhomogeneities along the entire optical path, and not just those 

in the desired testing volume. A typical example of this problem is the corruption of schlieren and 

shadowgraph images by turbulent boundary layers on the windows of wind tunnels. The 

instrument developed in this research, while still path-integrating, leverages spatial filtering effects 

to achieve a "point-like" measurement of turbulence properties, despite aero-optic effects 

elsewhere along the optical path. 

 

3.2   The Gladstone-Dale Relation 

 Central to aero-optics is the Gladstone-Dale relation[57], which shows that the refractive 

index of a fluid is directly proportional to the density of the fluid. This relation is shown in Eq. 3.1a 

for a general case, and Eq. 3.1b shows the extension of the relation to the derivatives of a density 

field. Here, KGD,i is the Gladstone-Dale constant at a given wavelength of light for each species of 

fluid in the volume, and ρi is the density of that species. At 632.8 nm, the wavelength of the HeNe 
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lasers used in this research, the Gladstone-Dale constant of air is approximately 

2.257 x 10-4 m3 / kg, while the Gladstone-Dale constant for pure nitrogen gas is approximately 

2.38 x 10-4 m3 / kg. 
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Because of the direct proportionality between refractive index and density, local fluctuations in the 

density field lead to a corresponding variation in the refractive index. The spectra of refractive 

index disturbances measured by the device presented here should thus behave in the same manner 

as the spectra of density disturbances in the flow. 

 

3.3   Deflectometry 

 The most basic aero-optical technique, and the easiest to describe, is deflectometry. With 

deflectometry, a collimated beam is propagated through a fluid medium. As mentioned above, 

fluctuations in density throughout the medium lead to variations in the local refractive index. 

Gradients in fluid refractive index deflect light rays as they pass through them. Inhomogeneities 

on a scale larger than the beam diameter tilt the beam, causing it to be deflected as a whole (as 

shown in Fig. 3.1), while inhomogeneities smaller than the beam only deflect a portion of it, 

leading to effects such as defocusing. 

 



45 

 

 
Figure 3.1: Deflection of a beam due to density inhomogeneities in the path of the beam. The deflection of the 
beam measured at the detector comes from disturbances integrated over the entire path of the beam from the 

laser to the detector. 

 

These small disturbances tend to average out in the direction they deflect the beam, and cause the 

beam spot on a detector to blur. The mean deflection of the beam, measured as a shift, δ, on the 

detector, is the integrated effect of all of the refractive index gradients along the path that the beam 

follows through the medium, as shown in Eq. 3.2. 
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Here, εx and εy represent the mean deflection angles of the beam at the measurement plane, n is the 

local refractive index field, and the integral is over beam path s. When the deflection angles are 

very small, the small-angle approximation can be invoked, and the integral can be considered over 

the z-axis instead of requiring a path integral. This simplified calculation is shown in Eq. 3.3. 
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Using position-sensitive diodes as a detector (as in Fig. 3.1) allows direct measurement of 

beam displacement which, when divided by the distance between the origin of the beam deflection 
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and the detector, gives the deflection angles shown above. The schlieren technique is an imaging 

form of deflectometry, in which a sharp edge is placed at a focus after the test section to spatially 

filter the beam. Beam tilt toward or away from the edge causes the transmitted intensity to increase 

or decrease which, when calibrated, can also be used to determine the deflection angle of the beam, 

perpendicular to the edge. 

 

3.4   Interferometry 

 Deflectometry is limited by the difficulty of measuring very small deflections. Beam paths 

must be long enough to ensure that the beam displacement signal from the sensors is significantly 

greater than measurement noise. The dynamic range of a position sensitive detector is limited by 

the active area of the sensor. Large area sensors, however, have lower frequency response. 

Photodetector junction capacitance scales with the area of the detector, which increases the time 

constant of the detector. A technique related to deflectometry that overcomes some of these 

difficulties is interferometry, which uses constructive and destructive interference of waves of 

coherent light to measure wavefront tilt[58]. Typically, interferometers split an input beam into two 

beams, where one beam passes through the volume under test, while the other passes around this 

volume and serves as a reference beam. This arrangement is called a double-path interferometer. 

The wavefront of the reference beam ideally is undisturbed throughout its path, while the 

wavefront of the test beam is aberrated by flow disturbances. A typical double-path interferometer 

design is the Mach-Zender interferometer, as diagrammed in Fig. 3.2. 
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Figure 3.2: Mach-Zender interferometer layout. Arrows show the beam paths through the instrument. The 
difference in optical path length experienced by the two otherwise identical beams results in interference 

patterns at the output of the interferometer. 
 

 The phase velocity of a wavefront is the speed of light in vacuum divided by the local 

refractive index. Variations in the phase velocity of the test beam due to density inhomogeneities 

induce phase delays relative to the reference beam. This relative phase delay from the test volume 

is described in Eq. 3.4. Δφ is the relative phase delay of each point on the recombined beam at the 

measurement plane, λ is the wavelength of the monochromatic light source used in the 

interferometer, and the beam is again integrated over path s, as with deflectometry. 

 ∆𝜑 = 2𝜋𝜆 ∫ [𝑛(𝑥, 𝑦, 𝑧) − 𝑛∞]𝑑𝑠𝑠2𝑠1  (3.4) 

 
When the beams are recombined, they will interfere with one another: portions of the test beam 

that are in phase with the reference beam will appear bright, while out of phase portions of the 

beams will appear dark: fringes appear. The intensity of the interferogram is described by Eq. 3.5. 

 𝐼 = 𝐼1 + 𝐼2 + 2√𝐼1𝐼2 cos(∆𝜑) (3.5) 
 



48 

 

While deflectometry typically requires relatively large deflections to make accurate measurements, 

interferometry is limited in the opposite manner. As interference occurs over periods of light 

waves, large deflections may wrap over many wavelengths of light, causing many fringes to appear 

in the interferogram. In imaging applications, careful unwrapping of this phase signal can 

sometimes mitigate this issue, however in non-imaging systems like the instrument developed 

here, this is not possible. Because of this issue, the interference must be kept in the –π/2 to π/2 

range on a sine curve to avoid phase ambiguity, and ideally it should be restricted to a much smaller 

range to keep the signal response as linear as possible. This is demonstrated in Fig. 3.3. 

 

 
Figure 3.3: Sinusoidal response curve of interferometer, showing linear region around the 0 radian point on 

the sine. 

 

Here, possible aliasing of the interferometer response outside the range of –π/2 to π/2 is plainly 

evident. Meanwhile, if the phase is kept within a range of –π/10 to π/10, the difference between 

sin(θ) and θ is less than 1%, and the small-angle approximation can be invoked. In practice, many 

refractive fields are strong enough to exceed this linear region, which limits the usefulness of 

double-path interferometry for the turbulence measurements being performed in this research. 
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3.5   Common-path Interferometry 

 The sensitivity of an interferometer and its susceptibility to vibration can be reduced by 

replacing the reference beam with another test beam, separated by a small distance from the path 

of the original test beam. This is called common-path interferometry, since the two beams share 

almost all of their optical paths with one another. With this arrangement (sometimes called a 

shearing interferometer), the interference behaves as a finite difference between the two 

wavefronts, measuring Δφ/Δx instead of φ as the double-path interferometer does, where x is 

perpendicular to the optical axis, z. This is described by Eq. 3.6. 
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Here, the relative phase delay is similar to double-path interferometry, however the reference beam 

is replaced by a second beam path, sB, while the test beam follows path sA, separated by a small 

distance, Δx.  

 This particular type of common-path interferometer is called a lateral-shearing 

interferometer, as diagrammed in Fig. 3.4. The coordinate system used here is displayed for 

reference. 

 

 
Figure 3.4: Lateral shearing interferometer. Unlike with a Mach-Zender interferometer, the two beams 

follow a mostly common path, separated by a small distance, Δx. Because of this, the lateral shearing 
interferometer gives an approximation of the gradient of the refractive index field along the axis of beam 

separation, rather than a direct measurement of refractive index. 
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The phase range of the interference can be reduced by reducing the separation ∆x (the shear) of 

the two beams. However, the amplitude of the interference is also reduced in doing this. With too 

small a beam separation, the signal from the interferometer may drop below the noise floor of the 

detectors. As will be demonstrated later, smaller beam separations are also important for 

maximizing the frequency response of the instrument. All of these factors must be considered on 

a case-by-case basis in determining the ideal beam separation to use.  

 By definition, the finite difference becomes a derivative in the limit as the separation Δx 

approaches zero in Eq. 3.6. In this case, shown in Eq. 3.7, the two beams can be assumed to follow 

the same path with regards to the path integration. 
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Because the response of the instrument is reduced to zero at zero beam separation, this case is not 

physically realizable. However, it serves to demonstrate the similarity of lateral-shearing 

interferometry to deflectometry. Also, as will be shown later, depending on the flow properties, 

this approximation may be appropriate even with finite beam separation. Using the Gladstone-Dale 

relation, the refractive index gradient field may be related to the density field, as in Eq. 3.8: 
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3.6   Focusing-Laser Differential Interferometry 

 
Figure 3.5: Focusing-laser differential interferometer. The FLDI instrument is an extension of the lateral 

shearing interferometer concept which uses focused beams to improve sensitivity to disturbances at the focus 
of the instrument and reject signal from disturbances outside of this focal region. 

 

The technique investigated in this research, focusing-laser differential interferometry 

(FLDI), is a non-imaging common-path interferometer. With this technique, the laser beam is 

laterally sheared by a small amount and the resulting beams are expanded to a large diameter at 

the edges of the measurement volume. The beams are brought to sharp focus in the region of 

interest. The basic layout of the FLDI system is shown in Fig. 3.5. Focusing of the two FLDI 

beams spatially filters inhomogeneities along the beam paths, significantly reducing the 

contribution to the output signal of disturbances that are distant from the focal point. This gives a 

"point-like" measurement of density fluctuations in the flow. 

 

3.6.1   Polarized Light Analysis 

The FLDI technique is more specifically a polarization interferometer, where the input laser 

beam is split into two beams of mutually-perpendicular polarization, with a small divergence angle 

between them, by the use of a birefringent prism. The input beam is linearly polarized. However, 

each of the sheared beams' wavefronts encounter slightly different refractive index fields, as 

explained above, and when recombined, these relative phase differences result in an elliptically-

polarized output beam. A brief introduction to the polarized light analysis used for this research is 
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given here, but more in-depth explanations of these concepts can be found in textbooks such as 

Born & Wolf's "Principles of Optics."[59]  

For the coherent, fully-polarized beams used by the FLDI instrument, wavefronts can be 

represented simply by arrays of polarization vectors, called Jones vectors. At each point on the 

wavefront, the local polarization (the electric field, or "E-field", of the light) can be decomposed 

into a two-dimensional complex vector (Eq. 3.9) that fully describes the possible states of 

polarization of light throughout the FLDI instrument, from the laser source to the photodetectors. 
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Here, Ex is the amplitude of the electric field of the wavefront in the x-direction, and ϕx is the phase 

of the field in the x-direction. Likewise, Ey and ϕy are the amplitude and phase of the field in the 

y-direction. 

 The "shape" of the light's state of polarization is defined by Lissajous curves, which are 

x-y plots of the instantaneous amplitude of both components of the electric field through one full 

sinusoidal oscillation of the wave. In the case that ϕx and ϕy are equal, or if one of the Ex or Ey 

amplitude components is zero, the light is said to be linearly polarized, as both components are 

oscillating in phase with one another, so the Lissajous curve appears linear. If Ex and Ey are equal, 

and ϕx and ϕy are 90 degrees out of phase from one another, the light is circularly polarized and the 

Lissajous curve traces a circle. All other states of polarization are elliptical. An example of the 

effect of delaying one component's phase in initially-linearly-polarized light at 45 degrees is shown 

in Fig. 3.6. 
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Figure 3.6: Lissajous curves for initially-linearly-polarized light at 45 degrees (equal intensity in Ex and Ey), 
where one component's phase is retarded by the angle indicated below each curve. A relative phase difference 

between the x- and y-components of polarization results in elliptical polarization, except when their 
polarization is 90 degrees out of phase, which results in circular polarization. 

 

By forming a two-dimensional array of these vectors, an "image" of a wavefront can be 

constructed, where each pixel contains the local complex polarization vector. A diagram of this 

method is shown in Fig. 3.7. 

 

 

Figure 3.7: Diagram showing how a polarized image may be constructed from Jones vectors. The grid on the 
left represents an image of a polarized beam, where each pixel is a complex 2-D vector, representing the 

electric field at that point in the beam. 

 

These images can be summed to model the interference of the two superposed wavefronts, such as 

the recombined beams from the FLDI system. This technique is used to develop some of the 

transfer functions presented later, and in simulations of the FLDI system's response. 
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 Jones vectors share all of the properties of Euclidian vectors: they can be summed and 

subtracted or multiplied by scalars. The magnitude of a Jones vector describes its "length" in terms 

of the intensity of the light at that point, as in Eq. 3.10. 
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It is worth noting that the phase difference between the x- and y-components of polarization does 

not affect the intensity of the light by itself: the ellipticity of light’s polarization is normally an 

invisible phenomenon. Passing the light through a polarizer, where the axis of the polarizer is 

aligned with the polarization vector, converts this phase difference into an intensity difference. 

Polarizers can be described mathematically using matrices, as demonstrated below. 

 Just as Euclidean vectors can be transformed using matrix algebra, states of polarization 

described by Jones vectors can be manipulated through Jones matrices. The effects of many optical 

elements on light intensity and phase can be modeled through these matrices, such as polarizers, 

waveplates, and the birefringent prisms used in this research. The simplest Jones matrices are those 

of polarizers aligned horizontally or vertically, represented by Eqs. 3.11a and 3.11b, respectively. 
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 (3.11a,b) 

 
For polarizers with their axes mounted horizontally or vertically, the polarization component 

perpendicular to this axis is absorbed.  

Another useful matrix is the rotation matrix. Rotation matrices for Jones vectors are 

identical to those for Euclidean vectors, and are described in Eq. 3.12.  
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Here, θ is the rotation angle of the matrix relative to the horizontal x-axis. Using this matrix, the 

Jones matrix for an arbitrarily-rotated polarizer may be formed. The Jones vector of the incoming 

light is first rotated into the plane of the polarizer, passed through a horizontal polarizer, and then 

rotated back into its original coordinate system. This process, and the resulting rotated polarizer 

matrix, is shown in Eq. 3.13. 
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(3.13) 

 
Summing two beams with mutually perpendicular polarization will not result in interference, 

regardless of the relative phase between them, as the ellipticity of polarization does not affect the 

intensity of light. If a linear polarizer is applied to the combined beam, however, light that is in-

plane with the polarizer axis will pass through unaffected, while the intensity of light with 

polarization that is out-of-plane with the polarizer will be attenuated. 

Of equal importance to Jones matrices that affect polarization’s amplitude are those that 

modify only its phase. The most basic Jones matrix of this kind is a simple phase retarder, 

described in Eq. 3.14.  
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In this matrix, the phases of the x- and y-components of polarization of an input electric field are 

delayed by ϕx and ϕy, respectively. As explained above, refractive index gradients along the light’s 

path result in the phase difference ∆φ. This would apply equally to both polarizations, resulting in 
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the Jones matrix in Eq. 3.15, representing the phase retardance experienced by light integrated 

over its optical path, s.  
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Because both polarization components are delayed equally, this implies that a beam cannot be 

made to interfere with itself through phase delays from the density inhomogeneities examined 

here. The FLDI instrument, however, splits the input laser beam into two beams, separated by a 

short distance ∆x, with mutually orthogonal polarization vectors. In this configuration, phase 

differences between the two beams due to density fluctuations will cause the initially-linear 

polarization of the input beam to become elliptical, proportional to the beam separation and the 

fluctuation strength. To model the FLDI instrument’s response, it is necessary to have a model for 

the polarization vector at each point on the output of the interferometer. Here, only a single “pixel” 

at the output plane of the interferometer is considered, for the sake of simplicity, but the concept 

is easily expanded to a full two-dimensional case. 

The laser used for this research is highly linearly polarized, and is oriented at 45 degrees 

to the beam separation axis. The input Jones vector for this polarization is shown in Eq. 3.16.  
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This orientation is necessary because the birefringent prisms split incoming light into two beams, 

where one beam is polarized along the axis perpendicular to the resulting beam separation vector, 

and the other beam is polarized parallel to that beam separation vector. This is modeled by taking 

the output of multiplying the input Jones vector by horizontal and vertical polarizer matrices, 

respectively. Each of these beams encounters a slightly different phase shift, due to the separation 

of the beams, as they pass through the test volume. The phase-modulated beams are combined in 
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the second prism through summation of their Jones vectors. Finally, the resulting beam passes 

through a phase compensator, which is used to take out any DC phase delay between the x- and y-

components, leaving only the fluctuating component of the phase. The output polarization vector 

of this system for a ray passing through point (x, y) at the output is described by Eq. 3.17. 

 

 

   ( , ) ( , )

( , ) ( , )

0 1 0 0 0 0 1,0
,

0 0 0 1 10 1 20 0

A B

A B

compensator A B input

s x y s x yi

s x y s x y

i i

i i

E M M M E

e e A x ye
E x y

e e

  

 

   

                                        

 (3.17) 

 
Here, φ represents the phase delay from the compensator, sA(x, y) and sB(x, y) are the optical paths 

of the two FLDI beams that arrive at point (x, y) at the output plane, and A(x, y) is the local 

amplitude of the input beam. In this research, the beam profiles are assumed to be Gaussian for 

simplicity. 

 The polarizing beamsplitter cube used for the FLDI instrument is oriented at 45° to the axis 

of beam separation, as seen in Fig. 2.3. In this orientation, the p-detector measures the polarization 

component parallel to the laser polarization vector (“p” for “parallel”). The s-detector measures 

the polarization component perpendicular to the laser polarization vector (“s” for “senkrecht”, 

which is German for “perpendicular”). This is because the polarizing beam splitter cube behaves 

as a polarizer at 45° for light passing directly through the cube, and as a polarizer at 135° for light 

that is reflected to the side. The polarization vectors that pass through the polarizing beamsplitter 

cube and arrive at the photodiodes are described in Eq. 3.18: 
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The intensities measured by the photodiodes of these two signals, IP and IS, are found using 

Eq. 3.10. 
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With the Berek phase compensator zeroed and with no disturbance present in the paths of 

the FLDI beams, all of the laser power should pass through to the p-detector, and none should pass 

through to the s-detector. However, if the FLDI beams do encounter a disturbance, the optical path 

length difference between the two beams causes a relative phase shift between the p- and s-

components of the polarization vector. This phase shift, in turn, is measured as a change in the 

intensity measured by the two photodiodes. A diagram demonstrating this process is shown in Fig. 

3.8. 

 

 
Figure 3.8: Measurement of polarization component phase shift from the interferometer. The laser beam 

entering the interferometer is aligned at 45 degrees to the beam displacement axis, which causes its intensity 
to be split evenly between the two beams. Each FLDI beam encounters a slightly different optical path, which 
causes a relative phase shift between the two beams. This phase shift results in the two photodiodes receiving 

different intensities of light. The change in beam intensity from the interferometer beam paths is used to 
calculate the strength of disturbances in the flow. 

 

The phase shift of the (ideal) interferometer signal can be determined from the intensities measured 

by the two photodiodes using Eq. 3.19:  
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In practice, the intensity signals must be scaled to account for interferometer contrast effects, as 

detailed in Procedures section 4.6. 

 

3.6.2   Sanderson Prisms 

As described previously, the FLDI instrument presented in this research uses two 

stress-birefringent Sanderson prisms[53]
 to split the input laser beams of the interferometer into two 

perpendicularly-polarized beams in the test area of the instrument and then recombine them. The 

use of these prisms for differential interferometry was demonstrated by Biss et al.[54] and found to 

perform identically to a standard Wollaston prism. 

Sanderson prisms rely on temporary birefringence that appears in glass-like polymers due 

to an applied stress, called the photoelastic or piezooptic effect. According to Maxwell's 

stress-optic law, the principal axes of stress in the prism correspond with the optical axes of 

polarized light[60]. Light with its polarization vector in the direction of the principal components 

of the stress, σj, encounters the refractive indices, nj, along these axes by the relationship shown in 

Eq. 3.20. 
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Here, nj is the polarization-dependent refractive index, n0 is the unstressed refractive index of the 

plastic material, q11 is the stress-optic coefficient for light polarized along the axis of the stress, q12 

is the stress-optic coefficient for light polarized perpendicular to the axis of stress, and σ is a vector 

representing the principal stresses. The above relationship is often resolved into three equations 
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using two coefficients, C1 and C2, in place of the stress-optic coefficients and unstressed refractive 

index: 
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 (3.21) 

 

 To match the behavior of a Wollaston prism, a Sanderson prism loads a rectangular 

prismatic polycarbonate bar in four-point bending to produce uniaxial stress in the bar.  A free-

body diagram for the prism in four-point bending is shown in Fig. 3.9. 

 

 

Figure 3.9: Four-point bending diagram for Sanderson prism. The applied force, P, results in a midspan 
deflection of the prism, X, and a corresponding bending moment in the prism, M. The beam separation from 

the prism is in the direction of the axis of the applied force. 

 

X is the maximum deflection of the prism, which occurs at its center. Y is the distance between the 

two load points on each half of the prism, and L is the distance from the outer load points to the 

centerline of the prism. In cross-section, the thickness of the prism is b, and its height is h. Between 

the two pairs of load points, each applying a force equal to P/2, a bending moment, M, is generated 

in the prism which leads to a linear stress gradient from the bottom to the top of the prism. This 

stress gradient creates a refractive index gradient in the same direction, which is dependent upon 

the incoming polarization amplitude vector: 
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From these equations, the refractive indices for each polarization axis, forming a refractive index 

vector for light propagating through the birefringent medium, can be computed. 
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The refractive index vector here is three-dimensional, while the Jones polarization vector is only 

two-dimensional. To handle this, the three-dimensional refractive index vector must be projected 

onto the plane of the Jones vector. For uniaxial states of stress as used here, where the principal 

axis of stress is perpendicular to the propagation direction of the light, this case reduces to the 

polarization component in the same direction as the principal axis of stress encountering the 

refractive index na, while the other polarization component encounters refractive index nb. 

Thus the Sanderson prism behaves similarly to a gradient-index lens, with the gradient in 

the direction of the stress. Taking the derivative of the above three refractive indices with respect 

to x gives a description of this gradient, as shown in Eqs. 3.24a,b: 
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The derivative of the stress with respect to x gives the following relationship for a prism in four-

point bending, using the dimensions shown in Fig. 3.9. 
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This can be expressed in terms of the midspan prism deflection, X:  
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where E is the modulus of elasticity of the prism material. While the prism behaves like a gradient-

index lens, the gradient is weak enough that it is possible to calculate a single beam divergence 

angle for the prism (Eq. 3.27). 
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Note that this approximation is accurate only for rays that enter the prism at shallow angles to the 

normal vector of the prism surface. If the ray enters the prism at a steep angle, then the effects 

from refraction at the surfaces, due to the difference in refractive index between air and the prism, 

must be considered.  

 Rays propagating through a Sanderson prism follow a parabolic path inside it, due to the 

linear refractive index gradient in the x-direction from the stress birefringence. This path causes 

the apparent source of the two polarized beams, zS, to be slightly forward of the center of the prism. 

A diagram illustrating this effect is shown in Fig. 3.10. 
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Figure 3.10: Effective focal point of the Sanderson prism and its related geometry. The angle ∆θ is greatly 

exaggerated here for clarity. The effective focus of the prism must be used in alignment of the FLDI optics for 
the beams passing through the test section to be parallel. 

 

 

The apparent source of the two beams is found using Eq. 3.28:  

 𝑧𝑠 = 𝑏2𝑛0 (3.28) 

 
This apparent source distance must be subtracted from the focal length of the FLDI field lenses 

when calculating the distance between the prisms and field lenses to achieve parallel beams 

through the test section. 

Because the coefficients C1 and C2 from Eqs. 3.21-27 are not identical, the two beams are 

actually deflected at different angles from the incoming propagation direction. These angles are 

very small, so any difference between handling each angle separately and modeling the angles as 

being equal is unlikely to greatly affect the accuracy of the propagation modeling. The difference 

in angles will, however, manifest itself as a phase delay between the two beams, which must be 

compensated for, using the phase compensator mentioned above. 
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A figure comparing Δx estimated using Eq. 3.27 (with a field lens focal length of 50 mm) 

and the calculated Δx from a full optical model of the prisms used in this research is shown in Fig. 

3.11a. Additionally, the relative phase delay between the two beams due to the C1 and C2 

parameters being unequal is shown in Fig. 3.11b. 

 

 
 
Figure 3.11a,b: Calculated and estimated Δx for the Sanderson prisms used in this research. The calculated 
phase difference between the two beams due to unequal C1 and C2 are shown in the bottom plot. 

 

Here, the difference between the estimated Δx and the calculated Δx from theory is negligible, 

despite the calculated Δx taking the difference in C1 and C2 into account, which supports the use 

of the equal-angle approximation in general use. The relative phase shift of the two beams caused 

by this difference is small but demonstrates the need for the Berek phase compensator to “null” 

the interferometer. 
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These plots were calculated using the parameters of the Sanderson prisms used for the 

present research, where L = 38.8 mm, Y = 26 mm, b = 9.3 mm, and h = 11.6 mm. The prisms are 

made of Lexan polycarbonate, which has the following properties[60]: n0 = 1.5816, E = 2.4 GPa, 

q11 = -4.6E-12 Pa-1, and q12 = 24.6E-12 Pa-1. 

In what follows, it is necessary for the FLDI instrument to have small and continuously-

adjustable beam separation ∆x that is exactly the same for the two prisms in the system. This is 

possible with two inexpensive, adjustable Sanderson prisms. However, to do this with fixed 

Wollaston prisms would require an impractically-large and expensive collection of precisely-

matched pairs of small-divergence-angle Wollaston prisms. 

 

3.7   Spatial Filtering by the FLDI Instrument 

In order to reject unwanted signals and get a point-like measurement at the focus of the 

interferometer, the FLDI technique relies upon spatial filtering of turbulence outside the region of 

interest. This spatial filtering can be broken down into two separate components: filtering due to 

finite beam separation, and filtering from the finite width of the beams. In order to model these 

effects theoretically, the approach used here is that of signal transfer functions, which are well-

known measures of signal output from a sensor or optical system as a function of a given input[61]. 

Models for the transfer functions of these effects are presented here to better parameterize the 

behavior of FLDI systems. Comparison of these theoretical results to measurements of signal 

rolloff away from best focus will be presented in the Results chapter of this thesis. 
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3.7.1   Taylor’s Hypothesis 

 When the two FLDI beams are separated by a sufficiently short distance ∆x (Fig. 3.4), 

turbulence that passes through the beams will not change significantly in character from one beam 

to the other. Instead, it appears to simply convect through unchanged. In this case, it is reasonable 

to invoke Taylor's hypothesis of "frozen turbulence," where functions of time and functions of 

space are directly related to one another by the convective velocity of the field. This relationship 

is described in Eqs. 3.29a-n: 
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The instrument developed here relies heavily on understanding how the optics spatially filter 

turbulent signals, particularly those from wind-tunnel-wall boundary layers. The photodetectors 

used to measure the interference signals are sampled in the time domain. Because of this, 

maintaining a beam separation such that Taylor's hypothesis holds is crucial. 

 Much of the data shown in this thesis are in spectral plots, either of measured turbulence 

or of expected behavior of the instrument in the form of transfer functions. In most of these plots 

the spectra are plotted against wavenumber, rather than frequency, as this provides a more natural 

comparison between turbulent signals by removing the influence of flow velocity. Wavenumber 

is calculated by using Taylor's hypothesis above to transform frequency (Eq. 3.30):  
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Wavenumber, in units of m-1, converts the time-domain signal, measured by the photodetectors, to 

a spatial frequency based on the apparent length scale of turbulent eddies. In doing so, turbulence 

generated from a given geometry, such as a round turbulent jet with a particular overall pressure 

ratio, is more easily compared with turbulence generated from the same geometry at different flow 

conditions. 

 What defines "sufficiently short" beam separation is dependent upon properties of the flow, 

particularly the Kolmogorov microscale of the turbulence and the mean flow velocity. 

Fundamentally, Taylor's hypothesis of frozen turbulence expects that the correlation between 

turbulence measured at two points will remain as high as possible, so that the relationship shown 

in Eqs. 3.31a,b holds. 
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Here, 𝑟 and ∆𝑟 are the position and velocity vectors of the turbulence signal, respectively, t is the 

initial time, and τ is the change in time between the initial and final samples of the signal. Ideally, 

the beam separation should be smaller than the smallest scales of turbulence, and a good target for 

this is the Kolmogorov microscale, η. Because most of the energy in the turbulence is present in 

much larger eddy scales than η, the correlation will remain high at larger beam separations than η, 

but in that case the frequency response of the instrument will suffer, and Taylor's hypothesis may 

no longer accurately relate frequency and wavenumber spectra for these larger eddy scales. 

Additionally, UC may be a non-trivial function of the wavenumber of the turbulent disturbances, 

in which case the assumption of a constant convective velocity required by Taylor’s hypothesis 

breaks down. 
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3.7.2   Effects of Varying Beam Separation 

 As discussed above, in the limit of beam separation approaching zero, the output of the 

FLDI instrument behaves as a true derivative in the direction of the beam separation. Because the 

two beams in a real instrument are necessarily separated by some finite distance, there are some 

spatial filtering effects that must be taken into account. 

 A simple model of how the system responds to a sinusoidal disturbance in one dimension 

is shown here in Eqs. 3.32a,b,c. The two FLDI beams, represented by the functions F+ and F-, 

encounter the same sinusoidal disturbance, but at different points along its curve due to their 

separation distance. The function hf0 represents the difference signal measured by the instrument 

for a given disturbance frequency, where f0 is the frequency of the disturbance in Hz. UC is the 

velocity at which the disturbance convects past the measurement points in the flow direction, while 

the beams are separated by the distance ∆x. 

 

𝐹+ = sin (2𝜋𝑓0 [𝑡 + 12 ∆𝑥𝑈𝐶]) 𝐹− = sin (2𝜋𝑓0 [𝑡 − 12 ∆𝑥𝑈𝐶]) ℎ𝑓0(𝑡) = 𝐹+ − 𝐹−∆𝑥 𝑈𝐶⁄  

(3.32a,b,c) 

 

At low disturbance frequency or small beam separation, the phase difference between the two 

signals is minor. At higher frequencies or larger beam separations, however, the phase difference 

may be large enough (greater than 90 degrees) that the signal will be subject to aliasing and will 

become ambiguous, as can be seen in Fig. 3.3 from the interferometry section above (Theory 3.5). 

These high frequency effects are easily seen in the frequency domain form of the function hf0(t), 

shown in Eq. 3.33. 
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A demonstration of the behavior of this transfer function compared to that of a true derivative, 

which has a transfer function of H(k) = k, is shown in Fig. 3.12. 

 

 
Figure 3.12: Transfer function magnitude of a true derivative compared to that of a finite difference. The 

finite difference gives a reasonable approximation of the derivative over only a small portion of the spectrum.  

 

Here, the loss of the signal when the two beams see a disturbance at multiples of pi can be seen, 

as well as the general loss of signal amplitude at higher frequencies. To more easily see how the 

finite-difference scheme deviates from the behavior of a true derivative, additional transfer 

functions shown here for the finite-difference scheme will be normalized by dividing by k. They 

will also be presented with logarithmic frequency axes, and with the magnitude of the transfer 

functions in terms of decibels of attenuation from a true derivative. When normalized by k-1, the 

system transfer function above becomes a sinc function, described in Eq. 3.34, and having the 

transfer function magnitude (for the case of Δx = 100 μm) shown in Fig. 3.13. 
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Figure 3.13: Transfer function of one-dimensional sinc filter, for ∆x = 100 µm, using Eq. 3.34. For this case, 

the response of the filter is roughly flat out to a wavenumber of 1x104 m-1. 

 

 This basic sinc filter model is naϊve, however, as we expect high wavenumber turbulence 

to behave generally isotropically. Under the isotropic assumption, a disturbance “wave” (i.e., a 

turbulent eddy) is equally likely to arrive at all angles to the beam separation axis. The apparent 

wavelength of a disturbance passing through the beams when it is off-axis is longer than the true 

wavelength, with a corresponding reduction in apparent wavenumber, as seen in Fig. 3.14. 
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Figure 3.14: Effect of wave angle of incidence on apparent wavelength, looking down the optical axis. The 
points represent the two FLDI beams separated by a small distance. In a) the waves are propagating along 

the axis of the beam separation, while in b) the waves are propagating at angle Φ to the beam separation axis, 
appearing to the FLDI instrument as having longer wavelength because of this angle. 

 

 

Here, the view is looking down the optical axis, z, and waves of wavelength 2𝜋𝑘−1 are convecting 

past the beams in both the x- and y-directions, with the dashed lines representing a period of the 

wave’s oscillation. The FLDI instrument “sees” only in the direction of the beam separation, 

however. Waves that convect past the beams at an angle ϕ to the beam separation axis appear to 

the instrument to have longer wavelengths than the same waves propagating in the direction of 

beam separation. Since waves are equally likely to approach the FLDI beams at any angle ϕ, due 

to the isotropic assumption for the turbulence, the transfer function for the beam separation must 

take this angle of incidence into account. 

At low wavenumbers, where the wavelength of a disturbance is large compared to the 

separation of the beams, the FLDI system output is almost exactly like a derivative. At higher 

wavenumbers, when the wavelength approaches and drops below the beam separation distance, 
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this approximation is no longer appropriate, and the transfer function of the instrument becomes a 

function of both wavenumber and the angle of the wave relative to the beam separation axis. Taking 

angle of incidence into consideration in the transfer function of the system results in Eq. 3.35, and 

a plot of the resulting response curve is shown in Fig. 3.15. 
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 (3.35) 

 

 

Figure 3.15: Effect of beam separation on signal magnitude as a function of wavenumber and wave angle. As 
seen in Fig. 3.14, increasing wave angle results in a longer apparent wavenumber to the finite difference. 

 

 

Expressing the transfer function of the spatial filtering effect as a function of both wavenumber 

and wave angle is inconvenient, since with the current instrument it is not possible to actually 

measure the angle at which a disturbance arrives at the beam separation axis. The above equation 

does not describe the full situation, either, as the turbulence being interrogated by this instrument 

is a three-dimensional phenomenon, so it must be considered over a sphere, rather than just a circle. 

The coordinate system for this case is described in Fig. 3.16. 



73 

 

 
Figure 3.16: Spherical coordinate system used here, showing the two beams, separated by ∆x, and the axis 

along which a disturbance varies, 𝒙. The gray circle represents the cross-section of the FLDI beams, while the 
two dots show the separation of the beams. 

 

 

Here, 𝑥̂ is the propagation vector of the disturbance, θ is the angle between this vector and the 

propagation axis of the FLDI beams, and ϕ is the angle between the disturbance propagation vector 

and the beam separation axis. Using this coordinate system, where 𝑖̂ is the axis of beam separation, 
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 𝑘̂ is the FLDI beam axis, and the 𝑗̂-axis is perpendicular to both of these axes, the disturbance 

propagation vector is defined in Eq. 3.34. 
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A Monte Carlo simulation was programmed to model the response of the FLDI instrument 

to sinusoidal disturbances due to the separation of the beams. Here, substitute coordinates, u and 

v, are introduced for the angles on the sphere, defined in Eqs. 3.35a,b,c. 
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Using these substitute coordinates, uniformly random samples of u and v in the range of 0 to 1 (as 

in Eq. 3.35a) result in uniformly distributed random disturbance propagation vectors of the 

following form:  
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The simulation generates random sinusoidal disturbances with a characteristic wavenumber, k, 

propagating along the vector 𝑥̂, and with random phase, Φ. These disturbances appear to the FLDI 

instrument as phase variations in the two beams as in Eq. 3.17:  
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Here, the ● represents the dot product (or inner product) between the disturbance propagation 

vector and a unit vector in the direction of the beam separation. This leads to the following 

polarization vector for the interferometer output:  
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The amplitude response of the FLDI instrument to these disturbances is calculated using 

Eq. 3.19, and the root mean square (RMS) value of the amplitudes of all of the disturbance samples 

for a given wavenumber approximates the transfer function of the system at that wavenumber. 

In this model, there is no preferred flow direction (i.e., effects due to the flow velocity 

vector are ignored), so the disturbance is equally likely to propagate in any direction. This can be 

seen in Fig. 3.17a, showing a random sampling of disturbance propagation vectors for this case. 

The result of the Monte Carlo simulation is plotted in Fig. 3.17b. A fit of the following form for 

the spatial filtering due to beam separation is applied to the simulation output:  
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 (3.37) 

 

The cutoff wavenumber, kc, for this case was found to be 0.54 ∆𝑥⁄ . 
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Figure 3.17a,b: Monte Carlo simulation of the FLDI instrument’s transfer function due to beam separation, 
in the case that there is no preferred flow direction. Here, ∆x = 100 µm. The two black dots in Fig. 3.17a 

represent the FLDI beam centroids. 
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A more comprehensive analysis of the FLDI instrument’s response must take the flow 

velocity vector into account, to model the preferred direction of acoustic wave propagation. In this 

case, rather than modeling the amplitude of a disturbance’s effect on the instrument’s response as 

uniform across the sphere, the amplitude is instead equal to the dot product of the velocity vector, 𝑈⃗⃗⃗, and the disturbance propagation vector: 
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Additionally, the output of the Monte Carlo simulation for this case is evaluated not at the original 

wavenumber, k, but at the effective wavenumber, keff, as defined in Eq. 3.39.  
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To calculate the RMS value for 𝐻∆𝑥(𝑘) in this case, the results from these simulations are 

binned according to the proximity of keff to k, such that if the value of keff is more than halfway 

between one bin for k and the next higher bin, it is rounded up, while if it is less than halfway 

between the two bins, it is rounded down. 

 A simulation showing the transfer function from the effect of beam separation when the 

flow is parallel to the axis of beam separation is shown in Fig. 3.18a,b. In this case, the cutoff 

wavenumber kc was found to equal 0.42 ∆𝑥⁄ . Finally, a simulation showing the transfer function 

from the effect of beam separation when the flow is perpendicular to the axis of beam separation 

is shown in Fig. 3.19a,b. In this case, the cutoff wavenumber kc was found to equal 1.10 ∆𝑥⁄ . 
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Figure 3.18a,b: Monte Carlo simulation of the FLDI instrument’s transfer function due to beam separation, 
in the case that the flow is parallel to the axis of beam separation. Here, ∆x = 100 µm. The two black dots in 

Fig. 3.18a represent the FLDI beam centroids. 
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Figure 3.19a,b: Monte Carlo simulation of the FLDI instrument’s transfer function due to beam separation, 
in the case that the flow is perpendicular to the axis of beam separation. Here, ∆x = 100 µm. The two black 

dots in Fig. 3.17a represent the FLDI beam centroids. 
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While the transfer function from Eq. 3.37 can be deconvolved from acquired spectra for 

data analysis, a better practice is to adjust the instrument's Sanderson prisms so the cutoff 

wavenumber as calculated above is greater than the maximum wavenumber of interest. In this 

case, the influence of the beam separation on the frequency response of the instrument may be 

ignored, and the initial assumption that the instrument measures the true spatial derivative holds. 

 

3.7.3   Frequency Response as a Function of Beam Size (f-number) 

 Propagation of the laser beam through the FLDI system is reasonably well approximated 

by a Gaussian beam model because of the high quality of the laser beam, particularly when 

spatially filtered through a pinhole. A Gaussian beam will focus to a minimum spot diameter 

related to the beam waist, w0, calculated in Eq. 3.40, and the width at all other positions along the 

beam is dependent upon this minimum diameter. A diagram showing key parameters of the 

Gaussian beam geometry is shown in Fig. 3.20. An effective f-number of the FLDI optics may be 

defined by the ratio of the focal distance of the FLDI system, d, to the maximum diameter of the 

FLDI beams, D4σ. This system f-number is a critical factor in the ability of the instrument to reject 

unwanted signals originating away from best focus, as the sensitivity of the instrument drops with 

increasing beam diameter. 
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Figure 3.20: Gaussian beam geometry for the calculations presented here. D4σ is the four sigma beam 

diameter of the FLDI beams at the field lenses, while w0 is the Gaussian beam waist at best focus. The system 
f-number for the FLDI instrument may be defined as the ratio d/D4σ. 
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 (3.40) 

 

Here, d is the distance from the focusing lens to the point of best focus, and D4σ is a standard 

measure of beam diameter representing the second moment of laser beam intensity, within which 

roughly 95% of the laser intensity is located. An approximation of the intensity of the beam in 

cross-section is shown in Eq. 3.41. 
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As the beam propagates through inhomogeneities, the wavefront phase is delayed at each point in 

the beam by the local refractive index. Because the FLDI instrument measures the mean phase of 

the entire beam at the output of the interferometer, fluctuations in phase across its width are 

averaged out to some extent, depending on the wavenumber of those fluctuations. This effect can 

be seen in Fig. 3.21. 

 

 
Figure 3.21: Spatially filtered phase difference signals showing the effect of a Gaussian beam profile on 

sinusoidal disturbances. The sinusoids vary along the vertical axis of the images, with the spatial frequencies 
of the images varying along the rows of the images, and the phase of the sinusoids varies along the columns. 

At low spatial frequencies, the change in phase between the images is obvious, while at high spatial 
frequencies they are almost indistinguishable due to spatial filtering. 
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At low wavenumbers, the contribution of a sinusoidal phase disturbance to the mean phase is clear, 

with good contrast. At higher wavenumbers, the contribution becomes indistinguishable, 

appearing almost exactly the same regardless of the phase of the disturbance.  

 The contribution of disturbances of a given wavenumber to the mean wavefront phase at 

each point along the beam is represented by a Gaussian function, with the transfer function given 

in Eq. 3.42. 
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 (3.42) 

 

Away from best focus along the FLDI beam propagation axis, disturbances are heavily spatially 

filtered in the frequency domain. Because of this, the contribution to the mean FLDI phase of 

strong disturbances like turbulent boundary layers on wind tunnel windows is greatly diminished 

(see Fig. 3.22).  

 

Figure 3.22: Diagram of the FLDI instrument used in a wind-tunnel test section with rectangular cross-
section. Rejection of boundary layer signals from the FLDI output is best when the focus of the instrument is 

centered in the wind tunnel test section and with larger beam diameters inside the boundary layers. 
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Disturbances at best focus are largely unaffected with diffraction-limited beams, since the beam 

waist, w0, is typically somewhat smaller than the turbulent scales of interest. Beam waists for clean 

Gaussian HeNe beams are typically in the range of 3-10 µm, while most energy-containing eddies 

are substantially larger than this. This 3-10 µm range is also typically smaller than the Kolmogorov 

scale of a turbulent flow, except in some cases where the flow is at very high speed (this scale is 

heavily dependent on Reynolds number), such that the maximum wavenumber resolved by the 

instrument is too small to resolve these smallest eddies[62]. 

 

3.7.4   Path-Integrated Spatial Filtering from Beam and Turbulence Profiles 

 Up to this point, all of the spatial filtering by the instrument has been considered at 

infinitesimally thick slices of the beam path perpendicular to the FLDI beam propagation axis, 

which only allows for turbulence to be treated as being essentially a two-dimensional disturbance 

that is perpendicular to the beam propagation axis. Because of the path-integrated nature of the 

instrument, however, the contribution to mean phase by disturbances along the full path must be 

considered. This means that the signal delivered by the FLDI system is necessarily a combination 

of the contribution of all of these slices. Unfortunately, modeling these contributions requires some 

degree of approximation of the spatial nature of the flow disturbances. 

 The simplest approximation is to consider the disturbances to be limited to an infinitely 

thin plane, perpendicular to the FLDI beam propagation axis. In this case, the response of the 

instrument is merely the convolution of the filter due to beam width and the filter from beam 

separation. An example of a transfer function due to the Gaussian beam width at best focus is 

shown in Fig. 3.23. This case demonstrates spatial filtering at best focus from a diffraction-limited 

spot given a D4σ of 20 mm and distance from lens to best focus, d, of 150 mm. 
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Figure 3.23: Simplest case for the beam size transfer function, where the turbulence is only present at the best 
focus, and is zero strength everywhere else. 

 

In this simple case, the response of the instrument remains generally flat out to k > 100000 m-1. 

This corresponds to a measurement frequency of roughly 10 MHz at a flow velocity of 600 m/s. 

 Another important case to consider is where the turbulent field is uniform across the test 

section, from one FLDI lens to the other. In this case, the transfer function of the instrument due 

to beam width is the RMS integral of beam width filters at all points along the beam in the test 

section. This transfer function is shown in Eq. 3.43, where L is the distance from the test section 

windows to the tunnel centerline, as diagrammed in Fig. 3.22. 
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Using the same properties as the previous case, and a test section width L = 75 mm, is shown in 

Fig. 3.24: 

 

 

Figure 3.24: System transfer function when the disturbance is of uniform strength through the test section. 

 

The straight dashed line has a slope of one decade per decade, and represents the rolloff due to the 

error function from the transfer function in Eq. 43. This model is most appropriate for modeling 

the FLDI beams' response to freestream turbulence, as the turbulence should be relatively 

consistent in strength and spectral characteristics throughout the core flow of a wind tunnel. 

As L is increased, the wavenumber at which the error function begins to roll off decreases. 

In the limit as L approaches infinity, representing an infinitely wide test section, the rolloff starts 

immediately, and the resulting transfer function is shown in Eq. 3.44. 



87 

 

 

 
2

2
2 2
0

2
0

2 2
3 2 0 0

exp 1
8

2 exp
4

z

w k z
H k dz

w

w w k

k











              

 
  

 


 (3.44) 

 

 The last approximation considered here is one in which the turbulent field follows a 

Gaussian strength profile, with standard deviation width σjet and centered at a distance along the 

beam relative to best focus, z0. An illustration of the geometry for this case is given in Fig. 3.25. 

 

 
Figure 3.25: Geometry for the model of FLDI response to a Gaussian profile disturbance. Here, the jet is 
centered on the beams along the y-axis, and decentered from best focus by the distance z0 along the z-axis. 

 

 

The transfer function for this case is shown in Eq. 3.45. 
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A plot of this model, using the same properties as above, with a Gaussian signal σjet of 1 mm, is 

shown in Fig. 3.26. 

 

 
Figure 3.26: System transfer function when the disturbance follows a Gaussian profile. Lighter line shades 

indicate decentering of the disturbance (|z0 – z| > 0). 
 

 

This approximation can be used to model generally Gaussian signals, such as the signal from a 

turbulent jet[63]. As a small turbulent jet is used as a reference signal to characterize the rolloff of 

the FLDI instrument in later results, it is important to have a realistic model for how the instrument 

should behave in this case. 
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3.8   Turbulence Intensity 

A standard diagnostic in turbulence research is the measurement of turbulence intensity, 

which relates RMS velocity fluctuations to the local freestream velocity. This is shown in Eq. 3.46, 

based on fluctuations in the freestream u-direction only. 

 % 100%RMSu
TI

U


   (3.46) 

 
Measured turbulence intensity is heavily dependent on the kind of flow under consideration. 

Combustion events are often very turbulent, with turbulence intensities of twenty percent or 

greater, while “quiet” wind tunnels achieve freestream turbulence intensities of small fractions of 

one percent. 

According to Parseval’s theorem, the total energy of a signal in time is identical to the 

energy of the signal in frequency (Eq. 3.47a). Using this relationship, it follows that the RMS value 

can be calculated from either a sampled signal or from its Fourier transform. Parseval’s theorem 

requires an infinite integral which is not possible with a discrete, sampled signal. However, as long 

as the bandwidth of the signal is large enough that it encompasses all of the signal’s meaningful 

energy, the discrete approximation in Eq. 3.47b is essentially exact. 
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Despite the ubiquity of turbulence intensity measurements, their utility is very limited. 

Turbulent kinetic energy couples between freestream turbulence and other aspects of flows, such 

as boundary layers, based on the frequency response of the flow feature. For example, boundary 

layer stability theory shows that boundary layers are generally receptive to turbulence disturbances 
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only in particular frequency bands. Turbulence intensity, by the nature of the RMS calculation, is 

dominated by energy from the low-wavenumber “energy containing” eddies of the turbulence and 

gives no information on how that energy is distributed in frequency. This disconnect limits the 

usefulness of turbulence intensity as a diagnostic for these frequency-dependent phenomena. Still, 

baseline descriptors of turbulence like TI are necessary. 

Thus, in terms of the present FLDI instrument, increasing the beam separation causes the 

measured turbulence spectrum to roll off at a lower frequency, but it might not significantly reduce 

the measured turbulence intensity. An example of this, using a simulated turbulence spectrum, is 

shown in Figs. 3.27a,b. Here, the effect of increased beam separation is obvious in the spectral 

plots, but the calculated turbulence intensities are only marginally reduced, retaining about 94% 

of the true turbulent energy at ∆x = 100 µm, 90% at ∆x = 200 µm, and around 87% at ∆x = 300 

µm. 
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Figure 3.27a,b: Effect of FLDI beam separation spatial filtering on simulated turbulence spectra, showing 
RMS turbulence intensity (a) and the filtered spectrum (b). While the effect on the measured turbulent 

intensity from spatial filtering is relatively small, its effect on turbulence spectra is significant. This effect can 
be problematic when the signal strength is low compared to electronic noise, as the signal may fall below the 

noise floor in the high-frequency range of the spectrum, which is very important for turbulence 
characterization. 
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3.8.1   The Strong Reynolds Analogy 

The FLDI instrument senses density fluctuations, not the velocity fluctuations required for 

the turbulence intensity measurement as written above. Corrsin claims that the spectral behavior 

of a passive scalar like weak density fluctuations should follow the same frequency behavior 

(e.g., spectrum) as does velocity[64], however he gives no simple theory for the relationship of their 

relative turbulence intensity amplitudes. The Reynolds analogy, given in Eq. 3.48, relates the 

fluctuating thermodynamic and kinematic variables in a compressible flow. 
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Here, M is the local Mach number of the flow, γ is the ratio of specific heats in the gas, T0 is the 

local stagnation temperature of the flow, P is the local pressure, ρ is the local density, and u is the 

local velocity. Terms with overbars represent Reynolds-averaged values, and primed variables 

represent the fluctuating components of that variable. 

 It would be extremely difficult to measure all of these terms simultaneously, so instead 

some assumptions must be made about the behavior of some of the terms. The FLDI instrument 

measures local density fluctuations that occur over a very short distance. In the time required for 

the signal to convect through the measurement volume it is very unlikely that the local stagnation 

temperature and pressure will vary significantly, at least in the absence of moving shock waves or 

other fine flow structures. After neglecting the T0 and P terms, the direct relationship between the 

strength of density and velocity fluctuations shown in Eq. 3.49, known in the literature as the 

“strong Reynolds analogy,” results. 
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This relation is used to calculate approximate velocity-based turbulence intensity from the density-

based turbulence intensity measured by the FLDI instrument, for comparison with results in the 

literature. 

 

3.9   Turbulence Spectra 

Turbulence is an extremely broadband phenomenon: in a single turbulent flow, the scales of 

turbulent eddies range from the size of the largest features of the flow all the way down to 

dissipative scales. The importance of turbulent eddy scales in the behavior of turbulence and its 

interactions with flows lends itself naturally to Fourier analysis, where the frequency spectrum of 

the signal, rather than the time-domain signal itself, is the most useful representation of the data. 

 

3.9.1   Importance of High Frequency Response 

Of crucial importance to the behavior of turbulence is the cascade of energy from its largest 

scales, where most of the energy is present, to smaller scales and ultimately to viscous dissipation 

as heat. Being able to resolve this full range of scales is necessary to truly characterize the 

turbulence present in a flow, and it requires extremely-high frequency response from measurement 

instrumentation. 

Traditionally, the most common instrument used for measurement of turbulence spectra is 

the hot-wire anemometer. The frequency response of hot-wire anemometry is limited by the size 

of the wire probe and the relative temperature of the probe to that of the surrounding fluid, and is 

typically in the tens to low hundreds of kHz. With very-fine-wire probes and high overheat ratios, 

manufacturer specifications state that a 3 dB bandwidth of 250 kHz may be possible. However, 
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these probes are extremely fragile and may not be suitable for use in a high-speed flow due to 

breakage. 

On the other hand, the FLDI instrument presented here should be capable, in principle, of 

many MHz of bandwidth with careful beam conditioning. As a non-intrusive technique it is also 

capable of being used in flows unsuitable for hot-wire anemometry, especially compressible flows. 

In fact, some hypersonic compressible flows have such high stagnation enthalpy that the concept 

of a hot-wire in the flow is fundamentally unreasonable. 

 

3.9.2   Normalization of FLDI Signal 

The relationship between the measured phase difference signal from the FLDI instrument 

and turbulent density fluctuations is shown in Eq. 3.50. 
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Here, ∆φA - ∆φB is the raw phase signal from data, while the ultimate goal is to extract the density 

fluctuations due to turbulence, ρʹ, which is done by deconvolving the spatial filtering from the 

FLDI instrument from the signal. This filtering manifests itself in the right hand side of the above 

equation as a convolution of the fluctuating density field with the finite difference operator, h∆x, 

and the spatial filtering due to finite beam width, hz (Eq. 3.51).  
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Note that the derivative of the density field comes from the convolution (denoted by the * operator) 

of the fluctuating density with the finite difference operator, which is why it does not appear above. 

 Convolution is difficult to handle in the time/space domain, but is easily done in the 

frequency domain, where it is simply the multiplication together of the Fourier transform of the 

functions f(x) and g(x) (Eq. 52a). Simple derivatives and indefinite integrals can also be handled 

through Fourier transforms, by Eqs. 3.52b,c 

 

     
       

     

1

1

1

( ) ( )

1

n
n

n

f x g x f x g x

d f x
ik f x k

dx

f x dx f x k
ik











 





F

F

F

F

F

F

F F

F

F

 (3.52a,b,c) 

 

Using the above identities, the convolution from Eq. 3.51 is expressed in terms of Fourier 

transforms in Eq. 3.53. The impulse responses of the filters h∆x and hz are replaced by their transfer 

functions, H∆x and Hz, which are convolved with the fluctuating density signal. Note that the 

multiplication of H∆x by k, omitted for clarity in the spatial filtering section above, 3.7.3, is 

reintroduced here (see the description for Fig. 3.12). 

            * ( )x z x zt h x h z t ik H k H k         F F  (3.53) 
 

Because the turbulence is assumed to be isotropic, integration and differentiation in the x- direction 

can be handled identically to integration and differentiation in any other direction. This allows the 

integration over z to be handled using a Fourier transform, using Eq. 3.52c. Substituting the 

convolution above into the result gives Eq. 3.54. 
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The multiplication by k from the finite difference is cancelled out by the division by k from the 

integration, resulting in a much simpler calculation. Isolating the ρʹ term on the left-hand side, and 

taking the inverse Fourier transform of the result, gives the desired relationship between the 

measured signal and the fluctuating density (Eq. 3.55). 
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 The density-based turbulence intensity of the measured signal, TIρ, is found by calculating 

the RMS value of the power spectrum of the density fluctuations and dividing by the freestream 

density. An approximation of the velocity-based turbulence intensity, TIU, can be calculated by 

applying the strong Reynolds analogy from Eq. 3.49 to this calculation. 

 

 
   

 
 
   

2

2

2

2 2

1 1
% 100%

2

1 1
% 100%

1 2

A B

N GD x z

A B

U

N GD x z

TI
N K x H k H k

u
TI

U M N K x H k H k



  
  

 
  



 

 
  



 
  

 





F

F

 (3.56) 

 

 

3.9.3   Turbulence Models 

In order to better understand the turbulent density spectra measured by the FLDI 

instrument, it is useful to first perform the analysis discussed in this Theory section on simulated 
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“model” turbulence spectra as an example. As mentioned above, turbulence is a very complicated, 

broadband phenomenon, but there are properties of turbulence spectra that are shared between 

many different flows which the following turbulence models attempt to represent. Three models 

of turbulence spectra that are common in the literature are presented here: the Kolmogorov 

spectrum, the von Kármán spectrum, and the Tatarski spectrum. 

The most commonly-referenced model for turbulence spectra is the Kolmogorov model, 

named after the Soviet mathematician Andrey Kolmogorov, who in 1941 published his theory of 

the turbulent energy cascade of very-high-Reynolds-number turbulence. Through dimensional 

analysis he established that, in the “inertial range” of the turbulence spectrum (where inertial 

effects are much greater than viscous effects), turbulent kinetic energy must be transferred from 

larger eddies to smaller eddies such that the three-dimensional kinetic energy spectrum, 𝐸(𝑘), is 

proportional to k-5/3. When considering the vector decomposition of turbulent energy (the turbulent 

field), 𝛷(𝑘⃗⃗), this corresponds to a slope of k-11/3, as in Eq. 3.57[65]. 

 Φ(𝑘⃗⃗)~𝑘−11/3 (3.57) 
 

The Kolmogorov spectrum shows up in almost all turbulent flows, from microchannel turbulence 

to the motion of the interstellar medium, and is as close to a universal theory of turbulence as 

currently exists. Nevertheless, as mentioned before, this theory holds only in the inertial range of 

the turbulence spectrum, and is not meaningful elsewhere. At low wavenumbers (the so-called 

“energy-containing region” of turbulence) energy is fed into the turbulence cascade from the mean 

flow, such that the energy level of the spectrum actually increases with wavenumber. At very high 

wavenumbers, corresponding to eddies smaller than the Kolmogorov length scale, η, viscous 

effects dominate, and the turbulent energy spectrum rolls off much faster than k-5/3. 
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 To deal with the low wavenumber discrepancy, the von Kármán spectrum introduces an 

“outer scale” length term, Lo, which represents the maximum size of turbulent eddies in a flow. 

The inclusion of this term limits the spectrum at low wavenumbers, and is especially important in 

constrained flows like the ones considered in this research. The turbulent field for the von Kármán 

spectrum is given by Eq. 3.58. 

 
𝑘0 = 2𝜋𝐿0  Φ(𝑘⃗⃗)~(𝑘2 + 𝑘02)−11/6 

(3.58) 

 

The faster rolloff from viscous effects at high wavenumbers (the dissipation range) is handled by 

the Tatarski spectrum (Eq. 3.59), which adds an exponential term that begins to roll off around the 

“inner scale” length, Li. 

 

𝑘0 = 2𝜋𝐿0 , 𝑘𝑖 = 5.92𝐿𝑖  Φ(𝑘⃗⃗)~(𝑘2 + 𝑘02)−11/6𝑒𝑥𝑝 [− ( 𝑘𝑘𝑖)𝑛] 

(3.59) 

 

The empirical n term determines how much faster the spectrum rolls off in the dissipation range, 

and it is usually taken to be equal to 2. 

 In isotropic turbulence, as considered here, the turbulent field can be collapsed into a 

function of a single variable, k, rather than needing the vector, 𝑘⃗⃗. This is called the three-

dimensional turbulent spectrum, E(k). It represents the power spectral density of waves with the 

same wavenumber vector magnitude, 𝑘 = ‖𝑘⃗⃗‖, and is found by taking the spherical integral of the 

turbulent field for all wavenumbers. For scalar turbulence, the one-dimensional spectrum, F(k1), 

is obtained by integrating E(k)/k over all wavenumbers greater than k1
[66]. These calculations are 

given in Eqs. 3.60a and 3.60b, respectively. 



99 

 

 

   

   
1

2

1
1

2

k

E k k k

F k k E k dk






 

 
 (3.60a,b) 

 

Example one- and three-dimensional spectra calculated from a basic Tatarski spectrum are shown 

in Fig. 3.28, normalized to highlight the agreement between E(k) and F(k) in the interial region of 

turbulence. The outer scale wavenumber, ko, and inner scale wavenumber, ki, are labelled, and n is 

set to 2 as is common in the literature. The k-5/3 rolloff from Kolmogorov’s theory is overlaid. 

 

 
Figure 3.28: Simulated 3-D and 1-D turbulence spectra for density as a passive scalar. 

 

The FLDI instrument operates on the three-dimensional spectrum of turbulence, but the output 

follows the one-dimensional form, similar to the output of a hot-wire anemometer, due to the 

spatial derivative from the two interferometer beams. Deconvolution of the FLDI system transfer 

function from the measured signal results in spectra that are qualitatively similar to the Tatarski 
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spectrum. This allows fitting of the above spectrum models to the calculated density spectra for 

turbulence parameterization, which is much more meaningful than simple measurements of 

turbulence intensity. 

 Although it is best to perform a least-squares fit of a turbulence model to the data, it is also 

useful to simply estimate the inner and outer scale lengths of the turbulent signal. A simple 

calculation for the outer length scale using numerical integration is given in Eq. 3.61. This 

represents the average scale of the highest energy eddies. 
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A calculation for the inner scale length is shown in Eq. 3.62. This represents the average scale of 

eddies at which viscosity begins to significantly affect the turbulent spectrum, marking the 

transition between the inertial and dissipative ranges of the turbulence, and is called the Taylor 

microscale. 
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Both of these estimates are heavily susceptible to noise on the FLDI signal, particularly the inner 

length scale calculation due to the derivative in the denominator. Because of this, the signal-to-

noise ratio of the signal must be quite high in order to get reasonable estimates of the turbulent 

length scales. Better practice is to use these estimates as initial guesses for least-squares fit 

parameters. 
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3.10   Numerical Simulations of FLDI Measurements 

 The response of the theoretical FLDI instrument to model cases may give some insight into 

how well an actual instrument will suit a given situation. Two such models are presented here. One 

models the response of the instrument to a round turbulent jet. The other examines the influence 

of boundary layers on tunnel windows on the calculated turbulence intensity and spectra of a 

uniform turbulent field (see the diagram of an FLDI instrument applied to a wind-tunnel test 

section in Fig. 3.22). 

 

3.10.1   Jet simulation 

Round turbulent jets are a well-characterized turbulence source that are standard in the 

literature. They are used in this research to provide a reference turbulence signal to compare with 

published data, and also to characterize the sensitive region of the FLDI instrument. Since the 

turbulence intensity profile of round turbulent jets is known, how fast the signal from the FLDI 

instrument rolls off as the jet is translated away from best focus along the FLDI beam propagation 

axis, z, compared to the true rolloff of the jet signal, provides a simple estimate of the ability of 

the instrument to reject unwanted signals occurring away from best focus. For this reason, a 

simulation of the FLDI response to a model round turbulent jet was developed to verify the transfer 

function models above. 

For this simulation, round turbulent jets are modeled as fully developed, with Gaussian 

turbulence intensity profiles of standard deviation length σjet, as in Fig. 16. The turbulence is 

assumed to follow a von Kármán spectrum with the outer length scale, Lo, equal to two times the 
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standard deviation length of the jet profile. Using this approximation, the largest-scale energy-

containing turbulent eddies are on the same scale as the half-width of the jet. 

The FLDI transfer function from Eq. 45 is calculated for a range of z0 values. At each point, 

this system transfer function is convolved with the jet’s turbulent spectrum. The RMS level of the 

spectrum data at each z0 point represents the unprocessed signal that would be measured by the 

FLDI instrument, if the jet centerline were to be placed at that distance from the FLDI beam focus. 

A plot of the simulated response of the instrument is shown in Fig. 3.29, where σjet = 2 mm,   

d = 150 mm, and D4σ = 20 mm. The true Gaussian profile of the jet turbulence is also shown for 

comparison. 

 

 

Figure 3.29: Simulation of a jet with a Gaussian turbulence profile, centered at distance z0 relative to best 
focus, as diagrammed in Fig. 3.25. 

 

 

As the maximum beam diameter of the FLDI instrument is increased, its response becomes more 

“point-like” due to spatial filtering of signals away from best focus. In the limit as the maximum 

beam diameter approaches infinity, the measured turbulence profile of the jet matches the true 
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turbulence intensity profile. This is seen in Fig. 3.30, where the response of the instrument is 

modeled with the same system properties as above, but with a range of D4σ values, spaced 

logarithmically from 5 mm to 1 m.  

 

 

Figure 3.30: Simulation of a jet with a Gaussian turbulence profile, centered at distance z0 relative to best 
focus, with increasing maximum FLDI beam diameters. In the limit as D4σ goes to infinity, the response of the 

instrument becomes exact. 

 

Clearly, focusing a one meter diameter beam to a point in the span of 150 mm is not feasible. This 

would correspond to a system f-number of 0.15 (see Fig. 3.21), while the practical limit on f-

number is approximately f/1 to avoid severe aberrations in the beam from the focusing optics. This 

model serves, however, to point out the asymptotic behavior of the FLDI optics towards a “point” 

measurement from a path-integrated optical system with increasing beam angle (reduced system 

f-number). 

 Scaling functions for the distance from best focus and the amplitude of the turbulence were 

developed, using the FLDI optics parameters d and D4σ and jet width standard deviation, σjet. These 

scaling functions are given in Eqs. 3.63a and 3.63b, respectively. 
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𝑧𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑧0𝐷4𝜎𝜎𝑗𝑒𝑡𝑑  𝜑𝑠𝑐𝑎𝑙𝑒𝑑 = 𝜑𝑅𝑀𝑆𝜎𝑗𝑒𝑡1/6

 

(3.63a,b) 

 
These functions are used to scale the simulated response of the FLDI instrument to modeled 

turbulent jets, where d = 150 mm, D4σ = 30 mm, and with σjet varying from 1 to 11 mm. The 

unprocessed simulations are shown in Fig. 3.31a, while the scaled data are seen in Fig. 3.31b. 

 

 

Figure 3.31a,b: Simulation of a jet with a Gaussian turbulence profile, centered at z0 relative to best focus, for 
a range of σjet values from 1 to 11 mm. The top plot is unprocessed, while the bottom plot is scaled using the 

functions above. 

 

Here, darker lines represent jets modeled with higher values of σjet. Using these scaling functions, 

the data for different values of σjet appear to align well with one another. Data calculated with 
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different values of d / D4σ, which serves as the effective f-number of the FLDI system, have 

nonlinear effects on the response of the instrument to turbulent jets. This is seen in Fig. 3.32. 

  

 

Figure 3.32: Simulation of a jet with a Gaussian turbulence profile, centered at z0 relative to best focus, scaled 
using the scaling functions from above, with different values of d/D4σ (the system f-number). 

 

Here, the solid line data are calculated using D4σ = 30 mm, the dashed line data are calculated using 

D4σ = 40 mm, and the dotted line data are calculated using D4σ = 50 mm. When more than around 

one scaled distance from focus, the curves for each data set follow the same exponential decay, but 

within this range the response behaves quite nonlinearly. 

 

3.10.2   Freestream turbulence simulation 

An important application of the FLDI instrument is in wind tunnel testing, where the 

quantity of interest is the freestream turbulence level and spectrum, or a local turbulence level in 

a flow being surveyed by the FLDI instrument along the tunnel centerline. Boundary layers on the 



106 

 

test section windows, that develop along the nozzle wall, corrupt the optical path of the instrument. 

These boundary layers are typically much stronger than the freestream turbulence level, and for 

typical path-integrated optics, where each point along the beam path is equally weighted, they 

present a significant problem for analysis of core-flow features. The FLDI instrument, due to its 

spatial filtering effects, “sees through” much of this boundary layer noise. While the signal from 

the boundary layers is still present in the output of the instrument, only the very low frequencies 

of the boundary layer turbulence pass through, and the effect of the boundary layer noise on the 

measured turbulence intensity is greatly attenuated. This contribution is reduced even further by 

deconvolution of the expected system transfer function from the signal, such as by using an 

assumption that the freestream turbulence is a uniform field across the test section, as in Eq. 3.44. 

A simulation was developed that models this uniform turbulent field throughout a test 

section, with turbulent boundary layer signals at both edges of the optical path. As with the 

turbulent jet model, the turbulence spectra of the freestream and the boundary layers are modeled 

as being identical von Kármán spectra, where the outer scale length of the turbulence is equal to 

the boundary layer thickness. A more realistic simulation would model the freestream turbulence 

as having a smaller outer scale length, equal to the boundary layer thickness from some upstream 

point on a de Laval nozzle wall from which the turbulence is radiated into the flow. For the 

purposes of demonstration, however, the model used here should be adequate. The strength of the 

turbulence in the boundary layers is modeled as a linear decay from a maximum turbulence 

intensity, TuBL, to the freestream turbulence level, Tu∞. Although simplistic, this model is a 

reasonable analogue of how turbulence intensity behaves in a real turbulent boundary layer. 

Klebanoff’s measurements of turbulence intensities in an incompressible turbulent boundary layer 

on a flat plate along the x-, y-, and z-directions are reproduced in Fig. 3.33 to support this model[67]. 
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Figure 3.33: Measured turbulence intensities in incompressible turbulent boundary layers on a flat plate, 
from Klebanoff (1955) [67] 

 

The simulation calculates the increase in measured turbulence intensity with increasing 

boundary layer strength, starting from the case of no boundary layers. A plot of example boundary 

layer turbulence intensity profiles as a function of distance from the test section centerline is shown 

in Fig. 3.34. The dimensions used for this simulation are a test section width of 6 inches (152.4 

mm) with 1 inch thick sidewall boundary layers identical to those of the Penn State Supersonic 

Wind Tunnel where some of the testing for this research was performed. 
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Figure 3.34: Simulated turbulence intensity, as a function of distance x from test section centerline, for 
uniform freestream turbulence with added turbulent boundary layers outside the core flow in the PSUSWT. 

 

 

The turbulent boundary layer signals manifest themselves as “humps” in the low-frequency 

range of the “true” FLDI system transfer function, compared to the expected transfer function for 

a uniform turbulent field. This is shown in Fig. 3.35, where the solid line represents a uniform field 

with no turbulent boundary layers, and the other lines represent increasing boundary layer strength. 
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Figure 3.35: Simulated spectra for uniform freestream turbulence with turbulent boundary layers outside the 
core flow in the PSUSWT. 

 

As can be seen here, the effect of introducing boundary layer turbulence to the edges of the test 

section is limited almost exclusively to low wavenumbers. For the parameters given above, 

wavenumbers above about 100 m-1 are essentially unaffected, even with boundary layers twenty 

times the strength of the freestream turbulence. This result implies that, while boundary layer 

“noise” may be much stronger than the freestream turbulence signal, the spectrum measured by 

the FLDI instrument is for the most part an accurate representation of the spectrum of interest. 

 This is a crucial theoretical result regarding the use of the FLDI instrument to make optical 

turbulence measurements on a wind-tunnel centerline while looking through thick turbulent 

boundary layers on both sidewall windows. This theoretical result shows that it is possible to do 

that, but that the low-frequency end of the resulting spectrum is likely to be contaminated by 

sidewall boundary layer influences. In practice, FLDI users will ignore this low-frequency 

spectrum and concentrate on the uncontaminated higher-frequency results provided by FLDI. 

Transfer functions like those shown in Fig. 3.36 are applied to the von Kármán turbulent 

spectrum described above, for a range of boundary layer strengths from 0 to 100 times the 
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turbulence intensity of the freestream. The raw turbulence intensity at each boundary layer strength 

is calculated, along with the turbulence intensity where the system transfer function (which 

assumes the field is uniform across the test section) is deconvolved. This is demonstrated in Fig. 

3.36, along with a plot of the integrated turbulent energy across the entire test section. 

 

 

Figure 3.36: Normalized turbulence intensities for the model of uniform freestream turbulence with added 
turbulent boundary layers.  

 

The spatial filtering from the FLDI instrument dramatically reduces the influence of boundary 

layer signals on the measured turbulence intensity, compared to the turbulent energy as would be 

seen by an unfiltered beam, as demonstrated in Fig. 3.37. Deconvolution of the FLDI transfer 

function from the signal reduces their effect even more. The measured turbulence intensity is 

within 10% of the correct result with boundary layers up to about 10 times the strength of the 

freestream turbulence for the raw signal, and up to approximately 35 times for the processed signal. 

This supports the statement that the response of the FLDI instrument, while still using path-

integrated optics, gives a point-like measurement. There is no other known optical instrument that 

can make useful turbulence measurements under such conditions.  
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Chapter 4: Procedure 

4.1:   Setup of Instrument 

 
Figure 4.1: Layout of FLDI instrument. 

 
 
 The first components of the focusing laser differential interferometer to be installed are the 

field lenses used to focus the beam, for example, within a wind tunnel test section. They should be 

evenly spaced and as close as possible to the intended measurement volume in order to maximize 

the convergence angle of the beam, thus minimizing the sensitive volume. One can determine the 

back focal length of these field lenses by projecting onto card stock a bright light source such as a 

candle or LED placed far from the lens. The distance from the surface of the lens to the point where 

the image of the light source is sharpest on the card stock is the back focal length. 

 The Sanderson prisms are installed next, placed at the back focal lengths of the field lenses 

measured previously. Due to the gradient-index nature of these prisms, their effective focal point 

is slightly off center, as described by Eq. 3.28, and this must be taken into account when aligning 

the optics to ensure that the FLDI beams will be parallel through the test area. The first prism 

should be equipped with a dial indicator reading the deflection at the center of the base of the 

prism. This deflection measurement is reasonably accurate for predicting the beam separation ∆x 

after the prisms have been calibrated. 
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 The laser and microscope-objective beam expander are installed next, placed appropriately 

to achieve the desired focal point in the test section. It is necessary to check that the beam is the 

same size going through both prisms at this point since if this is not the case, then it is likely that 

the second field lens is not placed at the same distance from the focal point as the first lens. A 

“clean” beam is very important for achieving high sensitivity with the FLDI instrument, so the 

smallest pinhole that still allows adequate light transmission should be used in the beam expander. 

A 5 µm pinhole was used for the present research. 

 The laser beam should next be collimated to a thin beam after the second prism. It is helpful 

to use a high-quality lens designed for a small camera, such as a security camera lens, in order to 

avoid introducing aberrations. The beam must be collimated for the Berek phase compensator used 

here, since its phase retardation is heavily dependent on illumination angle-of-incidence.  

The final components in the instrument are the polarizing beamsplitter cube and the two 

photodiodes. The beamsplitter cube should be tilted in the axis of the incoming beam so that the 

two photodiodes are at +/- 45 degrees from the axis of beam-separation as seen in Fig. 2.3. This 

aligns the polarizing beamsplitter cube with the polarization axes of the laser beam and maximizes 

the difference signal between the two photodiodes when the Berek compensator is reset to zero 

compensation. 

 

4.2:   Adjustment of Sanderson Prisms 

 For the initial setup, the strain on both Sanderson prisms should be relaxed and the Berek 

compensator should be set to zero retardance. The first prism should then be adjusted to the needed 

deflection, depending on test conditions and desired sensitivity as described in section 3.6.2. Using 

a multimeter with peak-holding capability or an oscilloscope, the second prism should next be 
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adjusted until the absolute difference between the outputs of the s- and p-polarization photodiodes 

is maximized. In this case the two prisms are balanced, and no further adjustment of the prisms is 

required. The number of surfaces and stray light reflections in the optical path makes achieving 

100% interference contrast between the two photodiodes challenging. However, with careful 

adjustment and alignment, a contrast of 80% or greater is possible, and is adequate. 

 With the prisms properly adjusted, the next step is to adjust the Berek phase compensator 

to balance the interferometer response. The goal is to shift the phase variations, measured by the 

two photodiode signals, so that they are nominally centered about the 0 and 180 degree points on 

the sine curve response of the interferometer. This results in the most closely linear response and 

largest dynamic range possible for the instrument. First, one adjusts the Berek compensator until 

one of the signals is maximized and the other is minimized. Next, the voltages of both beams and 

the compensator setting are recorded. Then the compensator is adjusted for the opposite condition, 

in which the second signal is maximized and the first is minimized, and the resulting values are 

recorded as was done previously. Finally, one adjusts the compensator until the signals are at the 

average of their maximum and minimum voltages. This should occur close to the average value of 

the two compensator settings, but since the Berek compensator does not respond linearly, this 

guidance is approximate. A Soleil-Babinet compensator can be used instead. It responds linearly 

to adjustment, but is significantly more expensive. The extra accuracy is not necessary for the 

instrument, so it does not justify the expense.  

When the Berek compensator is properly adjusted, the sensitivity of the FLDI instrument's 

electronics is maximized, as seen below in Fig. 4.2 where a helium jet was used to give a 

demonstration of sensitivity. 
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Figure 4.2: Outputs of both photodiodes as Berek compensator is adjusted. A helium jet provided a refractive 

disturbance to show the RMS signal response of the instrument as shown. 

 
 
Here, the top plot shows the mean voltage from the outputs of the two photodiodes, while the 

bottom plot shows the RMS variation of the FLDI signal at each compensator setting. The 

horizontal axes of these plots is the compensator setting in units of wavelengths of retardance for 

the HeNe laser light used in this research. When one signal is adjusted so that its average phase 

corresponds to the 0 degree point on a sine curve, the other signal must correspond to the 180 

degree point on a sine curve. The linearity of the interferometer's output is maximized at this 

setting, and the RMS fluctuation response to the refractive signal is also maximized, as expected 

from the theory from section 3.6.1. 
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4.3:   Measurement of Beam Separation 

 
Figure 4.3: Beam separation measurement using a weak lens. The lens is translated through the point of best 

focus along the beam separation axis. 

 
 
 In order to quantify the output of the FLDI instrument, it is necessary to have a good 

estimate of the separation distance between the two beams as they pass through the test section. 

To measure this separation, a long focal length positive meniscus lens (10 m or longer) is used 

here as a “reference refraction.” With such a long focal length the optical path difference of the 

lens is approximately parabolic. Since the interferometer behaves as a first-difference operator, the 

phase difference that it measures from the weak meniscus lens is a linear function with its zero 

point at the center of the lens. The response of the instrument is the sine of this phase difference 

signal. 
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Figure 4.4: Geometry of calibration optics. 

 

 

Figure 4.5: Interferometer calibration measurements using a 2 m focal length meniscus lens at various prism 
deflections. The result gives sine curves where their spatial frequency, k, is dependent on the focal length of 

the lens. 
 
 

 Measuring the output of the FLDI instrument as the weak meniscus lens is traversed along 

the beam separation axis results in a sinusoidal output. This sine wave's spatial frequency is 

proportional to the beam separation according to the following relationship:  
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Here, ∆x is the beam separation in meters, k is the spatial frequency of the sine wave, fL is 

the focal length of the meniscus lens, f2 is the focal length of the field lens, z is the distance from 

the second field lens to the meniscus lens, and λ is the wavelength of the laser beam. Note that 

when fL is much greater than f2, the above equation reduces to:  

 2 Lk f f
x

z


   (4.2) 

 
This result is not exact, but from computer simulations in the ZEMAX optical modeling package 

it is found to be within a few percent of the correct value. The result of this modeling is shown in 

Fig. 4.6. 

 
Figure 4.6: Comparison of true and approximate beam separation ∆x using ZEMAX model for a 10 m focal 
length meniscus lens, with 50 mm focal length field lenses and a distance from the field lenses to best focus of 

150 mm. 

 

 With very small beam separations and very long focal length meniscus calibration lenses 

used for the reference refraction, the frequency of the resulting sine wave may be too small to 
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calculate accurately. Even with the 2 m focal length lens in Fig. 4.5 above, at 2 mils of prism 

deflection the interferometer does not sample a full cycle of the sine wave over the lens offset 

range used there. With a 10 m focal length meniscus lens at this setting the same offset range will 

give an approximately linear response, so the frequency of the resulting sine wave will be 

ambiguous and may not fit correctly. To eliminate this ambiguity the phase measurements can be 

performed at a range of Berek compensator settings. By sampling the FLDI output phase in a grid 

of compensator settings and lens positions, a sinusoidal surface results that can be easily fit to get 

an accurate measurement of the spatial frequency, as shown below in Fig. 4.7.   
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Figure 4.7: Grid sampling of lens offsets and phase compensator settings (in radians of phase retardation) 

showing reduction in frequency ambiguity, despite small prism deflections of 10 and 15 mils (1 mil = 0.001”). 
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Despite the low spatial frequency of the result from the combination of the long-focal-length 

meniscus calibration lens and the small prism deflection, the grid method of calibration gives a 

repeatable and accurate measurement of the beam-separation distance, while sampling at a single 

Berek compensator setting fails to accomplish this goal. 

 A calibration of prism deflection to beam separation can be produced by performing this 

analysis across the full range of prism deflections of interest. Results from the calibration of the 

Sanderson prisms used for this research are shown in the Results section 5.22, with a fit of prism 

deflection to beam separation plotted in Fig. 5.9. 

 

4.4:   Data Acquisition 

 The data acquisition system of the FLDI instrument is set up to measure the output from 

both s- and p-polarization photodiodes on two separate channels. The sample rate should be at 

least 2 megasamples per second per channel (2 MS/s-ch) in order to benefit from the 

inherently-high frequency response of the FLDI optical instrument, as this allows measurement of 

turbulence spectra up to 1 MHz bandwidth. Benchtop tests with the FLDI instrument have shown 

frequency response to exceed 4 MHz with proper photodiode and termination resistance choice, 

as explained in section 4.5 below. 

 Additionally, the bit depth of the measurement should be as high as possible in order to 

maximize the dynamic range of the digitizer. While the analog signal is continuous, discretization 

of this signal by digitization restricts it to a limited number of possible values, and this may 

introduce quantization noise if the bit depth is too small. Small-amplitude fluctuations may not 

appear in the sampled signal in this case. Because quantization is performed over the gain range 

of the data acquisition system, this range should also be set as close as possible to the maximum 

and minimum voltages expected from the s- and p-polarization photodiodes. A good baseline 
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approach is to use the voltages at the maximum and minimum of the sine curves measured when 

the Sanderson prisms are adjusted. Neglecting the noise floor of the electronics, the quantization-

limited dynamic range of the digitizer (signal to quantization noise ratio, SQNR) is defined by the 

equation 

  1020log 2Q
SQNR   (4.3) 

 
where SQNR is in dB, and Q is the bit depth of the digitization. This means that the smallest 

amplitude fluctuation that the digitizer can adequately measure is SQNR dB below the maximum 

amplitude of the gain range of the digitizer. Quantization error can also be reduced by 

oversampling, where the sample rate of the data acquisition is increased, but the extra samples are 

averaged with the original samples to regain the original sample rate. Multiplying the sample rate 

by a factor of 22n achieves an increase in effective bit depth by n bits per sample. This method 

requires much more sample memory for a relatively-small improvement in quantization noise, so 

it should be avoided if possible. 

 It is important to ensure that the electronics and any preamplification used for the s- and 

p-polarization detectors produce as little noise as possible. At some point the gains in dynamic 

range from improving quantization error encounter the electronic noise floor, after which no 

further improvement can be made in the data acquisition. High-quality shielded coax cables should 

be used between the photodiodes and data acquisition system, and everything that can be run from 

battery power instead of AC mains should do so. Particularly when the interference signal is very 

low amplitude, the electronic noise floor can significantly reduce the quality of frequency spectra 

calculated from the instrument. 

 



122 

 

4.5:   Measurement of Photodiode Frequency Response 

In addition to the frequency response effects of the FLDI optics, the frequency response of 

the photodiodes used to measure the interferometer signals must also be considered. The voltage 

generated by a photodiode is directly proportional to the termination resistance, RL, used to convert 

the photodiode current to a measurable voltage. The frequency response, on the other hand, is 

inversely proportional to this resistance. Both of these effects must be balanced to make successful 

measurements, as using too low a termination resistance to avoid frequency response problems 

may not provide adequate signal amplitude over the electronic noise floor. Meanwhile, too high a 

termination resistance will give a high signal amplitude, but the low frequency response of the 

photodiodes may limit the maximum signal frequency detectable above the noise floor in measured 

spectra. 

The junction capacitance of photodiodes, stray capacitance in cabling and the measurement 

equipment, and impedance mismatch between the cables and termination resistor all reduce the 

frequency response of the photodiodes. As with the FLDI spatial filtering, the frequency response 

effects from the photodiodes may be deconvolved from the measured signals if they are known. 

A simple method to measure the transfer functions of the photodiodes is to pulse an LED 

with a square wave input and measure the voltage of the photodiodes in response to this LED. 

Reduced frequency response manifests itself as rounded off corners from the original square wave 

in the photodiode response signal. A diagram of how this calibration is performed is shown in 

Fig. 4.8. 
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Figure 4.8: Diagram of the photodiode calibration method using square-wave testing. 

 

The Fourier transform of a square wave is an infinite series of delta functions at odd multiples 

(harmonics) of the square wave’s fundamental frequency. These peaks continue on infinitely 

because very-high frequencies are needed to achieve the sharp edges of a square wave. Low-pass 

filtering due to reduced photodiode frequency response causes the high-frequency content of the 

square wave input to roll off, causing the rounded-off signal seen in the above diagram. 

 To perform this calibration, a square wave of a known frequency (such as 1 kHz) is applied 

to the LED, and the voltage at the LED and the output signals from the two FLDI photodiodes are 

measured by the data acquisition system. Fourier transforms of both signals are then calculated, 

and the amplitudes of the Fourier transforms at each odd multiple of the square wave frequency 

are extracted from the resulting spectra.  
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Figure 4.9: Example power spectral density plot for square wave testing of the photodiodes used in this 

research. The square wave frequency used for this plot was 100 Hz, and the photodiode was terminated at 
RL = 50 kΩ to dramatically limit frequency response. 

 

The ratio of the output signal to the input signal at each harmonic represents the transfer 

function of the photodiode at that frequency. Unamplified, reverse-biased photodiode transfer 

functions are typically well modeled by simple first-order low pass filters, so the method used for 

this research fits this form of transfer function (Eq. 4.4) to the spectra produced by this square-wave 

testing. 

  2
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H f

f f




 (4.4) 

 
Here, H(f) is the transfer function of the photodiode, f is the frequency of the signal in Hz, and fc 

is the cutoff frequency of the filter estimated by the fitting process. Multiple tests at several 

different square wave frequencies are combined to improve the accuracy of the fitting. The results 

of these fits to square wave tests of both FLDI photodiodes used in this research are shown in 

Figs. 4.10-14. The effect of termination resistance on frequency response is easily visible beyond 
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1 kΩ, while there is essentially no frequency response loss in the frequency range of interest at a 

termination resistance of 50 Ω. The effect of the limited frequency response of the photodiodes 

can be removed by filtering the photodiode signals by the inverse of the first-order low pass filter 

described above. 
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Figure 4.10: Square wave testing of FLDI photodiodes at RL = 50 Ω. Data from tests at 100 Hz to 20 kHz are 

shown, with the dashed line showing the transfer function fit to these data using Eq. 4.4. 
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Figure 4.11: Square wave testing of FLDI photodiodes at RL = 1 kΩ. Data from tests at 100 Hz to 20 kHz are 

shown, with the dashed line showing the transfer function fit to these data using Eq. 4.4. 
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Figure 4.12: Square wave testing of FLDI photodiodes at RL = 5 kΩ. Data from tests at 100 Hz to 20 kHz are 

shown, with the dashed line showing the transfer function fit to these data using Eq. 4.4. 
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Figure 4.13: Square wave testing of FLDI photodiodes at RL = 10 kΩ. Data from tests at 100 Hz to 20 kHz are 

shown, with the dashed line showing the transfer function fit to these data using Eq. 4.4. 
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Figure 4.14: Square wave testing of FLDI photodiodes at RL = 50 kΩ. Data from tests at 100 Hz to 20 kHz are 

shown, with the dashed line showing the transfer function fit to these data using Eq. 4.4. 
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4.6:   Processing of FLDI Instrument Data 

 Raw data from the data acquisition system are imported into MATLAB, with the s- and 

p-polarization photodiode channels saved as data streams A and B. As the signals are 180 degrees 

out of phase of one another, it is arbitrary which channel is saved as what variable. 

The FLDI photodiode difference signal is found by calculating FAB = (A – B) / (A + B). This 

result must then be normalized by the maximum and minimum limits of the interferometer’s 

response. These limits are found by adjusting the Berek compensator in either direction from the 

setting used for testing and noting the maximum and minimum values of (A – B) / (A + B) attained, 

which are a measure of the interferometer contrast mentioned in section 4.2. This normalization is 

calculated as follows:  

 𝐹𝐴𝐵,𝑛𝑜𝑟𝑚 = 2 ( 𝐹𝐴𝐵 − 𝐹𝐴𝐵,𝑚𝑖𝑛𝐹𝐴𝐵,𝑚𝑎𝑥 − 𝐹𝐴𝐵,𝑚𝑖𝑛) − 1 (4.5) 

 
The result of this normalization is a signal clamped within a range of -1 to 1, representing the sine 

of the measured phase difference between the two FLDI beams. Ultimately, the desired signal from 

the FLDI instrument (from Eq. 3.55), ∆φA - ∆φB, is calculated by Eq. 4.6.  

 ∆𝜑𝐴 − ∆𝜑𝐵 = sin−1 [2 ( 𝐹𝐴𝐵 − 𝐹𝐴𝐵,𝑚𝑖𝑛𝐹𝐴𝐵,𝑚𝑎𝑥 − 𝐹𝐴𝐵,𝑚𝑖𝑛) − 1] (4.6) 

 
This phase difference signal is then processed, using the technique explained in the Theory section 

of this thesis, to get estimates for RMS density fluctuation levels and estimates of the spectra of 

density turbulence in surveyed flows. 
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Chapter 5:   Results 
In this chapter, the methods developed in this thesis to characterize the FLDI instrument and 

its components are validated experimentally. The performance of the instrument is compared with 

published data from the literature as well as with hot-wire anemometry and crossed-beam schlieren 

measurements. 

 

5.1   Signal/Noise Ratio Issues with Crossed-Beam Schlieren 

As discussed in the introduction, early research for this thesis considered the crossed-beam 

schlieren (CBS) technique for optical turbulence measurements in a core flow despite irrelevant 

turbulence in a surrounding boundary layer. As the research progressed, however, it became clear 

that the CBS instrument did not have adequate rejection of undesired signals, and its performance 

suffered dramatically when trying to detect small density fluctuations, resulting in the switch to 

the FLDI technique. 

This is seen in Figs. 5.1a,b & 5.2a,b, where multiple-beam-displacement CBS cross-

correlations were performed at a range of displacement distances downstream of a 1.83 mm 

diameter nozzle producing a helium jet at stagnation pressure P0 = 30 psia (207 kPa). The blue 

lines are the raw cross-correlation signals at each displacement location. The red lines are a 

Gaussian fit to the correlation peaks, giving uncertainty values. The black lines show the point of 

maximum correlation. In Fig. 5.1a, which is fairly close to the nozzle exit (x/D = 8.2), the 

correlation signal at each beam displacement is quite strong, with easily discernable, sharp peaks. 

In this case, the convective velocity has a small uncertainty, and is found to be 271.2 +/- 9.7 m/s, 

an uncertainty of about 4%. In Fig. 5.2a, which is relatively far from the nozzle exit (x/D = 54.7), 

the helium has mostly mixed out with the surrounding air, significantly reducing the refractive 
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index difference between the jet and the ambient conditions. This results in weak correlation 

signals, giving a high uncertainty: the convective velocity is found to be 33.8 +/- 9.3 m/s, an 

uncertainty of around 28%.  
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Figure 5.1a,b: Example of multiple-beam-displacement correlation measurements in a P0 = 30 psia helium jet 
at 8.2 diameters downstream of the nozzle exit. 
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Figure 5.2a,b: Example of multiple-beam-displacement correlation measurements in a P0 = 30 psia helium jet 
at 54.7 diameters downstream of the nozzle exit. 
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The refractive index of helium at 0 °C and λ = 632.8 nm is 1.000035, substantially smaller 

than the refractive index of air at the same conditions: 1.000277. With such a large difference in 

refractive indices, the failure of the CBS instrument to achieve adequate correlation signals in the 

downstream region of the jet, even accounting for mixing out of the helium gas into the 

surrounding air, cast doubt on its chances of success for significantly weaker signals. 

A related difficulty arises if one attempts to use hot-wire anemometry to independently 

measure helium-jet turbulence in air. Because of the large difference in thermodynamic properties 

between helium and air, a helium-air jet is difficult for hot-wire anemometry, where the difference 

in heat transfer properties of the gases causes significant deviations in the spectral behavior of the 

anemometer. An air jet in air is much better to use for this reason, however it must be heated or 

cooled by a large amount to match the refractive index difference between helium and air, to the 

point where the temperature is likely no longer a passive scalar quantity in the jet. For this reason, 

no CBS/HWA comparison is given here. 

Tests of the CBS instrument were performed, however, at Mach 3 in the PSUSWT, both 

with crossing the beams within the core flow of the wind-tunnel test section as well as crossing 

them in the tunnel sidewall boundary layer at approximately y/δ ≈ 0.5. Images of windowed 

correlations (correlograms) for both of these cases are shown in Figs. 5.3a,b.  

Note that, after the helium jet testing and before the PSUSWT testing of the CBS 

instrument, the windowed correlation scheme was changed to segment the data sets into many 

more ensembles than the scheme used to produce Figs. 5.1 and 5.2, thus improving the time 

resolution of the correlation scheme. Also, the visual representation of the cross-correlation result 

has been adapted to better present the data: the horizontal axis of the correlograms directly displays 

the lag time between the two beam signals, while the vertical axis shows the relative displacement 
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of the two crossed beams in the flow direction. If a strongly-correlated convecting signal appears 

in the measurement, the speed at which it convects downstream can be found by fitting a line to 

the visible trace of this signal, where the slope of the line represents its convective velocity. 

 

 

Figure 5.3a,b: Windowed correlations of crossed-beam signals in the core flow of the test section (on the right, 
Fig 5.3b) and in the boundary layer (on the left, Fig. 5.3a). Noise in the correlations can be clearly seen in the 

background. The instrument was not able to resolve a correlated signal in the core (a), while it was able to 
resolve a signal in the sidewall boundary layer (b). 

 

A strong correlation was observed in the CBS signal when the beams were crossed in the sidewall 

boundary layer, but not in the test section core flow. The signal in the core proved to be weaker 

than the crossed-beam schlieren instrument is able to resolve, and its ability to reject the unwanted 

signal in the correlation from sidewall boundary layer “noise” is inadequate, as evidenced by the 

lack of any discernable slope above the noise in the freestream correlogram (Fig. 5.3b). 

The sensitivity of the correlation scheme is improved somewhat by “pre-whitening” the 

spectra of the input signals from the detectors through a numerical differentiation scheme for the 

first derivative. By doing this, the autocorrelation of each signal becomes more like a delta function 
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typical of uncorrelated white noise, thus reducing incidental correlation between the two signals 

while maintaining spectral content that truly is correlated between both signals. 

Additionally, the integral time scale of the undisplaced beam’s autocorrelation (an example 

of which is shown in Fig. 5.4) is calculated and used as a measure of the maximum time lag 

between the two signals within which the signals can be expected to remain correlated, which by 

Taylor’s hypothesis of frozen turbulence is related to the maximum relative beam displacement 

over which they will remain correlated.  

 

 
Figure 5.4: Autocorrelation of the undisplaced beam showing the calculated integral time scale of the 

boundary layer turbulence. 

 

For the signals encountered in testing in the PSUSWT, the typical integral time scale is 

around 0.5 µs, which at a typical sampling rate of 10 MHz corresponds to a window of +/- 5 

samples of lag within which the two beams’ signals are expected to correlate strongly, and with no 

correlation expected beyond +/- 10 samples of lag. Knowledge of this window is used to filter the 

correlograms produced by the CBS data reduction scheme, since the integral time scale of the 
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autocorrelation sets an upper bound for when the code should expect the signals to remain 

correlated. The magnitude of the correlation outside of this window is due to partially-correlated 

noise and ringing of the signals due to their periodicity. 

First, a guess is made at the convective velocity of the signals. This guess is used to convert 

the beam displacement of each segment to an estimated time lag between the signals. A filter is 

produced by centering a Gaussian window with standard deviation equal to the integral time scale 

at the estimated time lag for each segment. The correlogram is then multiplied by this filter, and 

the best fit for the convective velocity to the data is found by maximizing the sum of the resulting 

image, as shown in Figs. 5.5a,b. 

 

 

Figure 5.5a,b: Filtered correlation signal from Figure 5.3a (reproduced here on the right) where the 
background noise has been significantly reduced, clearly showing the correlated signal underneath the noise. 

 

The convective velocity measurements of three runs at M = 3.0 using the CBS method yields Uc = 

601, 611, and 574 m/s, in excellent agreement with the value of U∞ = 598 m/s, based on M∞ and 
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 √𝛾𝑅𝑇∞. This shows that the CBS instrument is adequately sensitive to small-scale turbulent 

structures in the outer part of the boundary layer, which are convected at approximately the 

freestream velocity. The instrument is not, however, adequate for rejecting uncorrelated noise from 

the underlying signal for measuring properties in the freestream of a flow. This, ultimately, led to 

abandonment of the CBS technique in favor of the FLDI instrument which, as a “focusing” 

technique, by its nature rejects signals outside of a small depth-of-focus. 

 

5.2   FLDI Characterization 

To successfully implement the FLDI instrument, it is necessary to accurately measure the 

separation between the two interferometer beam foci and to quantify the “active” size of the FLDI 

instrument’s focal volume. The adjustable Sanderson prisms used in this research, while 

significantly increasing the versatility of the instrument, further require careful calibration of prism 

deflection, or of prism strain, to the induced beam separation. 

 

5.2.1   Calibration of Berek Compensator 

For the beam separation measurement using the method presented in the Procedures 

chapter, the Newport 5540 Berek Polarization Compensator, used to shift the phase of the 

interferometer signal, must be carefully calibrated, or else the sinusoidal surface fit to the prism 

calibration data will be inaccurate. This would cause errors in the measurement of density 

fluctuations, ρʹ, thus precluding the accurate sensing of turbulence intensity by the FLDI 

instrument. 
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The phase shift of the compensator is set using the indicator wheel on the compensator. 

However, its response is highly nonlinear: the phase difference between settings 9 and 10 on the 

compensator, for example, is much less than the phase difference between settings 10 and 11. 

The phase difference induced by the compensator is given by Eq. 2.1 from the Apparatus 

chapter of this thesis, and the tilt angle of the compensator window is calculated from the indicator 

setting on the compensator. According to the manual supplied with the compensator, this tilt angle 

can be found using the following equation, where I is the indicator setting.  

 𝜃 = 𝜋4 − sin−1 (50.22 − 𝐼71 ) (5.1) 

 
Using this calibration results in Fig. 5.6, where the dashed line represents the expected phase delay, 

while the open circles are the actual phase delay measured at indicator settings from 0 to 17 in 

steps of 0.1. 

 

 

Figure 5.6: Compensator phase retardance using the supplied fit from Newport for the relationship of 
compensator setting to polarization retardance. 
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For unknown reasons, using the parameters supplied by Newport results in an extremely poor 

match between the expected and actual optical phase. This calibration must be corrected in order 

to use the lens calibration method for the birefringent prisms of the FLDI instrument presented 

here. 

A least-squares minimization was performed to correct these parameters in order to get an 

accurate calibration of compensator setting to phase retardance, as shown in Fig. 5.7. The tilt angle 

calculation used to get this calibration follows the same form as that supplied by Newport, but with 

corrected parameters: 

 𝜃 = 𝜋4 − sin−1 (46.89 − 𝐼69.19 ) (5.2) 

 
 

 

Figure 5.7: Calibration curve fit for Berek compensator using measured data, showing good agreement. 
 

The corrected compensator calibration given above results in a very good match between expected 

and actual phase retardance. 
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5.2.2   Measured Beam Separation Compared to Simulation 

A calibration of the Sanderson prisms used for this research was performed using a 10 m 

focal length positive meniscus lens as a standard refraction and two Nikon 50 mm f/1.2 camera 

lenses for the field lenses of the FLDI instrument. The prism deflection was varied from 0 to 45 

mils (1 mil = 0.001” = 0.0254 mm) in steps of 5 mils, covering the full range of beam deflections 

that are practical with the prisms used here. The deflection is read directly from a Starrett dial gage 

indicator in units of mils. 

Sinusoidal surface fits to the measured data are shown in Figs. 5.8a and 5.8b, and show 

excellent agreement between the measured points and the expected behavior of the prisms. The 

angles that the sinusoidal surface peaks follow between the lens position and compensator phase 

axes are used in the calculation from the Procedures chapter to determine the beam separation 

distance ∆x in the test volume. 
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Figure 5.8a,b: Sinusoidal surface fits to prism calibration data at 10 and 45 mils deflection. The angle of the 
surface isocontours is used to estimate the beam separation, Δx.  
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A plot of the calculated beam separations as a function of prism deflection is shown in 

Fig. 5.9. A linear fit to these data is also shown, along with a fit using a slope calculated from 

theory using the parameters of the prisms given in the Apparatus chapter. 

 

 

Figure 5.9: Beam separation as a function of prism deflection as calculated using the lens calibration method. 
The slope of the measured beam separations agrees well with the slope predicted by theory, although a small 
“pre-strain” is needed to adequately fit the data. There is likely a small permanent stress in the prisms from 

plastic deformation that cannot be removed by removing the adjustment screw. 
 

 

The beam separation fit for these prisms is given in Eq. 5.3, where beam separation ∆x is in meters, 

while prism deflection X is in millimeters:  

 ∆𝑥 = 68.9 × 10−6 ∙ 𝑋 +  4.5 × 10−6 (5.3) 
 

As evident in Fig. 5.9, the beam separation at zero prism deflection is nonzero. This could 

either be a result of residual strain in the prisms, or it could be from improper adjustment of the 

dial-gage indicator “feeler” on the base of the prism. Regardless of its source, this error highlights 

the need for calibration of the prisms for accurate calculation of beam separation. Ideally, the lens 

calibration method described in this thesis would be used prior to each test, or at least at the start 

of the day on which the instrument is used, however this is somewhat time consuming and should 
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not be necessary if the ambient conditions of the lab room are consistent. Because of variation in 

the properties of the prism material due to environmental conditions, however, the prisms should 

be reset to zero strain and then loaded to the desired deflection if exposed to large changes in 

ambient temperature. This should reduce any effect of thermal expansion on the measured prism 

deflection. 

Sanderson prisms are not yet available commercially, so they must be fabricated by the 

user. If they do become a commercial product, they should certainly be supplied with a detailed 

calibration like the one shown here. 

The lens calibration method was also verified by comparison with beam deflections 

measured using the position-sensitive diodes used previously for the CBS instrument. The two 

polarized beams from one of the Sanderson prisms used for the FLDI instrument were split using 

a polarizing beam splitter cube mounted six inches from the prism, while the two position-sensitive 

diodes were mounted six inches farther from the prism, giving an optical path length of one foot 

(304.8 mm). This ensured that the beam deflection measured at the detectors was significantly 

larger than the noise. Measured angular deflections of the two beams are shown in Fig. 5.10 along 

with linear fits to these data. 
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Figure 5.10: Angular deflection of the two polarized beams from one of the Sanderson prisms of the pair used 
in the FLDI instrument for this research, as measured by a position-sensitive diode. 

 

Because it was not possible to take baseline beam separation measurements using this 

method, it is not possible to determine if any pre-strain is present in the prisms, however the 

relative angle of the beams can be used to estimate the beam separation as a function of prism 

deflection. Using the position-sensitive diode calibration, the beam separation ∆x was found to 

scale as in Eq. 5.4: 

 ∆𝑥 = 69.9 × 10−6 ∙ 𝑋 +  𝐶 (5.4) 
 
Here, C is an undetermined constant. The slope of this fit, 69.9E-6 m/mm is very close to the slope 

found using the lens method, 68.9E-6 m/mm, further supporting the above calibration procedure. 

While this procedure was performed only for one of the two FLDI prisms used for the FLDI 

instrument, they were produced to identical dimensions and are made of the same material, so they 

should behave identically to one another. 

 The beam separation ∆x is used not only for normalization of the FLDI signal, but also in 

determining the effect of beam separation on the measured turbulent spectrum, as detailed in the 

Theory chapter. The transfer function of the beam separation spatial filtering can be deconvolved 
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from the measured spectra to get an estimate of the “true” turbulent spectrum. If the estimate of 

the beam separation is accurate, then the deconvolved spectrum from tests performed at any prism 

deflection should be identical to any other deflection for the same flow conditions. 

Turbulence spectra from a 1 mm diameter round jet at P0 = 20 psia (138 kPa) are presented 

in Figs. 5.11a and 5.11b, where Fig. 5.11a shows raw (but normalized) spectra, and Fig. 5.11b 

shows these spectra after deconvolution of the beam separation spatial filtering. The beam 

separations were calculated using the above fit for prism deflections of 10, 20, 30, and 40 mils. 

For these tests, the jet axis was perpendicular to the axis of beam separation, so the beam separation 

spatial filtering transfer function for the case shown in Fig. 3.19 was used here. The resulting 

spectra show excellent agreement with one another, and demonstrate the concept of deconvolution 

of the spatial filtering transfer functions. 
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Figure 5.11a,b: Round turbulent jet testing at 20 psia (138 kPa) at 10, 20, 30, and 40 mils prism deflection, 
showing raw spectra and spectra where the prism deflection spatial filtering has been deconvolved. The close 
match between the spectra after deconvolution supports the use of the transfer function model from Theory 

section 3.7.2. 
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5.3   Air Jet 

As discussed previously, round turbulent jets are a well-characterized turbulence source that 

are often found in the literature, and as such they provide an excellent test case to demonstrate the 

behavior of the FLDI instrument and to compare with the theory for FLDI response developed in 

this thesis. 

 

5.3.1   Rolloff of FLDI Signal Intensity Along the y-Axis 

A baseline measurement for the response of the FLDI instrument to a turbulent jet is the 

measurement of the radial turbulence profile of the jet. For these measurements, the jet is set to a 

given distance downstream of the nozzle exit, x, and the FLDI output is measured at a series of 

points where the jet is traversed along the y-axis, which is perpendicular to both the FLDI beams 

(z-axis) and jet (x-axis). The measurement is performed with the jet placed at best focus in the 

z-axis. The geometry of this measurement is shown in Fig. 5.12. 

 

 

Figure 5.12: Diagram of FLDI measurement of a round turbulent jet, with coordinate system centered at 
nozzle exit. 

 

In the following results, the helium jet used earlier is replaced by an air jet exiting a round 

nozzle orifice of diameter D with stagnation pressure P0 = 30 psia (207 kPa). This is approximately 
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a sonic air jet at the converging nozzle exit, so that isentropic flow at γ = 1.4 can be used to show 

that the jet static temperature is ~ 0.83 T0, where T0 is taken to be approximately the ambient 

stagnation temperature of the jet. In other words, if T0 is 298 K, then the static temperature of the 

jet is ~247 K. This temperature difference is more than enough to provide an ample FLDI 

turbulence signal for the instrument performance diagnostics reported here. 

A series of measurements with downstream distances of 1 to 30 diameters is shown in Fig. 

5.13, which displays RMS signal normalized by the integrated signal across the jet profile. Initially, 

the FLDI response to the jet has a kind of top-hat profile, but as the jet develops downstream, this 

develops into a generally Gaussian profile, especially past the end of the potential core of the jet. 

The cumulative distribution functions of these jet profiles are calculated (shown in Fig. 5.14) and 

a normal distribution CDF is fit to these data. This gives an estimate of the standard deviation 

width, σjet, of a best-fit Gaussian profile to each profile. 
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Figure 5.13: Turbulent jet profiles measured using the FLDI instrument for a 1 mm diameter nozzle, using 
compressed air at 30 psia. The signals are normalized for clarity by the numerically integrated area under the 

curve. 
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Figure 5.14: Best-fit Gaussian cumulative distribution functions for each of the turbulent jet profiles 
measured by FLDI. As y0 is calculated using these CDFs, the median value of each profile is found at 0 mm 

offset on this plot. 
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The standard deviation widths of these Gaussian fits are plotted in Fig. 5.15. A linear fit to 

these data gives the following result, where σjet is the jet width in millimeters:  

 𝜎𝑗𝑒𝑡 = 0.0864 ∙ 𝑥𝐷 + 0.3309 (5.5) 

 
The spreading angle of the jet, 0.086 rad (4.9 degrees), is identical to the angle measured by 

Wygnanski and Fiedler[68], Rodi[69] and Hussein et al.[70]. This illustrates the ability of the FLDI 

instrument to yield experimental turbulent round-jet data in agreement with historical benchmark 

experiments. 

 

 

Figure 5.15: ~4.9 degree spreading angle measured from FLDI jet profiles for FLDI data shown previously. 
This spreading angle is commonly quoted in the literature for the spreading rate of density in turbulent 

round jets. 
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The Gaussian CDFs from Fig. 5.14 are normalized by these measured-jet-width standard 

deviations in Fig. 5.16. The jet turbulence profiles from Fig. 5.13 are also normalized by the jet 

width standard deviation, shown in Fig. 5.17. 
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Figure 5.16: Turbulent jet profile cumulative distribution functions (CDF) normalized by jet width standard 
deviation. A dashed line represents a true Gaussian CDF, showing good agreement with the data, which 

supports the use of the Gaussian jet approximation used in this research. 
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Figure 5.17: Turbulent jet profiles from Fig 5.13 normalized by the jet width standard deviations calculated 
using Eq. 5.5. While the jet width normalization works well, amplitude normalization fails for downstream 

distances less than 15 nozzle diameters from the jet origin, as the jet profile is not yet fully developed at these 
distances. 
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The RMS turbulence profiles of the turbulent jet at P0 = 30 psia do not appear to be fully developed 

until around 20 nozzle diameters downstream, based on present FLDI data. After this point, the jet 

profiles are well-approximated by a Gaussian model. 

As will be demonstrated next, the jet width standard deviation is a critical length scale for 

determining how fast the FLDI signal rolls off when the jet is offset along the z-axis away from 

best FLDI focus. It is used, along with the 1/e2 diameter of the FLDI beams, D4σ, and the distance 

from the field lens to the focal point of the system, d, to find a non-dimensional length scale of the 

FLDI system:  

 𝑍 = 𝑧0𝜎𝑗𝑒𝑡 tan−1 (𝐷4𝜎𝑑 ) (5.6) 

 
If the angle of the beam focus is shallow, then the small-angle assumption can be used to simplify 

the above relationship:  

 𝑍 = 𝑧0𝐷4𝜎𝜎𝑗𝑒𝑡𝑑  (5.7) 

 

Although it is applied in this thesis only to round jet turbulence, the form of Eq. 5.7 for a non-

dimensional length should be applicable to other geometries, replacing σjet with the relevant 

characteristic lengths in those cases. 

 

5.3.2   Rolloff of FLDI Signal Intensity Due to Focusing of Twin Laser Beams 

The signal measured by the FLDI instrument rolls off when disturbances occur away from 

the focus of the twin laser beams due to spatial filtering, as described previously. As seen in the 

non-dimensional length scale above, the rolloff of the system response as a disturbance traverses 

along the z-axis of the FLDI instrument is governed by the optical angle at the beam focus.  
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To verify that this length scale is valid, the angle of the beams was varied by stopping down 

the apertures of the 50mm f/1.2 Nikon camera lenses used as FLDI field lenses in benchtop testing. 

The total power detected by the photodiodes was measured, and the RMS fluctuation level from 

the jet turbulence described above was measured from -30 mm to 30 mm z-axis displacement 

relative to the focus. The lens was stopped down in one-stop increments from f/2 to f/16, giving a 

large variation in the effective f-number of the FLDI system, defined as 𝑁𝐹𝐿𝐷𝐼 = 𝑑 𝐷4𝜎⁄ . 

First, it is necessary to determine the maximum diameter of the beam before it is reduced 

by stopping down the lens aperture. At each lens stop, the total power measured by both 

photodiodes was summed to determine the beam power transmitted through the system, and the 

radius of the clear aperture of the lens was calculated by dividing the focal length of the lens by 

the f-number. Then, a function (Eq. 5.8) describing the transmitted power of a Gaussian beam 

clipped by a circular aperture was fitted to the resulting curve. 

 𝑇 = 1 − 𝑒−2𝑟2𝑤2  (5.8) 
 

Here, T is the transmitted power fraction, r is the radius of the clear aperture of the lens, and w is 

the 1/e2 radius of the beam (half of the four-sigma diameter, D4σ). This fit results in an estimate of 

the maximum beam diameter that could be achieved with no clipping from the lens aperture. A 

plot of the measured photodiode voltages (directly proportional to incident laser power) compared 

to clear aperture diameter is shown in Fig. 5.18, with the above fit superimposed as a dashed line. 
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Figure 5.18: Beam profile fit to measured photodiode voltages at different camera lens f-stops using Eq. 5.8. 
The maximum four-sigma diameter of the beam, D4σ, is found to be 20.5 mm. 

 
 

The unclipped four-sigma diameter of the beam from the testing above was found to be 20.5 mm. 

 Due to stopping down the lenses, the clipped beams are no longer Gaussian in profile, and 

become more like top-hat beams as the aperture is further restricted. For the normalization used 

here, it is necessary to calculate the equivalent Gaussian beam diameter from this clipped profile. 

This is done by taking the square root of the ratio of measured beam power at a given f-stop to the 

maximum beam power calculated from the fit above (Eq. 5.8). 
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Here, erf is the error function, which is the integral of a Gaussian from its center to the argument 

of the function. 
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 The results of this test, both raw and normalized by the calculated four-sigma diameters of 

the beam at each f-stop, are shown in Figs. 5.19a,b. Despite assuming that the clipped beams are 

Gaussian, using the effective diameter described above, the normalization appears to be reasonably 

effective. 
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Figure 5.19a,b: Beamwise (z-axis) rolloff of jet turbulence results due to reduction of FLDI system angle by 
stopping down the field lenses. The f-numbers at aperture setting of the Nikon field lenses used for this testing 

are shown in the legend. 
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5.3.3   Beamwise Rolloff of Signal Intensity as a Function of Jet Diameter 

The other term in the non-dimensional length scale is the jet width standard deviation, σjet, 

which was measured earlier. As the jet nozzle is moved away from the focus along the jet axis (x), 

the size of the disturbance that the FLDI instrument sees increases due to jet spreading, so it is 

expected that the rolloff of the signal will be slower as the jet is moved along the beam axis, z (see 

Fig. 5.12).  

Tests were performed with the D = 1 mm round jet supplied with air at P0 = 30 psi. It was 

positioned so as to cross the z-axis at 10 to 30 nozzle diameters D downstream of the nozzle exit. 

The FLDI response to the jet was measured when the jet was located at points along the beam axis, 

z, from -30 mm to 30 mm relative to best focus (see diagram). The results of these tests are shown 

in Figs. 5.20a,b, showing both the raw data and the normalized points. As with the testing at 

different beam diameters, the result shows excellent agreement. 
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Figure 5.20a,b: Normalized rolloff of turbulence intensity signal away from best focus in the z-direction at 
varying distances downstream of the jet, with increasing jet diameter further downstream of the nozzle. 
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5.3.4   CBS Fit to Velocity Profile 

The crossed-beam schlieren (CBS) instrument developed for this research was used to 

measure convective velocities in a round turbulent jet as a function of distance downstream of the 

nozzle exit. The nozzle was 1.83 mm in diameter and supplied with helium at 30 psi (207 kPa) 

absolute. Measurements were performed from 7.5 to 75 nozzle diameters downstream. The 

measured velocities are compared with the theoretical fit developed by Witze[71]. The result of this 

testing is shown in Fig. 5.21. 

 

 
Figure 5.21: Crossed-beam schlieren measurements of convective velocity in a high-speed helium jet in air, 
compared with theory developed by Witze[71]. The dashed line shows Witze’s model for centerline velocity 

decay using the listed flow properties. 
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The form of Witze’s fit is given in Eq. 5.10:  

 𝑓(𝑥̅) = 1 − exp ( −1𝜅𝑥̅(𝜌𝑒̅̅ ̅)0.5 − 𝑋𝑐) (5.10) 

 

In this fit, 𝑓(𝑥̅) is the flow property of interest, which decays with distance downstream along the 

centerline of the jet, 𝑥̅, which is the distance from the nozzle divided by the nozzle radius. 𝜌𝑒̅̅ ̅ is 

the ratio of the density of the surrounding fluid to the density of the fluid at the jet exit. 𝑋𝑐 is a 

non-dimensional core length, which has a universal value of 0.70 according to Witze. Finally, 𝜅 is 

a proportionality constant which is different for each flow property. 

The proportionality constant κ that provided a best fit to the data collected above was found 

to be 0.075, while the theoretical universal proportionality constant for centerline velocity decay 

found by Kleinstein[72] is κ = 0.074. The proportionality constant for fluid enthalpy is 0.102, and 

the constant for centerline decay of concentration/temperature/density is 0.104. Ultimately, this 

means that the rolloff of density occurs sooner after the nozzle exit than does the rolloff of velocity, 

due to a shorter potential core for density, and it also rolls off faster toward ambient conditions. 

It was not possible to measure the velocity of the jet closer to the nozzle exit because 

turbulent density fluctuations within the potential core are very weak, leading to failure of the 

correlation results. Uncertainty in the calculated convective velocity was found to be at a minimum 

just beyond the potential core, increasing gradually as the helium in the jet mixes out with the 

surrounding air. Beyond approximately 75 nozzle diameters downstream it was found that the 

helium had mixed out of the jet too far to allow consistent measurement, test to test. 

 The results of this experiment are important because they show that the correlating CBS 

signal in the jet convects at almost the same velocity as the jet centerline velocity, although UC is 

typically a little lower than U on tunnel centerline. This means that the convective velocity may 
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be used for a reasonable approximation of mean flow velocity to calculate wavenumber for the 

turbulent density spectra measured by the CBS instrument. Although the FLDI instrument 

developed during this research was not equipped to perform these cross-correlation measurements, 

it is possible to do so, and because of the similarity in the form of the output of deflectometry and 

differential interferometry, it should provide a similar result. Simultaneous measurement of 

convective velocity and the single-point fluctuating FLDI signal would greatly reduce the 

uncertainty of spectra and of the calculated spatial filter transfer functions for each run. This, 

however, is left for future work. 

 

5.3.5   Electronic Noise Spectra 

There is a significant amount of noise present at low frequencies in the signals measured 

by the FLDI instrument: so-called “flicker” noise which follows a 1/f slope in measured spectra, 

fluctuations in laser power, changes in room air temperature from ventilation air currents, etc. This 

can be seen in Fig. 5.22, where such noise is visible above the electronic noise floor of the data 

acquisition system out to around 500 Hz. 
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Figure 5.22: Baseline electronic noise present in FLDI measurements when no jet or other flow is present. 
The dashed red line follows an approximate “noise floor” of measured spectra. 

 

Despite the relatively high strength of this noise compared to turbulence spectra measured 

by the FLDI instrument, the noise detected by the two photodiodes is uncorrelated, thus the 

coherence of the two signals is low. Meanwhile, as the photodiodes measure essentially the same 

signal, but 180 degrees out of phase to one another, the photodiode signals from to the 

interferometer should be very coherent, while electronic noise on top of those signals should not. 

This provides a useful method for rejecting artifacts on measured turbulence spectra that are not 

actually due to the turbulent flow under study, but rather come from random noise entering the 

system. 

Coherence is calculated from the spectra of two signals using Eq. 5.11:  

 𝐶𝐴𝐵 = |𝑆𝐴𝐵|2𝑆𝐴 ∙ 𝑆𝐵 (5.11) 
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Here, A and B are the two FLDI photodiode signals, CAB is the coherence signal of the spectrum, 

SAB is the cross-correlation of signals A and B, and SA and SB are the autocorrelations of each signal. 

Direct measurement of the coherence of the full spectrum is extremely noisy, so instead it must be 

calculated over many ensembles of the FLDI signals and then averaged. A plot of the coherence 

signal from a sample turbulent jet signal is shown in Fig. 5.23, annotated to show how external 

noise appears in the spectrum. 

 

Figure 5.23: Example coherence plot from a turbulent air jet test, showing strong coherence from the 
turbulent signal, and low coherence at frequencies corrupted by electronic noise. 

 

Here, the effect of the noise from 0 Hz to ~500 Hz, shown in the baseline spectrum above, appears 

as a very-low-coherence signal. Ignoring all points below a given threshold, such as 90% 

coherence, limits the influence of electronic noise on FLDI turbulence spectra. The spectrum to 

which the above coherence plot corresponds is shown in Fig. 5.24, where the full spectrum is 

plotted in black, and the portion of the spectrum where the coherence is above 90% is overlaid. 
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Figure 5.24: Turbulent jet spectrum showing the full spectrum and the spectrum clipped to only those points 
having greater than 90% coherence. 

 

The background noise seen in Fig. 5.22 can be clearly seen superimposed upon the raw spectrum 

in Fig. 5.24. Limiting the spectrum to just the signal above 90% coherence trims this noise out, 

leaving behind only the signal that can be strongly attributed to the interferometer response to the 

turbulent flow under study. 

In addition to the ability to eliminate the effect of laser power fluctuations on the FLDI 

signal, the ability to perform this coherence analysis is another benefit from using two photodiodes 

for FLDI phase quadrature, instead of using a single photodiode and measuring the ratio of 

photodiode voltage fluctuations to mean voltage. This technique appears to be novel in the 

literature. Many papers show turbulence spectra contaminated with electronic noise at low 
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frequencies and crossing the noise floor at high frequencies, but have no way to discriminate 

between spectra of interest and noise on the spectra. 

 

5.3.6   Measurement of Fluctuating and Mean FLDI Phase 

The FLDI instrument is capable not only of measuring fluctuations in density, but can also 

be used to measure differential phase between the foci of the two beams. This can be seen in Fig. 

5.25, which shows the fluctuating and mean phase measured in a round turbulent jet from a 

D = 1.83 mm nozzle, supplied with air at P0 = 70 psia (480 kPa). At this stagnation pressure, sonic 

flow at the nozzle exit is followed by expansion to supersonic flow and a series of “shock 

diamonds[73].” Here, the jet axis, x, is in the same direction as the axis of beam separation, so the 

mean phase measured by the instrument represents the density gradient along the x-axis of the jet 

(see Fig. 5.12). 

The effect of shock diamonds in the potential core of the jet is clearly visible in both the 

fluctuating and mean component plots. These shock diamonds exist until around 12 diameters, D, 

downstream of the nozzle exit, which can be determined by finding the point that the mean 

component stops oscillating. The fluctuating component is at a maximum at the peaks of the mean 

phase plot, as this is where the density of the flow is greatest, and it is at a minimum at the valleys 

of the mean phase plot, where the density is at a local minimum. 
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Figure 5.25: Fluctuating and mean phase in a P0 = 70 psia (480 kPa) turbulent air jet. Shock diamonds in the 
jet are clearly visible out to around 12 diameters downstream of the nozzle. 
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5.3.7   Comparison with Literature and HWA Data 

Measurements were made of turbulent intensity and spectra in the turbulent air jet using 

both hot-wire anemometry and the FLDI technique, for direct comparison as well as validation 

from data from the literature. The data shown here were all taken with a jet stagnation pressure of 

P0 = 30 psia (207 kPa), using the 1 mm diameter nozzle described earlier. This may be described 

as approximately a sonic jet with few if any shock diamonds. 

One difficulty with hot-wire anemometry (HWA) is that its response is highly non-linear. 

The Wheatstone bridge voltage measured by the anemometer must be calibrated against a known 

velocity, at the desired wire operating resistance, in order to measure velocity and its fluctuating 

component. For the present experiments, this was done by making measurements at a range of 

distances x downstream of the nozzle exit. The average wire voltage, minus the voltage of the wire 

with the jet turned off, was related to the centerline velocity predicted by Witze’s model (described 

earlier) with a 6th-order polynomial fit.  
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Figure 5.26: 6th-order polynomial fit of hot-wire anemometer mean voltage to jet centerline velocity, as per 
the hot-wire anemometer system documentation. 

 
To avoid issues from jet geometry and possible misalignment of the jet, only points well outside 

the potential core of the jet (x/D > 10) were used.  

Using this calibration, the velocity turbulence intensity along the centerline of the jet was 

measured using HWA, and the density turbulence intensity was measured using FLDI. The results 

are compared with data published in Chen & Rodi[74]. The published data refer to 𝜌𝑎 𝜌𝑜⁄ , which is 

the ratio of ambient density to the density of the jet at the nozzle exit. This density ratio was 

calculated for the turbulent jet used in this research using the compressible isentropic relationship 

for density:  

 𝜌𝑎𝜌𝑜 = 𝑃∞𝑃0 (1 + 𝛾 − 12 𝑀2) 1𝛾−1
 (5.12) 
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Here, M is the nozzle-exit Mach number of the jet, γ is the ratio of specific heats in the gas, P∞ is 

the pressure of the surrounding fluid, and P0 is the stagnation pressure of the jet. For the 30 psia 

jet at lab conditions, M = 0.96, and 𝜌𝑎 𝜌𝑜⁄  is approximately 0.75. 

 The measured HWA centerline velocity turbulence intensity of the jet is shown in Fig. 

5.27b. It peaks around 20 diameters downstream, which is approximately where the jet profile was 

found to be fully developed to a Gaussian profile in the profile testing described earlier. Past this 

point, the turbulence intensity appears to flatten out to around 20%. 

The centerline density turbulence intensity of the jet, measured by the FLDI instrument, is 

shown in Fig. 5.28b. It rapidly rises to a peak at around 10 diameters downstream of the nozzle 

exit, and then rolls off slowly, also flattening out to around 20%. Note that the decay of density 

along the jet centerline occurs sooner and is more rapid than the velocity decay, accounting for the 

difference in the location of peak turbulence intensity measured by both instruments. 
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Figure 5.27a,b: Measured velocity turbulence intensity in the turbulent jet from hot-wire anemometry, 
compared to published data from Chen & Rodi[74]. 
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Figure 5.28a,b: Measured density turbulence intensity in the turbulent jet from the FLDI instrument, 
compared to published data from Chen & Rodi[74]. 
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The turbulence intensity measurements from both instruments are overlaid on one another 

in Fig. 5.29. Despite ρ and u being fundamentally different properties of the flow, the turbulence 

intensity profiles for velocity and density turbulence are quite similar in terms of general shape. 

 

 

Figure 5.29: Turbulence intensity measured by HWA (velocity TI%) and FLDI (density TI%) instruments. 
 

Because of this similarity between the two turbulence intensities, it should be possible to directly 

compare measurements of density and velocity turbulence in a wind tunnel facility. This would 

allow use of the FLDI instrument to measure disturbance levels in flow conditions unsuitable for 

other techniques, but would still give results comparable to those published in the literature. 

 Some testing was also performed at higher jet speeds. The data from Fig. 5.30 were taken 

at P0 = 70 psia (480 kPa), giving a peak Mach number of around 1.3. The density turbulence 

0 5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x/D

T
u

rb
u

le
n

c
e
 I
n

te
n

s
it

y

 

 

 / (
CL

 - )

u / U
CL



179 

 

intensity calculated for this case compares favorably with P0 = 321.7 kPa, M = 1.4 data by 

Panda[75], which were gathered using the Rayleigh scattering technique. 

 

 

Figure 5.30: Comparison of density turbulence intensity measured by FLDI in a Mach ~1.3 turbulent jet and 
by Rayleigh scattering in a Mach 1.4 jet measured by Panda[75]. 
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nozzle perfectly expanded at Mexit = 1.4, while the jet from the nozzle examined here is choked at 

Mexit = 1 and is underexpanded, achieving its maximum Mach number some distance downstream. 

 

5.3.8   Turbulence Spectra 

In addition to turbulence intensity measurements, measurements of turbulence spectra were 

made at downstream locations in the turbulent jet, with the flow directed perpendicular to the axis 

of beam separation. Raw spectra from the jet experiments already cited at P0 = 30 psia are shown 

in Fig. 5.31 for a range of diameters downstream of the nozzle exit. Spectra processed by 

deconvolution of the system and beam separation transfer functions are shown in Fig. 5.32. The 

spectra are normalized and spaced in two-decade intervals for clarity. The lightest dots in each plot 

show the full power spectrum of the signal. Darker spots highlight the meaningfully-coherent 

signal, selected using the method described earlier. The dark line is a smoothed power spectrum 

from each data set. Finally, for the processed spectra, the dashed line represents a Von Kármán 

spectrum fit to the data (as described in the Theory section of this thesis), which is initially flat, 

but rolls off to a slope of -5/3, representing the Kolmogorov spectrum, and this rolloff occurs 

around the wavenumber k0, the outer scale of turbulence. 

Note that very few turbulence spectra are found in the literature for turbulent jets, because 

of the difficulty of the measurement, especially before modern digital data acquisition and 

processing capabilities became available. 
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Figure 5.31: Raw turbulent jet spectra from FLDI measurements of P0 = 30 psia jets. D = 1 mm, at a variety 
of distances downstream of the nozzle exit. The light gray points represent all of the measured points on the 

spectra, while the darker gray points correspond to the portions of the spectra where the two photodiode 
signals are highly coherent. The solid lines shows these spectra after smoothing. 
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Figure 5.32: Processed turbulent jet spectra from FLDI measurements of P0 = 30 psia jets. D = 1 mm, at a 

variety of distances downstream of the nozzle exit. The light gray points represent all of the measured points 
on the spectra, while the darker gray points correspond to the portions of the spectra where the two 

photodiode signals are highly coherent. The solid gray lines shows these spectra after smoothing. The dashed 
lines are Von Kármán spectrum fits to these spectra. 
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Measurements were made with hot-wire anemometry for comparison with these turbulent 

density spectra. Compared to FLDI, however, limitations upon the frequency response of hot-wire 

anemometers are quite dramatic. This is due to the natural frequency response of the hot-

wire/amplifier combination, which is necessarily low in order to maintain stability of the hot-wire 

Wheatstone bridge and amplifier transfer functions. 

The transfer function of the hot-wire bridge and amplifier is measured by applying a 

square-wave signal to one leg of the hot-wire bridge and measuring the resulting spectrum (Fig. 

5.33). The Fourier transform of a square wave gives a series of delta functions at odd harmonics 

of the square wave frequency, rolling off as 1/f. For a square wave at 1024 Hz, the first spike will 

occur at 1024 Hz, the second spike at 3072 Hz, and so on. These frequencies are sampled from the 

measured square-wave test spectrum of the hot-wire anemometer to find the system response. 

 

Figure 5.33: Square-wave test of the TSI IFA300 hot-wire anemometer equipment used in this research. 
There is no flow for this particular spectrum. The points represent the square-wave delta functions, and the 

dashed line is a fit to these data. 
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Because the hot-wire anemometer fundamentally measures heat transfer from the hot-wire 

probe, rather than directly measuring velocity as is desired, the wire’s transfer function changes 

based on the convective heat transfer coefficient of the flow around the wire. This coefficient is a 

function of the Nusselt number of the flow, which is itself a strong function of Reynolds number. 

As a result, the system transfer function is heavily dependent on the velocity of the flow. The 

transfer function of the wire must be found for a range of flow velocities that covers the velocities 

encountered in the experiment. 

For the testing presented here, this calibration was performed in a similar manner to the 

velocity calibration above: square-wave tests were performed at a range of distances downstream 

of the jet nozzle exit, from x/D = 10 to 50. A fit to the measured square-wave points on the spectra 

of these tests was performed to estimate the system transfer function. The results of these tests are 

shown in Fig. 5.34. 

 

Figure 5.34: HWA transfer function fits for the calibration testing from x/D = 10 (U = 309 m/s) to x/D = 50 
(U = 58 m/s) in steps of 10 diameters, with baseline (U = 3 m/s, due to natural convection from hot-wire). 
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The fit used for these results is of the following form (Eq. 5.13):  
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 (5.13) 

 

Unlike the standard first-order transfer function described in the TSI anemometer documentation, 

the fit used here takes the form of a second-order low-pass filter with an added term, B. This term 

accounts for the effect of the turbulence rolloff on the apparent slope of the system transfer 

function, and it is ignored during deconvolution by being set to 1. A is the amplitude of the filter, 

and it is also ignored during deconvolution by setting it to 1, so the resulting filter is of unity gain. 

fc is the cutoff frequency of the filter. Q is a factor related to the damping of the filter, and defines 

how “peaky” the filter is. This accounts for the hump seen in the transfer functions near the cutoff 

frequency in Fig. 5.34, which cannot be corrected using a first-order transfer function model. The 

factors ultimately used in the deconvolution process, fc and Q, were found to vary as 

semilogarithmic functions of flow velocity. Plots of these factors are shown in Fig 5.35. 

Deconvolution of this transfer function from measured spectra is a simple process, 

described in Eq. 5.14:  
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Figure 5.35: Hot-wire anemometer transfer function factors. The jet velocity shown here is the centerline 
velocity of the jet calculated at each distance downstream of the nozzle exit. 
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Figure 5.36a,b: a) Raw HWA spectrum of the turbulent air jet at x/D = 20, and b) the same spectrum with the 
estimated transfer function deconvolved. After deconvolution, the response of the system to the square-wave 

excitation is generally flat across the processed spectrum, while it peaks around 20 kHz and then rapidly rolls 
off at higher frequencies in the raw spectrum. 
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As with the FLDI instrument, measurements of turbulence spectra were made downstream 

in the turbulent jet by hot-wire anemometry. Raw spectra are shown in Fig. 5.37, and spectra 

processed by deconvolution of the hot-wire anemometer transfer function are shown in Fig. 5.38. 

The spectra are normalized and spaced in two-decade intervals for clarity. The lightest dots for 

each plot show the full power spectrum of the signal. Darker spots highlight the signal of interest. 

The dark line is a smoothed power spectrum from each data set, and the dashed line represents a 

Von Kármán spectrum fit to the data as with the FLDI tests. 

Note the rapid rolloff of the raw HWA signal, which severely restricts the maximum 

resolvable wavenumber in the spectrum. Additionally, electronic noise spikes that are close to the 

noise floor “leak” into the deconvolved signal. This can be seen clearly in the x/D = 15 case, where 

noisy spikes cover much of the spectral range of interest. 
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Figure 5.37: Raw HWA spectra measured in the round turbulent jet. D = 1 mm, P0 = 30 psia. The light gray 
points represent all of the measured points on the spectra, while the darker gray points correspond to the 

portions of the spectra which are above the electronic noise floor prior to processing of the spectra. The solid 
gray line shows these spectra after smoothing. The dashed lines are Von Kármán spectrum fits to these 

spectra. 
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Figure 5.38: Processed HWA measurements of spectra in the round turbulent jet. D = 1 mm, P0 = 30 psia. The 
light gray points represent all of the measured points on the spectra, while the darker gray points correspond 
to the portions of the spectra which are above the electronic noise floor prior to processing of the spectra. The 
solid gray line shows these spectra after smoothing. The dashed lines are Von Kármán spectrum fits to these 

spectra. 
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 Jet turbulence spectra measured by hot-wire anemometry and the FLDI instrument are 

compared in Figs. 5.39-42, with Von Kármán spectrum fits overlaid. Both spectra appear to roll 

off similarly to Kolmogorov’s -5/3 spectrum. The outer scale wavenumber at which this rolloff 

occurs, k0, seems to happen earlier for the hot-wire anemometry data, however, while the outer 

scale wavenumber for the FLDI spectra does not change much. In both cases, the outer scale 

wavenumber lies between 1/𝜎𝑗𝑒𝑡, a wavenumber that corresponds to the diameter of the jet plume 

at that location downstream, and 1/𝐷, a wavenumber corresponding to the diameter of the nozzle 

exit. 

 In the spectra from x/D = 15 to 25, beyond a wavenumber of around 104 m-1, the FLDI 

spectra deviate from the -5/3 slope, rolling off faster. This may be the turbulence entering the 

dissipation regime, or perhaps incorrect assumptions about the FLDI system transfer function for 

the jet. Unfortunately, the spectrum reaches the noise floor shortly beyond this wavenumber, so it 

is not possible to determine the cause of this deviation with these data. 

 The higher frequency limit of the FLDI instrument is seen in the much-higher 

wavenumbers it can measure compared to the hot-wire anemometer. In the high-speed case at 

x/D = 15, the FLDI instrument sees a full order of magnitude higher wavenumber spectrum than 

does the HWA, seeing out to k = 30,000 m-1 compared to the 3,000 m-1 limit of the hot-wire. At 

x/D = 30, the maximum wavenumber measured by FLDI is 20,000 m-1, compared to the hot-wire 

at 5,000 m-1. Using higher-power lasers to achieve greater signal-to-noise ratios, the FLDI 

instrument should be capable of measuring even higher wavenumbers if necessary. 



192 

 

 

Figure 5.39: Comparison of HWA and FLDI results at x/D = 15. The gray points represent the actual 
measured points on the spectra, while the solid gray line shows these spectra after smoothing. The dashed 

lines are Von Kármán spectrum fits to these spectra. 



193 

 

 

Figure 5.40: Comparison of HWA and FLDI results at x/D = 20. The gray points represent the actual 
measured points on the spectra, while the solid gray line shows these spectra after smoothing. The dashed 

lines are Von Kármán spectrum fits to these spectra. 
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Figure 5.41: Comparison of HWA and FLDI results at x/D = 25. The gray points represent the actual 
measured points on the spectra, while the solid gray line shows these spectra after smoothing. The dashed 

lines are Von Kármán spectrum fits to these spectra. 
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Figure 5.42: Comparison of HWA and FLDI results at x/D = 30. The gray points represent the actual 
measured points on the spectra, while the solid gray line shows these spectra after smoothing. The dashed 

lines are Von Kármán spectrum fits to these spectra. 
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5.4   PSUSWT & Hypervelocity Tunnel 9 FLDI Experiments 

Measurements of turbulence intensity and spectra were taken in both the Penn State 

supersonic wind tunnel (PSUSWT) and the AEDC Hypervelocity Tunnel 9. For both cases, rather 

than using a Von Kármán spectrum fit, a more general spectrum fit of a similar form was used, 

allowing for changes in the slope of the spectrum, rather than assuming the -5/3 Kolmogorov 

rolloff. This spectrum is described in Eq. 5.15:  

 𝐸(𝑘) = 𝐴2(𝑘2 + 𝑘02)−𝐵/2 (5.15) 

 

Here, A is the amplitude of the spectrum fit and B is the slope of the spectrum at high wavenumber. 

In the case that B = -5/3, this fit is identical to that provided by the Von Kármán spectrum. 

 

5.4.1   PSUSWT Testing 

Testing in the Penn State supersonic wind tunnel was performed at Mach 3, and the optics 

were moved along the beam axis such that the best focus of the beam occurred at various distances 

from the tunnel centerline to the windows. Spectra are presented in Figs. 5.44-47, showing data 

taken at tunnel centerline (3 inches from the window), 2.5 inches, 2 inches, and finally 1.5 inches 

from the window. The boundary layer thickness for the run conditions used here is approximately 

1 inch. A diagram of the FLDI system shifted from tunnel centerline into the boundary layer is 

shown in Fig. 5.43. The beam diameter is exaggerated here for clarity. 
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Figure 5.43: Diagram of FLDI system in PSUSWT with FLDI focus shifted between tunnel centerline and 
into the boundary layer. Translation of the FLDI system along the optical axis shifts the focus of the system 

from the tunnel centerline towards the tunnel wall boundary layers, resulting in reduced rejection of 
boundary layer signals. 

 

As the beam focus approaches the window, the signal from the tunnel sidewall boundary layer 

becomes much more distinct, which is seen in the steepening slope of the spectrum fit, and the 

increase in the amplitude of the signal over the noise floor. The spectrum fits shown in the scaled 

power spectra are marked with a + symbol at the outer scale wavenumber, k0, predicted by the 

fitting routine. 

The difference in the shape of the spectrum from tunnel centerline to the edge of the tunnel 

sidewall boundary layers is quite small. This implies that the instrument, in the embodiment used 

for these experiments, does not reject the boundary layer noise enough to easily differentiate any 

differences that might exist between the shape of the boundary layer and freestream turbulence 

spectra. However, a small hump is visible above a wavenumber of 1000 m-1 in the spectrum 
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measured at the tunnel centerline. This hump is not large enough to reliably resolve using the 

general spectrum fit from above, however a Von Kármán fit to it is shown in Fig. 5.48. 

 The density of the flow in the PSUSWT at the Mach 3 run conditions used in these tests is 

0.6 kg/m3, or ~50% of atmospheric density. The density-based freestream turbulence intensity 

calculated using the data taken at tunnel centerline is about 0.3%. This leads to a velocity-based 

freestream turbulence intensity of less than 0.1% based on the Strong Reynolds Analogy discussed 

in section 3.8.1 of this thesis. 
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Figure 5.44: PSUSWT Mach 3 testing, with the FLDI focus at tunnel centerline (3 inches from window) 
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Figure 5.45: PSUSWT Mach 3 testing, with the FLDI focus at 2.5 inches from window 
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Figure 5.46: PSUSWT Mach 3 testing, with the FLDI focus at 2 inches from window 
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Figure 5.47: PSUSWT Mach 3 testing, with the FLDI focus at 1.5 inches from window 
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Figure 5.48: PSUSWT Mach 3 testing, along tunnel centerline, Von Kármán fit to second hump in spectrum, 
potentially related to freestream turbulence. 
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5.4.2   AEDC Hypervelocity Tunnel 9 Tests 

Four tests of the FLDI instrument were conducted in Hypervelocity Tunnel 9 in October 

2013. Unfortunately, of these, only one run successfully acquired data. This successful run was at 

Mach 10, with a unit Reynolds number of 5 × 106 ft-1 (16.4 × 106 m-1). The FLDI Sanderson prism 

was set to 20 mils deflection, and with the 200 mm focal length field lenses used in the Tunnel 9 

testing, this corresponds to a beam separation of 156 µm. The raw output voltage of the FLDI 

instrument from this run is shown in Fig. 5.49. 

 

 

Figure 5.49: Raw FLDI signal from Tunnel 9 run 3738. The thick dashed line on the left of the plot is just 
before tunnel startup, the dash-dotted line is where the flow transitions from the pre-burst flow to the run 
condition, and the dotted line is at the end of the useful flow, where the shutdown shock passes through the 

tunnel. 

 

Here, the startup shock can be seen passing the beams at the first dashed line. The signal before 

this line demonstrates the relative amplitude of the electronic noise compared to the rest of the 



205 

 

signal. After the starting shock passes through, the tunnel undergoes what Tunnel 9 personnel call 

the “ablator” or “pre-burst” flow, where a set of plugs in the tunnel erodes away to ramp the tunnel 

up to its run condition. The dash-dotted line shows the start of the full Mach 10 run-condition flow 

of the tunnel. This lasts for slightly less than one and a half seconds. Finally, the dotted line shows 

when the tunnel shuts down, and the FLDI beams become obscured, reducing the signal back to 

the level of the electronic noise floor. 

 Spectra measured in each of these conditions are shown in Fig. 5.50. The wavenumber 

calculated for these spectra uses the freestream velocity at full run speed, which is approximately 

1470 m/s at the run conditions described above. 

 

 

Figure 5.50: Raw Tunnel 9 spectra, run 3738, showing the background noise, a spectrum calculated from the 
pre-burst portion of the flow, and a spectrum calculated at full run conditions. The run condition spectrum is 

at least an order of magnitude above the background noise for most of the spectrum. 
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The raw and processed spectra from the ablator flow are shown in Fig. 5.51, while the raw 

and processed spectra from the run-condition flow are shown in Fig. 5.52. The power spectrum of 

the electronic noise in the Tunnel 9 data is shown in Fig. 5.53. In both the ablator flow and run-

condition spectra, a distinct, dominant spike is seen at a wavenumber around 40 m-1
 (f ~ 9.4 kHz), 

however it is not seen in the electronic noise spectrum. This spike may be due to a resonance in 

the tunnel or other source of flow noise. A turbulent spectrum shape can be seen in the run-

condition spectrum, which appears to roll off as a Kolmogorov spectrum or perhaps slightly faster. 

Further testing is necessary, with higher signal-to-noise ratio, to determine the nature of both of 

these phenomena. 

The turbulence in the tunnel is extremely weak during the ablator flow, as the freestream 

density is very low. Even at full run-condition flow, the freestream density is approximately 0.0385 

kg/m3, which only about 3% of atmospheric density. This significantly restricts the expected signal 

level, which is proportional to freestream density. To compensate for the low levels, Stanford 

Research SR560 battery-backed preamplifiers were used to amplify the FLDI signals. For run 

3738, the preamps were set to 2000x gain and were DC-coupled to allow normalization of the 

signal using the method described in the Procedures section of this thesis. 

The turbulence intensity calculated from the coherent portion of the run-condition spectrum 

is 7.7%, which is comparable to the pitot pressure fluctuation level of 4.9% measured by 

Bounitch[76] at a unit Reynolds number of 2 × 106 ft-1 (6.6 × 106 m-1). The FLDI test was performed 

at a higher unit Reynolds number, accounting for the higher turbulence level. Converted to a 

velocity turbulence intensity by the strong Reynolds analogy, this gives a velocity turbulence 

intensity of approximately 0.2%. When the density TI% is normalized by the dynamic pressure 
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factor 𝛾𝑀2/2, this gives a value of 0.11%, comparable to data listed by Lafferty and Norris for 

Tunnel 9[77]. 

These very limited results for AEDC Hypervelocity Tunnel 9 comprise more of a feasibility 

demonstration for the FLDI instrument than actual wind-tunnel calibration data. The FLDI 

instrument was “piggy-backed” with another wind-tunnel experiment, and the available time was 

heavily constrained by circumstances. Nevertheless, it was demonstrated that an FLDI turbulence 

signal could be obtained despite low-freestream-density conditions. There is little doubt, given 

enough time to improve the signal-to-noise ratio of the instrumentation and run more tests, that 

freestream turbulence data of wind-tunnel-calibration quality can be measured using FLDI. There 

is much room for improvement in the boundary-layer rejection ability of the FLDI instruments 

used in both the PSUSWT and Tunnel 9, as the system f-numbers for these tunnels were around 

f/9.8 and f/14.4 respectively. 
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Figure 5.51: Tunnel 9, run 3738 pre-burst spectrum 
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Figure 5.52: Tunnel 9 run 3738 run-condition spectrum 
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Figure 5.53: Tunnel 9 run 3738 noise spectrum 
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Chapter 6: Conclusions and Recommendations for Future Research 

6.1   Summary and Conclusions 

The issue examined in this thesis is the optical, non-intrusive measurement of turbulence in the 

core flow of high-speed wind tunnels, despite having to look through thick turbulent boundary 

layers on both wind tunnel windows. High-speed turbulent flows naturally produce density 

fluctuations that can, in principle, be detected by the optical phase shift they cause.  (In low-speed 

flows, seeding by way of temperature or injection of a different gas can have the similar effect of 

a passive scalar.)   

Popular flow diagnostics like PIV and LDV, which depend upon particle seeding of the 

flow, lack the frequency response to yield meaningful high-frequency spectra in high-speed flows.  

Thus an optical instrument that can make such measurements in a wind tunnel, despite sidewall 

boundary-layer “noise,” is an important addition to the available tools for measuring turbulence. 

There are known optical instruments that already attempt to do this, for example the 

crossed-beam schlieren (CBS) technique.  This approach succeeds for turbulent flows not having 

additional surrounding turbulent noise.  However, the CBS approach was examined here for the 

wind-tunnel core flow measurement of interest, and was found unable to sufficiently reject 

sidewall boundary-layer turbulence. 

A little-known interferometer instrument that also competes to make this measurement is 

the Focusing Laser Differential Interferometer (FLDI).  It is a type of shearing interferometer 

whose twin coherent light beams are focused to a small “sampling volume.”  Invented in the 1970s 

but not well developed, it has been the subject of only a handful of recent studies, however it was 

successfully used by Parziale to measure the tunnel freestream disturbance levels in the Caltech 

T5 reflected shock tunnel[50]. 
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In this thesis, the FLDI is seen as the best-available candidate to measure turbulence in 

high-speed wind tunnels.  An attempt is therefore made to build a firm theoretical basis for this 

instrument using polarization-interferometry theory and optical transfer-function analysis.   

It was discovered that FLDI measures turbulence spectra that are convolved with transfer 

functions related to the small separation distance between the twin coherent FLDI light beams, and 

to the effective f/number or beam convergence angle of these beams.  This convergence to a sharp 

focus in the turbulent flow being measured allows the FLDI to perform spatial filtering on the flow, 

thus rejecting contributions to the measured signal away from a small focal volume.  

Deconvolution of the FLDI’s optical transfer function then allows an estimate of the true turbulent 

spectrum and turbulence intensity of a flow under investigation. 

Numerical simulations of the FLDI response to “simple” turbulent flows demonstrated the 

roll-off of the instrument’s response to turbulence with distance away from the focal volume, an 

essential feature for measurements in a wind-tunnel core flow.  This response was found to be a 

strong function of the type of turbulent flow under investigation. 

Next, experiments were performed.  These experiments primarily used a small round 

turbulent air-jet to gauge the actual response of a real FLDI instrument.  Results compared well 

with the theoretical prediction, for example, of the shape and rate of signal roll-off as a function 

of non-dimensional distance from the instrument’s focal volume. 

The FLDI instrument yielded measurements of turbulence intensity and spectra of the 

round turbulent air-jet that are comparable to published data for such jets.  However, since few 

turbulent air-jet spectra exist in the literature, hot-wire anemometry was used to measure new 

spectra for comparison with the FLDI results. 
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The straightforward ability of the FLDI to measure turbulence spectra up to at least the 

MHz frequency range is a powerful feature of the instrument. While the energy at these frequencies 

is typically low, resolving the profile of the turbulence spectra at high frequencies is important for 

accurate modeling of its decay. Traditional instruments such as hot-wire anemometry and particle-

based diagnostics (PIV and LDV) have fundamental difficulty measuring such spectra in high-

speed flows because their transfer functions are very complicated and difficult to estimate.  The 

FLDI response, on the other hand, is described by three relatively-simple transfer functions for the 

effects of distance from the beam focus, separation distance of the twin beam foci, and photodiode 

response to the optical input. 

Additional experiments were performed in which the FLDI instrument measured the core-

flow turbulence of two high speed wind tunnel facilities: the small supersonic wind tunnel at Penn 

State and the very large AEDC Hypervelocity Tunnel 9.  These experiments demonstrated at least 

the feasibility of FLDI core-flow turbulence measurements despite strong competing noise from 

thick turbulent sidewall boundary-layers.  Unfortunately the FLDI instrument used in these 

experiments was limited to small beam convergence angles due to the geometry of its twin 

birefringent prisms.  Thus there is room for considerable future work in measuring high-speed 

wind tunnel core flows with improved FLDI instrumentation having larger beam convergence 

angles and maximum beam diameters at the field lenses.  In that case, much-better noise rejection 

away from the interferometer focal volume is expected, compared to what was obtained in the 

present experiments. For the PSUSWT and T9 tests, the system f-numbers were around f/9.8 and 

f/14.4, respectively. Doubling the maximum beam diameter or halving the focal lengths of the field 

lenses would halve these system f-numbers, which should be possible with careful choice of optics. 

Aberrations induced in the FLDI beams by poor lens design will reduce the sensitivity of the 
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instrument and may result in worse performance than with higher f-numbers and cleaner beams. 

Doubling up the 200 mm focal length triplet field lenses used in the T9 testing presented here 

would give an effective focal length of 100 mm with minimal additional aberration.  

Finally, a critically-important feature of the FLDI instrument, used here for the first time, 

is the infinitely-variable Sanderson birefringent prism in place of the traditional fixed Wollaston 

prism. Without the delicate adjustability of the Sanderson prism, which determines the twin laser-

beam separation distance in the focal volume, the present research effort could not have been 

conducted. 

6.2   Recommendations for Future Work 

 There are several directions for future research into the focusing laser differential 

interferometer that would improve understanding of the instrument’s response to turbulent flows. 

The greatest difficulty in modeling of the instrument is in the transfer functions stemming from 

the interaction between the FLDI beams and turbulent fields. Even in a relatively simple case, such 

as the response of the FLDI instrument to a fully-developed Gaussian jet, there are many 

contributing factors to these transfer functions, all of which make verification of the models quite 

difficult. 

A large portion of this difficulty comes from the three-dimensional nature of the turbulent 

flows examined in this thesis. A technique developed by Thomas[78] and extended by Rampy et 

al.[79,80] generates artificial two-dimensional “phase screens” that follow Kolmogorov-like spectral 

characteristics using hair spray applied to glass discs. If two discs are produced and rotated in 

opposite directions, with one motor’s angular velocity being an irrational multiple of the other 

motor’s angular velocity, effectively-infinitely-long turbulence screens are generated. This 

turbulence screen generation scheme could be combined with the FLDI instrument by placing this 
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turbulence screen along the FLDI beam paths and measuring the instrument’s response. This would 

allow validation of the beam profile transfer functions described by this thesis without the added 

complexity of the three-dimensionality of true turbulent flows. Additionally, while Rampy and 

Thomas were primarily concerned with modeling atmospheric turbulence, increasing the rate of 

rotation of the phase screens should effectively model higher-speed flows, as the disturbances 

“convect” faster past the FLDI beams.  

Another useful experiment would be to measure turbulence spectra without focusing the 

interferometer beams. Controlling the diameter of the interferometer beams using the field lens 

aperture stops should give a frequency response similar to that predicted by the Gaussian beam 

model from above, using the constant diameter of the beam along the length of the test area. 

Comparison of measured spectra with and without focusing of the interferometer beams would 

provide insight into the degree to which the focusing of the beams is rejecting unwanted signals. 

Further research must be performed to validate (or invalidate) the use of the strong 

Reynolds analogy to directly compare density and velocity turbulence intensities. The measured 

turbulence intensities in the jet testing from section 5.3.7 generally agree with one another at an 

x/D distance greater than about 30 diameters downstream. The density turbulence intensity was 

found to peak around x/D = 10, however, while the velocity turbulence intensity peaked much 

later, around x/D = 20. These findings are in line with published data in the literature, but they do 

not match with predictions using the strong Reynolds analogy. 

The combination of the cross-correlation scheme from the crossed-beam schlieren 

technique and the focusing ability of the FLDI instrument is a natural extension of this research, 

and was used by Parziale[51]. This should not only improve rejection of undesired turbulent signal 

compared to either of these techniques by themselves, but also provide direct measurement of the 
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convective velocity in surveyed flows. This would improve the accuracy of fits to measured 

turbulence spectra by reducing uncertainty on local flow velocity, and provide an extra useful 

diagnostic result over those already given by the FLDI instrument. Although the technique is not 

yet well established in the literature, the use of wavelet transforms and wavelet cross-correlation 

may further improve the usefulness of measured turbulence spectra by giving information about 

not only what frequency content the turbulence contains but also when that energy appears in the 

data. 

  



217 

 

References 
1. Hunt, J. C. R., Durbin, P. A., and Wu, X. “Interactions between freestream turbulence and 

boundary layers.” Center for Turbulence Research, Annual Research Briefs 1998, pp 113-124. 

2. Schneider, S. P., “Effects of High-Speed Tunnel Noise on Laminar-Turbulent Transition,” J. 

Spacecraft and Rockets, Vol. 38, No. 3, May-June 2001, pp 323-333. 

3. Uberoi, M. S. "Effect of Wind-Tunnel Contraction on Free-Stream Turbulence." J. Aero. Sci., 

Vol. 23, No. 8 (1956), pp. 754-764. 

4. Laufer, J., “Aerodynamic Noise in Supersonic Wind Tunnels,” J. Aero. Sci., Vol. 28, No. 9, 

Sept. 1961, pp. 685-692. 

5. Lighthill, M. J., “On Sound Generated Aerodynamically. I: General Theory,” Proc. Royal. 

Soc. Lond. A, Vol. 211, 1952, pp. 564-587. 

6. Lighthill, M. J., “On Sound Generated Aerodynamically. II: Turbulence as a Source of 

Sound,” Proc. R. Soc. Lond. A, Vol. 222, 1954, pp. 1-32. 

7. Ffowcs-Williams, J. E., and Maidanik, G., “The Mach Wave Field Radiated by Supersonic 

Turbulent Shear Flows,” J. Fluid Mechanics, Vol. 21, No. 4, 1965, pp. 641-657. 

8. Saric, W. S., “Boundary-Layer Receptivity to Freestream Disturbances”, Annu. Rev. Fluid 

Mech., Vol. 34, 2002. pp. 291-319 

9. Morkovin, M. V., Reshotko, E., and Herbert, T. "Transition in open flow systems—a 

reassessment." Bull. Am. Phys. Soc. 39:1882. 1994. 

10. Reed, H. L., and Saric, W. S., “Linear stability theory applied to boundary layers,” Annu. 

Rev. Fluid. Mech. 1996. 28:389-428 

11. Schlichting, H., “Über die Theorie der Turbulenzentstehung,” Forschung auf dem Gebiet des 

Ingenieurwesens A, 1949/50, Vol. 16, Issue 3, pp 65-78 

12. Kendall, J. M., “Wind Tunnel Experiments Relating to Supersonic and Hypersonic 

Boundary-Layer Transition,” AIAA Journal, vol. 13, issue 3, pp. 290-299. March, 1975. 

13. Kovasznay, L. S. G., “The hot-wire anemometer in supersonic flow,” J. Aero. Sci., vol. 17, 

pp 565-573. 1950. 

14. Laurantzon, F., Tillmark, N., and Alfredsson, P. H., “What does the hot-wire measure?,” 

Technical Report, KTH Mechanics, 2012. 

http://link.springer.com/journal/10010
http://link.springer.com/journal/10010
http://link.springer.com/journal/10010/16/3/page/1


218 

 

15. Stine, H. A., and Scherrer, R. “Experimental investigation of the turbulent-boundary-layer 

temperature-recovery factor on bodies of revolution at Mach numbers from 2.0 to 3.8,” NACA 

Technical Note 2664. Ames Aeronautical Laboratory. March, 1952. 

16. Smits, A. J., Hayakawa, K. and Muck, K. C., “Constant Temperature Hot-wire Anemometer 

Practice in Supersonic Flows,” Experiments in Fluids Vol. 1, Springer-Verlag, pp. 83-92, 1983. 

17. Lomas, C. G. “Fundamentals of Hot-Wire Anemometry” 

18. Smid, I., Akiba, M., Vieider, G., and Ploechel, L., “Development of tungsten armor and 

bonding to copper for plasma-interactive components,” J. Nucl. Mat., vol. 258–263, Part 1, pp. 

160–172. October, 1998. 

19. PGM Database. http://www.pgmdatabase.com/jmpgm/main.jsp 

20. Walker, D. A., and Ng, W. F., “Experimental comparison of two hot-wire techniques in 

supersonic flow,” AIAA Journal, Vol. 27, No. 8, pp 1074-1080, August, 1989. 

21. Masutti, M., Spinosa, E., Chazot, O., and Carbonaro, M.,  "Disturbance level characterization 

of a hypersonic blowdown facility", AIAA Journal, Vol. 50, No. 12, pp 2720-2730, 2012. 

22. Schneider, S. P., “Hypersonic and Hypervelocity Ground Test Facilities: A Brief Informal 

Summary,” Purdue University, Nov. 2007. 

23. Lafferty, J. F., and Norris, J. D., “Measurements of Fluctuating Pitot Pressure, ‘Tunnel 

Noise’, in the AEDC Hypervelocity Wind Tunnel No. 9,” AIAA Paper 2007-1678, February 

2007. 

24. Bounitch, A., Lewis, D. R., and Lafferty, J. F., “Improved Measurements of ‘Tunnel Noise’ 

Pressure Fluctuations in the AEDC Hypervelocity Wind Tunnel No. 9,” AIAA Paper 2011-1200, 

January, 2011. 

25. Berridge, D. C., Casper, K. M., Rufer, S. J., Alba, C. R., Lewis, D. R., Beresh, S. J., and 

Schneider, S. P., "Measurements and Computations of Second-Mode Instability Waves in Three 

Hypersonic Wind Tunnels", AIAA Paper 2010-5002, June, 2010. 

26. Berridge, D. C., Measurements of Second-Mode Waves in Hypersonic Boundary Layers with 

a High-Frequency Pressure Transducer, Master's thesis, Purdue University, 2010. 

27. Hornung, H. & Parziale, N. J., “Spectral characteristics of pitot noise,” Paper 301, Proc. 29th 

Intl. Symp. on Shock Waves, July 15-19, 2013, Madison, WI. 



219 

 

28. Spina, E. F., and McGinley, C. B., “Constant-temperature anemometry in hypersonic flow: 

critical issues and sample results,” Experiments in Fluids, Vol. 17, Springer-Verlag, pp. 365-374, 

1994. 

29. Weinstein, L. M., “Large-Field High-Brightness Focusing Schlieren System,” AIAA Journal, 

Vol. 31, No. 7, July 1993, pp 1250-1255. 

30. Settles, G. S. Schlieren and Shadowgraph Techniques. Springer-Verlag, Berlin Heidelberg 

New York, 1st ed., 2001. 

31. McIntyre, S. S., Stanewsky, E., and Settles, G. S., “An Optical Deflectometer for the 

Quantitative Analysis of Turbulent Structures,” Proc. 14th International Congress on 

Instrumentation in Aerospace Simulation Facilities, Rockville, MD, Oct. 1991. Pp. 34-42. 

32. Alvi, F. S., Settles, G. S., and Weinstein, L. M., “A Sharp-Focusing Optical Deflectometer,” 

AIAA Paper 93-0629, Jan. 1993. 

33. Garg, S. and Settles, G. S., “Measurements of a supersonic turbulent boundary layer by 

focusing schlieren deflectometry,” Experiments In Fluids, Vol. 25, No. 3, 1998, pp. 254–264. 

34. VanDercreek, C. “Hypersonic Application of Focused Schlieren and Deflectometry,” M.S. 

Thesis, Department of Aerospace Engineering, University of Maryland, College Park, MD, 

2010. 

35. Lewis, D. R., and Coblish, J. C., “Expanded Measurement Capabilities at the AEDC 

Hypervelocity Wind Tunnel No. 9,” AIAA Paper 2010-4791, June 2010. 

36. Fisher, M. J. and F. R. Krause, “The Crossed-Beam Correlation Technique,” J. Fluid 

Mechanics, Vol. 28, No. 4, 1967, pp. 705-717. 

37. Fisher, M. J. and Johnston, K. D., “Turbulence Measurements in Supersonic, Shock-Free Jets 

by the Optical Crossed-Beam Method,” NASA TN D-5206, Feb. 1970. 

38. Wilson, L. N., Krause, F. R., and Kadrmas, K. A., “Optical Measurements of Sound Source 

Intensities in Jets”, Basic Aerodynamic Noise Research, NASA SP-207, Washington D.C., 1969, 

pp. 147-160. 

39. Funk, B. H., and Johnston, K. D., “Laser Schlieren Crossed-Beam Measurements in a 

Supersonic Jet Shear Layer,” AIAA Journal, Vol. 8, No. 11, 1970, pp. 2074-2075. 

40. Wilson, L. N., and Damkevala, R. J., “Statistical Properties of Turbulent Density 

Fluctuations,” J. Fluid Mechanics, Vol. 43, No. 2, 1970, pp. 291-303. 



220 

 

41. Martin. R. A., “Studies of Scalar Turbulence in Air Downstream of a Heated Grid,” Ph.D. 

Dissertation, Department of Aerospace Engineering, Iowa State University, Ames, IA, 1975. 

42. Grandke, T.,  “Theory and Application of the Laser Shadow Technique,” Experiments in 

Fluids Vol. 3, Springer-Verlag, 1985, pp. 77-86. 

43. Grandke, T.,  “A Crossed Beam Laser Shadow Technique for Spatially Resolved 

Measurements in Turbulent Flow,” Experiments in Fluids Vol. 4, Springer-Verlag, 1986, pp. 

289-295. 

44. Smeets, G., “Laser Interferometer for High Sensitivity Measurements on Transient 

Phase Objects,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 8,  

No. 2, pp 186–190, 1972. 

45. Smeets, G., “Laser-Interferometer mit grossen, fokussierten Lichtbündeln für lokale 

Messungen,” Institut Saint-Louis Report ISL - N 11/73, 1973. 

46. Smeets, G., “Verwendung eines Laser-Differentialinterferometers zur Bestimmung 

lokaler Schwankungsgrössen sowie des mittleren Dichteprofils in einem turbulenten 

Freistrahl”. Institut Saint-Louis Report ISL - N 20/74, 1974. 

47. Smeets, G., “Flow Diagnostics by Laser Interferometry,” IEEE Transactions on Aerospace 

and Electronic Systems, Vol. 13, No. 2, pp 82–90, 1977. 

48. Smeets, G., and George, A., “Anwendungen des Laser-Differentialinterferometers in der 

Gasdynamik,” Institut Saint-Louis Report ISL - N 28/73. 1973. 

49. Parziale, N. J., “Slender-Body Hypersonic Boundary-Layer Instability,” Ph.D. Dissertation, 

Department of Aerospace (GALCIT), California Institute of Technology, Pasadena, CA, May, 

2013. 

50. Parziale, N. J., Shepherd, J. E., and Hornung, H. G., “Reflected Shock Tunnel Noise 

Measurement by Focused Differential Interferometry,” Proc. of 42nd AIAA Fluid Dynamics 

Conference and Exhibit, New Orleans, Louisiana, 2012b. AIAA-2012-3261. 

51. Parziale, N. J., Shepherd, J. E., and Hornung, H. G., “Differential Interferometric 

Measurement of Instability at Two Points in a Hypersonic Boundary Layer,” Proc. of 51st AIAA 

Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 

Grapevine, Texas, 2013a. AIAA-2013-0521. 



221 

 

52. Parziale, N. J., Shepherd, J. E., and Hornung, H. G., “Differential Interferometric 

Measurement of Instability in a Hypersonic Boundary Layer,” AIAA Journal, Vol. 53, No. 3, pp. 

750-754, 2013. 

53. Sanderson, S. R., “Simple, adjustable beam splitting element for differential interferometers 

based on photoelastic birefringence of a prismatic bar,” Rev. Sci. Instrum. 76, 113703 (2005). 

54. Biss, M. M., Settles, G. S., and Sanderson, S. R., "Differential schlieren-interferometry with 

a simple adjustable Wollaston-like prism," Applied Optics, 47(3):328-335, 2008. 

55. Dodge, M., “Refractive properties of magnesium fluoride,” Appl. Opt. 23,12 1980-85, 1984. 

56. Lu, F. K., "Fin-Generated Shock-Wave Boundary-Layer Interactions," Ph.D. Thesis, 

Mechanical Engineering Dept., Penn State University, Feb. 1988. 

57. Gladstone, J. H. and Dale, T. P. “Researches of the refraction, dispersion, and sensitiveness 

of liquids.” Philos. Trans. Roy. Soc. London. Vol. 153: pp 317-343. 1864. 

58. Steel, W. H. Interferometry. Cambridge University Press. 2nd Edition. 1983. 

59. Born, M. and Wolf, E. Principles of Optics. Cambridge University Press. 7th edition. 1999. 

60. R. Waxler, D. Horowitz, and A. Feldman, "Optical and physical parameters of Plexiglas 55 

and Lexan," Appl. Opt.  18, 101-104 (1979).  

61. Bendat, J. S. and Piersol, A. G. Random Data: Analysis and Measurement Procedures. John 

Wiley & Sons. 2nd Edition, 1986. 

62. George, W. K. "Lectures in Turbulence for the 21st Century." Department of Thermo and 

Fluid Engineering, Chalmers University of Technology, Göteborg, Sweden (2005).p 64 [online] 

http://www.turbulence-

online.com/Publications/Lecture_Notes/Turbulence_Lille/TB_16January2013.pdf 

63. Chen, C. J. Vertical Turbulent Buoyant Jets – A Review of Experimental Data. Pergamon 

Press. 1980 

64. Corrsin, S. “The Decay of Isotropic Temperature Fluctuations in an Isotropic Turbulence.” J. 

Aero. Sci., 18,6: pp. 417-23. 1951. 

65. Roggemann, M. C. and Welsh, B. Imaging Through Turbulence. CRC Press. 1996. 

66. Tennekes, H. and Lumley, J. L. A First Course in Turbulence. The MIT Press. 1973. 

67. Klebanoff, P. S. “Characteristics of turbulence in a boundary layer with zero pressure 

gradient.” NACA TR 1247. 1955. 



222 

 

68. Wygnanski, I., and Fiedler, H. “Some measurements in the self-preserving jet,” J. of Fluid 

Mech., Vol. 38, No. 3, 1969, pp. 577-612 

69. Rodi, W. “A new method of analyzing hot-wire signals in highly turbulent flow, and its 

evaluation in a round jet,” DISA Information, Vol. 17, 1975, pp. 9-18 

70. Hussein, J. H., Capp, S. P., and George, W. K. “Velocity measurements in a high-Reynolds-

number, momentum-conserving, axisymmetric, turbulent jet,” J. of Fluid Mech., Vol 258, 1994, 

pp. 31-75 

71. Witze, P. O., “Centerline Velocity Decay of Compressible Free Jets,” AIAA Journal, Vol. 12, 

No. 4, Apr. 1974, pp. 417-418. 

72. Kleinstein, G., “Mixing in Turbulent Axially Symmetric Free Jets,” AIAA Journal of 

Spacecraft & Rockets, Vol. 1, No. 4, July-Aug. 1964, pp. 403-408 

73. Anderson, J., Modern Compressible Flow: With Historical Perspective, McGraw-Hill, New 

York, NY, 3rd ed., 2002. 

74. Chen, C. J., and Rodi, W. Vertical Turbulent Buoyant Jets – A Review of Experimental Data, 

Pergamon Press, New York, NY, 1980 

75. Panda, J., and Seasholtz, R. G., “Density Fluctuation Measurement in Supersonic Fully 

Expanded Jets Using Rayleigh Scattering,” AIAA Paper 99-1870. 1999. 

76. Bounitch, A., Lewis, D. R., and Lafferty, J. F., “Improved Measurements of ‘Tunnel Noise’ 

Pressure Fluctuations in the AEDC Hypervelocity Wind Tunnel No. 9,” AIAA Paper 2011-1200, 

January, 2011. 

77. Lafferty, J. F., and Norris, J. D., “Measurements of Fluctuating Pitot Pressure, ‘Tunnel 

Noise’, in the AEDC Hypervelocity Wind Tunnel No. 9,” AIAA Paper 2007-1678, February 

2007. 

78. Thomas, S. “A simple turbulence simulator for adaptive optics,” Proc. SPIE, Vol. 5490, 

2004. 

79. Rampy, R. “New method of fabricating phase screens for simulated atmospheric turbulence,” 

Proc. SPIE, Vol. 7736, 2010. 

80. Rampy, R. “Production of Phase Screens for Simulation of Atmospheric Turbulence,” Appl. 

Optics, Vol. 51, No. 36, 20 Dec. 2012.



 

 

VITA 

Matthew R. Fulghum 

 Matthew Fulghum received his Bachelor of Science degree magna cum laude in 

mechanical engineering with a double major in German studies in 2010 from Union College, 

Schenectady, NY. He came to the Pennsylvania State University as a doctoral student in July, 2010 

to study high-speed fluid dynamics under Prof. Gary Settles in the Penn State Gas Dynamics 

Laboratory. 

 

 Fulghum, M.R., Hargather, M.J., and Settles, G.S., "Integrated Impactor/Detector for a 

High-Throughput Explosive-Trace Detection Portal," IEEE Sensors Journal, vol.13, 

no.4, pp.1252-1258, April 2013. 


