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Turbulence of Capillary Waves
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A numerical model for direct simulation of the surface of ideal fluid based on the expansion of the
Hamiltonian of the surface up to terms of fourth order is developed. For the case of capillary wave
we observe the formation of powerlike spectrum of spatial elevations close to one predicted by weak-
turbulent theoryl, = k~'%#, which previously was not confirmed either experimentally or numerically.

PACS numbers: 47.27.—i, 03.40.Kf, 05.45.+b, 68.10.-m

An ensemble of weakly interacting waves in a dispersive Another way to check the weak-turbulent theory is
medium can be described statistically even though it mapy numerical simulation. Some valuable results were
be very far from the state of thermodynamic equilibrium.obtained by numerical solution of the kinetic equation
Because of the small value of nonlinearity the infinite(1) [5,6]. But the kinetic equation (1) is itself a subject
system of equations for the correlation function in this casdor careful examination. Its derivation assumes that the
can be truncated in a consistent way and reduced to orghases of all interacting waves are random and are in a
kinetic equation for “wave numbers” (or wave action):  state of chaotic motion. The validity of this assumption

ang is not cleara priori.

9 + 2ypni = st(n) 1) The correct way to check weak-turbulent theory and its
) ) ) prediction is by numerical simulation using “first princi-
(see, for instance, [2]). Herg; is the wave damping (or ples,” i.e., direct solution of the nonlinear dynamic equa-
the wave pumping ify; < 0) andsi(n) is the “collision  tjon governing propagation and interaction of the waves.
term” corresponding to a wave equation. In real cases these equations are of two or three

The collision term describes “cascade” transport ofspatial dimensions, and its numerical solution is not a
wave energy irk space to the small scale region (directsimple problem. It was done so far for the 2D nonlinear

cascade) and to the large scale region (inverse cascad&khrodinger equation [8], but in this particular case
The last one exists only if the total number of waveskolmogorov spectra do not exist.

N = [ngdk is the integral of motion. In this paper we present results of numerical simulation
The equation of capillary waves on the surface of the incompressible
st(nj) = 0, (2) infinitely deep fluid. In this case only a direct cascade

besides having a trivial thermodynamic solution, hasmc energy takes place. The cor_respondlng Kalmogorov
pectrum for the surface elevation has the fotm=

Kolmogorov-type solutions describing cascades. In ~17/4 We will show that this theoretical prediction is

fmu(relg':émswnhout a characteristic length they are powerlik confirmed by direct numerical sim_ulation with satisfactory
3 accuracy. The developed numerical approach can be used
ng =k 3 for solving a wide class of problems pertaining to the

The theory of weak-turbulent Kolmogorov spectra hasnteraction of surface waves and—more generally—other
advanced far. But direct experimental confirmation oftypes of waves in nonlinear media.
these spectra is very poor. One can consider, more or less, Theoretical background—We study the potential flow
well confirmed existence of the Komogorov spectrum forof ideal incompressible deep fluid with the free surface.
the direct cascade of gravitational wave on the surface dfet n(7, ), 7 = (x,y) is the shape of the surface(r, 1)

an incompressible deep fluid is the velocity potentialb = ®(7,z), v = Vb, AD =

qv 0, evaluated on the free surfagg(r,t) = ®(n(7,1),7,1).

I, = a3 It is known [7] that under these assumption the fluid is a

[Here I(w) is the spectral density of surface elevations,Hamiltonian system;
is the wave frequencyg is the acceleration of gravity in _ 5_H’ (4)
is the wind velocity, andr is a dimensionless constant.] at oy
This spectrum was theoretically derived by Zakharov iy _ _6H 5)
and Filonenko [3] and experimentally observed by Toba at on’

[4]. The confirmation cannot be considered as completélere H is the total energy of the fluid consisting of the
because the Zakharov-Filonenko spectrum is isotropidinetic and the potential components
while Toba’s spectrum is essentially anisotropic. H = Hpo + Hyin , (6)
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where Direct numerical simulation of the system (4) provides
Hpo = af[l + (V)12 - 147, a solution of the boundary problem for the Laplace
equation for every time step. In the full 3D case it is an
oo — 1 J7 " Az (VDY enormously hard problem. To solve the problem one can
Kin 2 e ’ use an expansion in powers of nonlinearity. For Fourier
Here o is a coefficient of surface tension. ]'Eransforms this expansion up to the quadratic terms has a
orm
J
H=Hy+ H + H +---,
1 -
Ho = 5 [ kIl + olkPlng1dE.
1 - - s e s s
H, = _2 < 2 j lellzzlﬁ,;llﬁ]zznj{s(s(kl + ky + k3)dky dky dks,
1 - - - .
Hy = 107 f Mg o i, mi,mi, 8k + ki + ka + k) dk dky dka dks ,

Lit, = kika + lkillkal,

I B T .. .. . . .
Migis, = Wallkal] S8 + Bl + o+ Bl + B + Bl + & + Fab) = 1Rl = [l |-

The corresponding dynamic equations are

ST [lfly s — divigVy) — IRIDEIGY < mss + [RIRIRIG Y % m7ds el
+ AR X 2T + S IRIDARy X 72 -
3a_<ﬁt? = gAimi + 5[ — (Vg)? + [k E] — KINEI T X 7:1: X [klg

— Ay X [lklyl: X 7 + D; + F; (8)

We added to Eq. (8) a phenomenological damping térm One can introduce normal amplitudes

D; and the external forcg;(z). ok k
In the linear approximation Eqgs. (7) and (8) describe G =g, T~ i CY i .
k k

capillary waves with the dispersion relation , ) ,
According to weak-turbulent theory the pair correlation

wr = (ck)'/2. function
(agaz,) = npd(k — k')
, satisfies the kinetic equation (1), where

st(n) = f[R,;,;@ — R i, — Riii Jdkidksy,
Rit i, = 47T|V,;,;l,;2|25(k — ki — k2)d(wp — Wi, — a),;z) X [n,;ln,;2 — ngng, — n,;n,;z],

Vit = i (onononya] btk Lk ]
ok g 2o FORERI o) 2k (k) 2y (kka) 2K |

In an isotropic medium containing no characteristicIn this case Eq. (2) has an exact powerlike solutipn=

length the dispersion relation is a powerlike function CP'2/kP*? (d is the dimension of space), which is a
Kolmogorov-type spectrum describing the constant flux
wp = k* of energy inK space from large to small scale®. is the
] ) value of the energy flux an€ is an absolute constant.
as long as/y; i, is a homogeneous function, For capillary wavesr = 3, B = 7, andd = 2. Hence
P1/2
Veteheio = € Vii i, - = Ol )

3321



VOLUME 76, NUMBER 18 PHYSICAL REVIEW LETTERS 29 ARIL 1996

For the correlation function of elevation one gets around the exact value @f; due to a small random addi-
) o CoV/4pil2 tion in timeR(¢). The form of the pumpingaamdplitude was
L = (Iml®) = A Ty . chosen to be axially symmetrig = foe "LIkl=IkiD*/ka],

] ] ) ) The value ofk, defines a starting point of “hypervis-
This result was obtained first by Zakharov and Fllonenk%osity:: we used in our experiments to provide a wide

[3]. The solution (9) is linearly stable in the framework enoygh inertial interval. Calculations were carried out on
of the kinetic equation (1) (see [9]). a256 x 256 grid.

The physical interpretation of the spectrum (9) is the ¢ pumping in our experiments was concentrated at
following. Assume there a pumping of any type at smallgmall (k; = 10, k, = 6), and sok, = 16. We took

wave numberg = k,, while strong damping takes place ;' — 40, and so the inertial interval was about half a
at large wave numberg = ko, ko > k,. Then, the acade.

spectrum (9) is realized in the inertial intenvgl < k < | the calculation we examined two basic problems.
ko. A more exact expression for the spectrum in thisat 5 10w level of nonlinearity[(H, + H)/Hy < 1073]
window is (see [1]) we observed no energy flux and formation of KAM-
—1/4 ,1/2 ko\"9/4 k \94 type quasiperiodic regime at= k,. Apparently, this is
_ o p p ; . p
Iy = 219/ 1 - C1<7> - 2<k_> . explained through the discreteness of the wave spectrum
0 S L
caused by periodic boundary conditions: One cannot

HereC,, C, are constants. realize all possible resonance conditions= w, + w»,
Numerical simulation—We have realized a numerical & = ; + k» on a discrete grid.

simulation of the system (7) and (8). In spite of the fact At higher levels of nonlinearity we were confronted

that the matrix element of the kinetic equatidfy; ; is  with a short wave instability similar to that observed

expressed only through the Hamiltonian coefficieAts by others [10—12]. This instability can be effectively

H;, we prefer to keep the next teri, in the expan- suppressed for moderate nonlinearifig$; + H,)/Hy <

sion of the Hamiltonian. The reason for keeping the next x 1072] by low-pass filtering ink space equivalent to

term of the expansion is the following: it can be shownthe smoothing in the real space or extra damping. The

that the dynamical system generated by the Hamiltoniapresence of the instability makes, however, the essential

Hy + H; becomes ill posed at very low levels of nonlin- increasing ofc, and the broadening of the inertial interval

earity. Meanwhile, including a consideration of the nextimpossible.

term of the expansion essentially improves the situation However, at moderate levels of nonlinearityd; +

(details will be published separately). Moreover, the de#,)/Hy = 5 X 1072, fo = 2 X 10~*] we observed fast

veloped scheme after a minor modification can be usetbrmation of the stationary wave spectrum carrying a

for numerical simulation of gravitational waves. constant flux of energy to the larderegion (see Fig. 1).
Equations (7) and (8) are not differential ¥ space. The observed spectrum was angular isotropic. The plot

Besides taking derivatives they include taking the operatopf the logarithmic derivative (Fig. 2) shows that in the

|kI[(=A)!/2 in X space]. interval 8 < k < 20 the spectrum can be considered
As such, the system can be reduced to a set of sias powerlike (I; = k~*). The exponential varies in

partial differential equations for variables interconnectedhe limits —5.0 < x < —4.8. The value closest to the

by the consequent application of the operaterA)'/2.  theoreticalx = 4.75) is reached fok = 14.

This allows us to apply a solution to the system (7) and

(8), the spectral code, using the fast Fourier transform for

each time step. Omitting the details of this numerical 9

scheme, we reproduce now only the final result of the L0g10 < |ng|* >

calculation. Of ' ' '
For numerical integration of Egs. (7) and (8) we used _52r .
the functionsF and D defined in Fourier space through [
the following relations: —10F
F]—é — fl_éeiQ;l’ E
=151
D; = y;V¥;,
k= Ytk ook
Q]‘(‘ = a)];[l + R([)], __25: . , .
o {_(|,;| R k> k. 00 05 1.0 15 20
Vi 0 ifO0<k=kp. Logyok

The pumping forcer is "almost” in resonance wWith g 1 The logarithm of the spectrum of spatial elevations of

the local linear frequency, of the corresponding Fourier the liquid surface as a function of the logarithm of the wave
harmonics; i.e., the frequenc¥), slightly fluctuates number.
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In the neighborhood of this point the spectrum can behe validity of the kinetic equation for a description of
presented aér = 1) wave turbulence. We hope that the developed effective
Iy = qk™*3, approach will allow us to study numerically other types of
ol wave turbulence; first of all, the behavior of a system of
qg=CP"=01. wind-driven gravitational waves on the sea surface.
A direct calculation of the energy flux This work was supported by the Office of Naval
oE > ) 2 Research (Grant No. 14-92-J-1343) and partially by the
P=r= f VilkllWel" dk Russian Basic Research Foundation (Grant No. 94-01-
givesP = 3 X 10~* which is not a contradiction because 00898). We would like to thank Alexander Dyachenko
the Kolmogorov constar€ is so far unknown. for very fruitful discussions.
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