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1. INTRODUCTION 

In the last decade a broad knowledge of dy-
namics of wall turbulence in water flow has 
been obtained through development of a hot-film 
anemometer or a hydrogen-bubble method. One 
of the headmost studies in this field was done 
by a group of Stanford  University1) under the 
direction of Kline who looked for the mecha-
nism of turbulence production by means of flow 
visualization with the hydrogen-bubble method. 
Several experimental works done by use of both 
flow visualization and point measurements have 
recently brought to light turbulence characteris-
tics of the shear flow, with aid of improved 
methods of data analysis. 

Turbulence measurments of open-channel shear 
flow over a smooth or rough bed were vigorous-
ly done by  Raichlen2), McQuivey et  al.3), Ishii 
et  a1.4) and  Imamoto5) by making use of single-
sensor hot-film anemometer. 

 It is very interesting in practice to investigate 
how the structure of turbulence would be influ-

enced by hydraulic parameters such as Reynolds 

number and Froude number of the mean flow 

and the wall parameter represented by equiva-

lent roughness. To this end a systematic meas-

urement of turbulent open-channel flow over 

smooth and rough beds has been done by mak-

ing use of single- and dual-sensor hot-film ane-

mometers in order to make clear the dynamics 

of turbulence from a viewpoint of energy budget, 

and subsequently the conventional formulae on 

the mean velocity distribution have been dis-

cussed in  consideration of turbulence structures. 

2. METHODS OF EXPERIMENT AND 

DATA ANALYSIS 

The tests described in Table 1 were made in 

a tilting flume 0.5 m wide and 15 m long. The 

bed roughness was made by spreading the spheri-

cal glass beads with uniform diameter all over 

the bed. Since Reynolds number (Re=  Umhlv, 

Um: the mean velocity,  h: the flow depth) and 

Froude number (Fr=  Um/•ãgh  ) are nearly con-

stant on an average for all runs, it may be ex-

pected to appreciate only the effect of roughness. 
A DISA type 55A89 dual-sensor hot-film ane-

mometer was used to measure the spatial com-

ponents of instantaneous velocities in a major 
portion of the flow, and in a part close to the 
wall a single-sensor hot-film anemometer of DISA 
type 55A83 was used to supplement the data.
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To diminish the effects of variation of 

water temperature and the impurities in-

cluded in water upon the radiative charac-

teristics of the hot-film as much as pos-

sible, a stable temperature of water was 

kept by circulating water all day long be-

fore a test began, and the floating materials 

were filtered by gauzes. The hot-film ane-

mometers were calibrated by means of both 

a Pitot tube and a float before and after 

at each  run6). 

The velocity measurements recorded in 

the magnetic tapes were converted  into

the digital quantities and then analyzed in a 
statistical way by using a large electronic com-
puter, Data Processing Center, Kyoto University. 
For certain reasons of spectrum analysis, 2,100 
samples with 0.01 sec. time interval for each re-
cord were mainly chosen. 

3. EXPERIMENTAL RESULTS 

( 1 ) The Mean Velocity Distribution and the 
Friction Velocity 

Let x, y and z be the longitudinal coordinate 
in the flow direction, the vertical coordinate to 
the wall  (y  =0 corresponds to the wall), and the 
spanwise coordinate parallel to the wall, respec-
tively. U, V and W denote the components of 
the mean velocity, u, v and w the components 
of velocity fluctuation, and u', v' and w' the 
values of rms amplitude. 

Now, in order to measure the mean velocity 
U the preliminary test was conducted by making 
use of Pitot tube and it was shown that the 
flow along the center line of the channel was 
nearly two-dimensional, normal and fully-devel-
oped turbulent. The velocity distribution of the 
mean flow over a smooth bed agrees well with 
Nikuradse's  curve26), while for the flow over a 
rough bed an origin of the y-axis needs to be 
shifted to a point  ks/4 below the top of the 
sphere so as to get agreement with Nikuradse's 
curve. The friction velocity  U* for each run 
obtained by putting the plotted data on Niku-
radse's curve is compared with the values given 
by  U4',=  A/ghS  (S: bed slope) in Table 1, and both 
values show a good agreement. 

( 2 ) The Distribution of Turbulence Intensity 
In Fig. 1 the dimensionless distributions of 

turbulence intensities  u', v', w' and of turbulent 
energy q2/2 (where,  q2=u'2+  v'2+  w") for the flow 
over a smooth bed are shown together with

Laufer's data on turbulent flow in closed  chan-
nel7). As to  u'/ U* the authors' data agree well 
with Laufer's curve and indicate the maximum 
value 2.8 at y+ (= y  (4/1)=15 as  Schubauero cer-
tified for the inner layer in the boundary-layer 
and pipe flows. The values of  w'/  U* near the 
wall and of v'/  U* near the free surface deviate 
from Laufer's results. Because the fluid motion 
in y-direction is restrained by free surface, v' 
near the free surface may become smaller than 
that in pipe flow. All of the test on both smooth 
and rough beds show the  fact that  u'>  w'>  v'. 
Because this relationship can be derived from 
the turbulent energy  budget9) and turbulent eddy 

 model10), too, it must be applicable to any kinds 
of wall turbulence. 

 The turbulent flow over a rough bed showed 
nearly same characteristics of turbulence inten-
sity as those over a smooth  bed". However, 
as the effect of roughness appears with increase 
of  k+s  (=ksU*/v), the variation of turbulence in-
tensities near the wall becomes flatter, while at 
the point far away from the wall, the intensities 
are independent of roughness.  Grass12) and Chen 
et  al.13) found the similar characteristics that tur-
bulence intensity  u'/ U* in the wall region grad-
ually decreased with enlargement of  let. The 
observed data of u', v' and w' in the wall re-

gion are compared for some kinds of roughness 
in Fig. 2. The values of  u'/U* gradually de-
crease with increase of  14, but  vi/  U* and w'/ U* 
are hardly influenced by size of roughness ele- 
ment. u' has a direct relation to large-scale ed-
dies which dominate the turbulence  production"). 

 Though the turbulence production in the flow 
over a smooth bed occurs mostly in a buff er-
layer of  y+=10-30 by burst or sweep due to the 
flow  instability1), a buffer-layer over a rough bed 
disappears perfectly or partly into roughness 
elements and consequently, turbulence would be 

produced in another way. A poor dependence 
of  v'/  U* and w'/U* on roughness may be due to

Fig. 1 Turbulence intensities over smooth bed.
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( a )

( b )

their little contribution to turbulence production, 
so that both v' and w' change monotonously 
with y+ while u' shows the maximum value. 

 On considering that turbulence intensity near 
the wall can be represented by an universal 
function of y+ as described by Monin et al.14), 
it is questionable that only the values of w' are 
so variable according to Re in Fig. 2 and so 
Laufer's data may be unreliable. This might 
cause the difference among the values of w' in 
Fig. 1, but the details should be discussed further. 

( 3 ) The Distribution of Reynolds Stress 
 The observed values of dimensionless Reynolds 

stress  —WU); are plotted in Fig. 3, together 
with the following theoretical expression derived 
from the equation of motion:

( 1 )

where  ƒÌ=y/h,  R*=hU*/1),  x=0.4  (Karman con-

stant) and a logarithmic law of the velocity dis-

tribution on the mean flow is assumed  (cf. 3.  (1  )). 

Since the value of  I?* is 600 to 900 in this case, 

the viscous term in Eq.  (  1  ) is negligible for 

larger value of and consequently Reynolds 

stress varies linearly with

 The observed data nearly satisfy Eq.  ( 1 ) 
except a region close to the wall. However, 
according to Antonia et  al.15) the measure-
ment of Reynolds stress in the neighborhood 
of wall shows lower accuracy than the one 
of turbulence intensity, and it is affected by 
the velocity gradient and the non-uniformity 
of calibration factors. Then, more accurate 
data are needed to discuss further. 

( 4 ) Spectrum Distribution 

At present the space spectra can be esti-
mated only by applying Taylor's hypothesis 
of the frozen turbulence to the time spectra 
obtained by direct measurement. Because

this hypothesis is  fairly reasonable in the range 
kLx>1 where wave number k is much larger 
than a reciprocal of the mean eddy size Lx as 
indicated by  Lin16), the time spectrum obtained 
by F.F.T. method was transformed into the space 

power spectrum on the basis of Taylor's hypothe-
sis, and then it was normalized into the one-
dimensional wave spectrum S(k) by dividing by 
its turbulence intensity. In this case S(k) satis-
fies the following:

 

(  2  )

where  kco is the maximum wave number possible 
to be analyzed. 

By the fact that the observed space spectra 
nearly satisfy Eq.  ( 2 ) within a few percentages 
of the error, it can be concluded that S(k) esti-
mated above gives a fairly reasonable expression. 
Data of S(k) for different sampling intervals ob-
served at a definite point over a smooth bed are 

plotted in Fig. 4, and the similar tendency of 
S(k) against k has been certified for other meas-
uring points. For turbulent flow over a rough 
bed S(k) has shown nearly same distribution as 
over a smooth bed. 

 Now, it is still debatable whether turbulence

Fig. 2 Turbulence intensities in wall region.

Fig. 3 Reynolds shear stress.
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should be treated as a lump of 'wave ' or of
'eddy' . But when 'wave' is characterized by

wave number  k and  eddy by its size 1, 
it is concluded that  lc-4-i and so the 
wave spectrum  S(k) of  u'2 can be divided 
into three subranges corresponding to 
eddy size as follows:

 (a) Productive subrange (large-scale eddy) 

 Because the length scale in this case is of 

order of the mean eddy size  Lx,  Lxko•`1 is 

satisfied for a characteristic wave number  ko. 

Since  Lx is of the same order as the mean 

flow, there would be surely a strong interac-

tion between the eddies and the mean flow, re-

sulting in production of turbulent energy.  Su(k) 

satisfies the -1 power law owing to this  interac-

tion"), and for  k•áko it shows nearly constant 

value due to aliasing effect. 

 (b) Viscous subrange (small-scale eddy) 

 The characteristic length is of very small scale 

which is given by the Taylor microscale 2 (=

√15υu'2/ε)or the Kolmogoroff microscale  72  (=

(υ3/ε)1/4).ε is the dissipation rate of turbulent

energy defined by

 

(  3  )

An example of the dissipation spectrum  Du(k)=
κ2Su(h) is shown in Fig. 5, in which  Du(k)  indi-
cates its peak at  k•`ƒÉ-1 and reduces considerably 

at  k•`ƒÉ-1. Now,

 

(  4  )

 Refering to Fig. 5 and Eq.  (  4  ) the viscous 
subrange may be divided into two  stages: one 
is the initial stage of a large dissipation scale at 
which the  -3 power law of  Su(k) is  applicable") 
and another is the final stage of a small dissipa-
tion scale at which the -7 power law is  valid"). 

 (c) Inertial subrange (intermediate-scale eddy) 
 The relationship between eddy sizes in ranges

Fig. 4 An example of normalized spectra.

Fig. 5 Energy dissipative spectral functions.

Table 2 Spectral density functions
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(a) and (b) is written by

 

(  5  )

When Reynolds number  R* is enough large so 

that  Lx>ƒÉ, there is an intermediate subrange 

between (a) and (b) ranges, where the energy 

cascade process occurs and the  -5/3 power law 

is  valid19);

(  6  )

 The above results are summarized in Table 2, 
together with the formula interpolated between 
two ranges. Although a definite inertial range 
cannot be appreciated on account of relatively 
small values of  R* in authors' tests,  Bradshow20) 
has pointed out that Eq.  (  6  ) is approximately 
valid even when range (c) overlaps with a part 
of range (a) or (b) if the interaction with each 
range is  feeble. In fact a range where the -5/3 

power law is valid has been recognized here as 
shown in Fig. 4. 

Presence of the productive and viscous sub-
ranges as indicated in Table 2 is certified by 
Fig. 4, though the latter may be doubtful be- 
cause of poor analytical capacity of the measur-
ing devices. Since  Su(k) in productive and iner-
tial ranges contributes mainly to turbulence 
intensity, the interpolated formula by  Karman 
may be available in these  ranges:

 (7)

Eq.  ( 7 ) agrees fairly well with the observed 
data in both ranges (Fig. 4). 

 As to S(k) of  v'2 and  w'2  (S(k) and Sw(k)) 
both indicate almost same characteristics, which 
agree well with Laufer's experimental results. 
Since v' and w' do not directly contribute to 
turbulence production as previously mentioned, 
the productive range of  these components will 
be so scarcely expected that S(k) for a large-
scale eddy shows more gradual variation with k 
and may be the peak in this  .range due to alias-
ing  effect9). S(k) for a small-scale eddy com-

puted by introducing a  relation") of isotropic 
turbulence into equations in Table 2 is given by 
a dotted line in Fig. 4. Isotropy can be recog-
nized in the viscous subrange. 

 (  5  ) Dissipation of Turbulent Energy 
 The dissipation rate of turbulence is an essen-

tial quantity for dynamics of turbulence. The 
dissipation of energy  E is represented by Eq.  (  3  ), 
but most of the terms cannot be measured by 
convenient means. Thus  E should be evaluated

by using the isotropic relation more or less. 

Since the small-scale structure of turbulence is 

approximated to be isotropic, the dissipation rate 

is  given7) by

 ( 8 )

λx can be evaluated from the spectrum given by

Eq.  (  4  ) or the probability distribution of au/ax 
or the zero-crossing method on the assumption 
that u and  au/ax have normal  distributions24). 
The vertical distributions of  Ax on a smooth bed 
obtained by these methods are shown in Fig. 6, 
together with other researchers' data. In spite 
of dependence of  A. upon  R*,  Axlh tends to be-
come smaller toward the free surface and the 
wall, and its mean value is of order of 0.1. 
Since it is recognized from Fig. 5 that the spec- 
tral method may give the most reliable results,
λx obtained by this method is adopted here.

Now, when  Ay and  A are computed  from such

relations as  42=  k2Sv(k)dk12 and then the iso-

tropic approximation is applied to Eq.  (  3  ), the 
dissipation rate may be written as

( 9 )

Even supposing Eq.  (  9  ) affords more accurate 
value of  E than Eq.  (  8  ), the results are subject 
to the effects of noise in higher frequency range 
and of the uncertainty of the isotropic assump-
tion. 

If an inertial subrange for  Su(k) exists, Eq.  (  6  ) 
should be used to obtain the dissipation rate, as 
indicated by Grant et  al.22) and  Lawn23). Refer-
ring to Bradshaw's  study20), the universal con-
stant C in Eq.  (  6  ) is expected to be about 0.5 
even at comparatively small Reynolds numbers 
at which authors' experiment has conducted. 
The estimating error of  E by making use of

Fig. 6 Taylor microscale over smooth bed.
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Eq.  (  6  ) is at most 15 percentages for  C=0.5+ 
0.05 and smaller than that caused by Eq.  ( 3 )20). 

The dissipation rates evaluated from Eqs.  (  6  ), 

(  8  ) and  (  9  ) are compared in Fig. 7 (a)  as  well 
as data for a smooth bed given by other  investi-

gators7),23),25). The fact that Eq.  (  8  ) leads to 
larger values of  E than Eq.  (  6  ) in a core region 
away from the bed may be due to non-isotropy

( a )

( b )

of  turbulence24). 

 Turbulent flow on a rough bed exhibits similar 

characteristics of dissipation as that on a smooth 

bed, but with increase of roughness better close-

ness between the results obtained by Eq.  (  6  ) 

and ones by Eq.  (  8  ) has been recognized, as 

shown in Fig. 7 (b). This means that the tur-

bulent flow over a rough bed shows more re-

markable tendency to isotropy. In physical sense 

turbulent energy of the flow on a rough bed is 

redistributed more rapidly than on a smooth bed, 

consequently attaining isotropic structure. The 

dissipation rates  ƒÃh/t4 for all runs evaluated by 

Eq.  (  6  ) are plotted in Fig. 8. In spite of slight 

dispersion in observed data, it may be possible 

to express them by an universal  function inde-

pendently of Reynolds number and property of 

the wall.

For ƒÌbelow about 0.5 except the range very 

close to the wall, the difference of the dissipation 

rate between open-channel, pipe and boundary-

layer flows is hardly recognized, but for  C above 

about  0.5  ƒÃ in open-channel flow becomes larger 

than that in boundary layer flow and smaller 

than that in pipe flow, consequently depend-

ing much upon the boundary conditions of the 

mean flow. Its difference may be caused by ex-

istence of free surface and asymmetry of the 

flow field in open-channel flow. 

( 6 ) Production and Transport of Turbulent 

Energy 

The turbulence production P is written as

Fig. 7 Comparison of energy dissipation de-

termined by various methods.

Fig. 8 Energy dissipation under various flow 

conditions.



Turbulence of Open Channel Flow Over Smooth and Rough Beds 161

- uv ∂U/ ∂y and thus easily obtained if Reynolds

stress and mean velocity distributions are deter-

mined. On applying the logarithmic law to the 

mean velocity, the theoretical production rate of 

turbulence can be given by

( 10 )

The experimental values of turbulence produc-
tion are compared with Eq. (10) for smooth and 
rough beds in Fig. 10 (a) and (b), respectively. 
A good agreement between the observed values 
and the theoretical ones can be shown for small 
range of  R*, not depending upon the property 
of the wall. 

The transport rate of kinetic energy T is de-
fined as

( 11 )

Though the correlations between v and w are 

not measured here, the experimental data about 

the transport rate are shown in Fig. 9 on the 

assumption that  q2v12=(u2/2+v2)v, because it is 

concluded by  Laufer7) that  vw2•¬ vv2 regardless of 

Reynolds number.

With increase of the roughness size the varia-
tion of q2v/2  U3* becomes slower and its peak ap-

pears  further away  from the wall, taking small-
er value. This tendency can be inferred from 
the fact that the kinetic energy of the flow over 
a smooth bed varies more rapidly with  e than 
that over a rough  bed11) . However, for  e larger 
than 0.6 the turbulence transport is hardly in-
fluenced by the scale of roughness. 

 Anyway, the transport rate which contains 
the triple correlations of fluctuating velocity

ought to be discussed on the basis of the meas-
urements with the higher accuracy. As long as 
the observed data presented by authors are not 
of the highest order of accuracy, the conclusion 
described above should be appreciated only quali-
tatively. 

 (  7  ) The Turbulent Energy Budget 
 It was pointed out at early stage of turbulence 

research that the turbulent energy budget should 
be clarified in order to argue the structure of 

 turbulence25). The equation of turbulent energy 
in a two-dimensional turbulent shear flow can 
be written, provided that the Reynolds number 
of the flow is very large and the work done by 
the viscosity can be neglected, by

( 12 )

where R is the transport rate of the pressure 

energy defined as R= a/ay -(qv/p). Because it is 

very difficult to obtain the correlation between 

the pressure p and the velocity v by direct 

measurement, R may be evaluated from Eq. (12) 

by making use of P,  E and T previously obtained. 

As mentioned above the observed values of T 

are not so accurate that R cannot be evaluated 

precisely too, and consequently only a qualitative 

description about the transport of the pressure 

energy will be presented here. 

 Well, the turbulent energy budget over a 

smooth bed is shown in Fig. 10 (a). It indicates 

the similar characteristics as Laufer's results 

about the pipe  flow7). In the buffer layer 

 (y+<30 according to Laufer) P,  E, T and R 

are of same order so that P is approximately 

balanced by  c, and T by  —R. In the range  e< 

0.7 beyond the buffer layer the transport of 

kinetic energy T plays only secondary role in 

the turbulence behaviours and is nearly balanced 

by the transport of pressure energy R. Since 

for  e  >0.7 the turbulence production and the 

pressure transport are scarcely recognized, the 

dissipation rate is nearly balanced by the trans-

port of kinetic energy. 

From above investigations into turbulence be-

haviours it is concluded that the energy excess 

range where  P  >  E exists near the wall while the 

energy deficiency range where  ƒÃ>P•¬0 exists 

near the free surface. Between two ranges there 

exists the intermediate range where the energy 

flows under a dynamically equilibrium state so 

that  P=E. And this structure is similar to the 

energy flow in the space spectrum expressed by 

wave number. On the other, the pressure trans-

port can be noticed to occur only near the wall.

Fig. 9 Turbulent energy transport.
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(a) Turbulent energy budget over 
smooth bed.

(b) Turbulent energy budget over 
rough bed.

On considering the sign of R, the pressure ener-

gy is transported toward the wall in opposition 

to the kinetic energy, resulting in disturbances 

in a viscous sublayer. 

As to the turbulent flow over a rough bed the 

point which the kinetic energy changes from a 
loss to a gain, that is  T=0, shifts further away 

from the wall and the pressure transport to

balance to the kinetic energy transport also oc-
curs in wider range with increase of the rough-
ness as shown in Fig. 10 (b). The turbulence 
transport as well as turbulence intensity u' and 
kinetic energy q2/2 may be influenced by the 
roughness scale, as mentioned previously. 

As already expected, the turbulence production 
indicates almost same characteristics as the tur-
bulence dissipation and both of them balance 
nearly in the whole depth except in the neigh-
bourhood of water  surface, regardless of proper-
ties of the wall. This relationship between P 
and  E for each run is shown in Fig. 11, and it 
can be concluded that an equilibrium state of 
turbulence under which  Pc appears in longer 
distance from the wall as the wall boundary be-
comes rougher. 

4. INVESTIGATION INTO VELOCITY 
DISTRIBUTIONS OF MEAN MOTION 

(  1  ) Division of Turbulent Flow Field 
 As pointed out by Tennekes et  al.9), there is 

an evident similarity between the spatial and

Fig. 10

Fig. 11 Relationship between production 

and dissipation.
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( a ) Spectral Space

( b )  Wal  I Turbulece Space

spectral structures of wall turbulence. At very 
large Reynolds number the spectral space (wave 
number space) is divided into three subranges 
as shown in Fig. 12 (a) and the corresponding 
spatial structure is shown in Fig. 12 (b). Be-
cause the turbulent energy produced in inner 
layer is larger than the dissipation rate, the ex-
cess energy is transported toward an upper layer. 
In outer layer corresponding to a viscous sub-
range the production hardly occurs and the dis-
sipation is cancelled by the energy transport 
from an inner layer. Between both layers there 
exists inertial layer in which the production rate 
is nearly equal to the dissipation, and it corre-
sponds to an inertial subrange in the spectral 
space. 

The above mentioned means that there exists 
a qualitative similarity between the spatial and 
spectral structures. Their quantitative structures 
are obviously to be different each other. Espe-
cially, since the wave number k has a reciprocal 
relation to the distance y, the length scales in

both spaces have a quite inverse relation in size. 
 Such a division of turbulent flow field in open-

channel is shown in Fig. 13. The characteristics 
in each region  are  : 

1) Wall region In this region corresponding 
to  '  inner  layer  ' in boundary layer flow, the 
scales of characteristic length and velocity are
v/U* and  U*, respectively, and the law of the

wall is valid. The conspicuous production of 

turbulence is come out due to burst and sweep. 

This is the most important region for wall turbu-

lence. 

2) Free surface region In this region corre-

sponding to  '  outer  layer  ' the length and velocity 

scales are h and the maximum velocity  Umax, 

respectively, and the velocity defect law is valid. 

This is apt to be influenced by the free surface 

in open-channel flow. 

3) Equilibrium region This is an intermedi-

ate region between the wall region and the free 

surface one, in which a dynamically equilibrium 

state for turbulent energy budget, that is 

is realized. It corresponds to the inertial sub-

range where a similarity of turbulence structure 

is  valid19), and the characteristic length and velo-

city scales are y and  •ãr/p, respectively. 

 Now, on giving an universal expression by 

length and velocity scales to the characteristic 

quantities of turbulence, it comes into question 

what kind of basic quantity should be chosen. 

In consideration of similarity between the turbu-

lent field and the wave number space, the dissi-

pation rate  c can be taken here. Since the most 

reliable quantity through turbulence measure-

ments is the intensity  u',  E is related to u' by 

using Eq.  ( 2  ). Because S(k) given by Eq.  ( 7  ) 

is valid in a range of wave number which con-

tributes quite mainly to u'2, the relationship be-

tween  c and u' can be written from Eq. ( 6 ) for 

C=0.5:

(13)

The mean eddy size  Lx in Eq. (13) was evaluat-

ed as  (2/ƒÃ)S(0) by joining S(k) to a correlation 

function by Fourier transformation. However, 

as it is questionable to apply Taylor's hypothesis 

of the frozen turbulent flow to a range with  low 

wave number,  Lx above obtained is to be con-

siderably approximate value. 

The observed values of  Lx are indicated in 

Fig. 14. Owing to deficiency of the data close 

to the wall for run D, it is difficult to get a de-

finite conclusion about the effect of roughness, 

but it is not too much to say from Fig. 14 that 

the values of  Lxlh decrease with increase of

Fig. 12 Analogy between spectral space and 

wall turbulence space.

Fig. 13 Subregions in open channel flow.
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roughness.  Chen13) et al. and  Antonia15) et al. also 

pointed out that the mean eddy size decreased 
with enlargement of roughness element. It may 
be caused that the large-scale eddies near the wall 
are forced by the roughness elements to break 
up into a wake. Validity of Eq. (13) is examin-
ed in comparison with the experimental values 
in Fig. 15, and it is rather surprising that the 
observed values fairly agree with Eq. (13) on 
considering the low accuracy of measurement of 
Lx. From this result it can be concluded that 
the spectral distribution in the productive and 
the inertial subranges satisfies  Karman's equation 

given by Eq.  (  7  ) and that analysis of the meas-
urements has remarkably high accuracy. 

 Well, taking account of Eq. (13) as a basic re-
lation in turbulence and of existence of three 
regions, the turbulence characteristics and the 
mean velocity distribution in each region are 
discussed below from a viewpoint of turbulent 
energy budget.

( 2 ) Wall Region  (y+•¬100) 

The conventional  researches26) on the  mean 

velocity distribution revealed that the character-

istic length scale in this region is  v/  U* for hy-

draulically smooth and  ks for completely rough 

and depends upon both scales for incompletely 

rough. However, on considering great difficulty 

to solve the dynamics of turbulent flow with 

different  multi-scales9) and the lack of accurate 

measurements of turbulence in the wall region 

for rough bed, all the data obtained here are 

consistently arranged v/U*,regardless of the 

bed property. 

The observed values of  E are shown in Fig. 16, 

dimensionlessly formed by the characteristic 

scales,  v  /U and  U*. These show a fixed dis-

tribution independent of the type of roughness. 

The peak of dissipation appears at  y+=10,•`20, 

and so the buffer-layer corresponding to  y+e=10 

30 may play an important role on dynamics of 

turbulence in the wall region. Although the 

peak value obtained by the authors is about one 

half of Laufer's one, for  y+>30 a good agree-

ment between both results has been recognized. 

Consequently, its universal expression can be 

given by

( 14 )

where  A1 is an universal constant.

Fig. 14 Mean eddy scale (Macroscale).

Fig. 15 Verification of applicability of  Kar-

man's formula.

Fig. 16 Energy dissipation in wall region.

Fig. 17 Mean eddy scale in wall region.
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The experimental values of the mean eddy 

size in the wall region  Lx are plotted in Fig. 17 

and can be approximately represented by

( 15 )
where A2 obviously depends upon the type of 
the wall so as to decrease with increase of rough-
ness. Substitution of Eqs. (14) and (15) into Eq. 

(13) yields

( 16 )
Though the values of  A1 and A2 should be de-

termined by a vast amount of measurements, 
A1 becomes about 1.85, A2 about 31 for run A 

(smooth), and A2 about 20 for run C (rough), 
and consequently  As becomes about 4.4 and 3.8 
for smooth and rough beds, respectively, within 
authors' experiments. As shown in Fig. 2 (a) 
the curves representing Eq. (16) may coincide 
well with the experimental values for  y+>30. 
When an eddy scale decreases with increase of 
the roughness size,  u'/  U* tends to decrease due 
to redistribution of turbulent energy, and iso-
tropic tendency develops as mentioned previously. 

 Next, by introducing a mixing length l+be- 
tween two large-scale eddies, the following rela-
tion will be  obtained:

( 17 )

Since Prandtl's hypothesis that the mixing length 
for an eddy scale of order  L+x is proportional to 
y+ may be valid in this region, the mean veloci-
ty can be represented as, by combining Eqs. (16) 
and (17),

(18)

On the other hand, for  30<  y+<100  u' /U* can be 
regarded to be nearly constant as shown in Fig. 
2 (a) and consequently the equation of the mean 
velocity becomes

( 19 )

From the velocity gradient of Eqs. (18) and (19),
κ A4 =6 (y+) 1/6≒ 11.4, and so A4 is nearly an uni-

versal constant. But, it is understood that the 
value of A5 as well as A6 should be a function 
of the roughness which must be determined 
from many experiments as done by  Nikuradsem. 

Now, substituting  K=0.4,  A4=28.4,  A5=1.06 
and  A6=5.5 for smooth bed into Eqs. (18) and 

(19), the theoretical distribution curves are shown 
in Fig. 18 together with the experimental values. 
A fairly good agreement between the theoretical 
formulae and the observed values has been ob-
tained, and Eqs. (18) and (19) coincide each other

for  y+>15 so perfectly that Prandtl's equation 

approved as the law of the wall is well valid in 

this region because a slight variation of  u'/U* 

scarcely acts upon the mean velocity distribution. 

From the above investigation it may be conclud-

ed that characteristic length scale  U* is valid 

even for a rough bed to discuss the turbulence 

structures in wall region.  

(  3  ) Free Surface Region  (0.6 •¬ƒÌ•¬ 1.0) 

The dynamics of turbulent flow in this region 

which occupies the principal part of the mean 

flow depends upon the flow parameters such as 

Reynolds number and Froude number which 

characterize the flow field as a whole. Therefore 

the characteristic length and velocity scales are 

 h and  Umax, respectively. Since Umax can be re-

lated to  U* for specified wall roughness,  U* is 

chosen as the velocity scale instead of Umax here. 

And  ƒÌ'  (=1-ƒÌ) is taken as a dimensionless ordi-

nate. This region reveals a turbulence charac-

teristic that the energy production hardly occurs 

so that the dissipation rate is almost equal to 

the transport rate. 

Well, despite of a little scattering of the ob-

served values, the following equation can be ap-

proximately derived from Fig. 8.

(20)
And, regarding  Lx/h in this region as nearly 
constant to be equal to 0.58 independently of the 
roughness size as shown in Fig. 14, Eq. (13) be-
comes

( 21 )
This is shown in Fig. 19 and has a good agree-

ment with the observed values for  0<e'<0.5. 

Although it is considerably difficult to evaluate 

the transport rate, the following relationship can 

be obtained by Zagustin's  hypothesis27) that the 

turbulence transport occurs due to the difference

Fig. 18 Mean velocity distribution in wall 

region.
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of the mixing length 1 between two adjacent 

eddies and that its intensity is proportional to 

the gradient of 1, that is  1/2(q2v)--  U3*•¬l/•¬y, in 

consideration of  T=c in this region, and by us-

ing Eq.  (20);

( 22 )

Integration of Eq. (22) yields

( 23 )
Now, substituting Eqs.  ( 1 )  and (23) into the re-

lation  d(U/U)/dƒÌ'=-•ãƒÃ/ƒÃ0  /(l/h) given by the 

mixing length theory and integrating it, the 

mean velocity distribution can be obtained for 

small values of  ƒÌ':

( 24 )
Since the second term on right hand side of 

Eq. (24) is only as large as eight percentages of 

the first term, Zagustin's formula which ignores 

the former may be enough available. According 

to  Nikuradse26)  l/h=0.14 at  ƒÌ'=0 and so be-

comes 0.39 from Eq. (23). Eq. (24) computed 

with this value is shown in Fig. 20. The ob-

served values may deviate a bit from Eq. (24) 

by influence of the free surface, but an approxi-

mate coincidence  between' both can be recognized 

in this region so that the velocity defect law is 

valid independently of the wall roughness. 

( 4 ) Equilibrium Region  (0.1 •¬ƒÌ •¬0.6) 

 If it is tentatively assumed that the equilibrium 

state of turbulence is obtained under the condi-

tion  | P-ƒÃ  |/ƒÃ<20%, the equilibrium region may 

be defined as  0.1<ƒÌ<0.6 from Fig. 11. The 

turbulence characteristics in this region are so 

little influenced by the external conditions that 

similarity of turbulence is valid, resulting in an 

universal function expressed by the characteristic 

scales y and  •ãƒÑ/ƒÏ  rho25). Then,

( 25 )

 Eq. (25) for  C1=3.0 is shown in Fig. 8 and 
nearly agrees with the observed data, while 
Luafer's results can be expressed by

( 26 )
which corresponds to the velocity scale U* in-

stead of  •ãƒÑ/ƒÏ  . 

 It is recognized from Fig. 14 that  Lx/h is pro-

portional to  ƒÌ1/2 in this region and thus Eq. (13) 

can be rewritten, by making use of Eq. (25), as

( 27 )
Eq. (27) may not show a good agreement with 
the observed data as shown in Fig. 19, and it 
seems better to use Eq. (26) in consideration of 
variation of  Lx, that is,

( 28 )

( 29 )

Fig. 19 Turbulence intensity of u'.

Fig. 20 Mean velocity distribution in free 

 surface region and equilibrium re-

gion.
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where  Lx1h is considered to vary with  ƒÌ/2 at the 

first stage of this region and to reach nearly con-

stant value at the middle as found in Fig. 14.

u' / U* seems to take an intermediate value be-

tween Eqs. (28) and (29). 

Now,  P= uv(•¬U/•¬y)•¬ƒÃ in this region and, 

integrating it by using Eqs.  (  1  ) and (25), the 

mean velocity distribution can be given by

(30)

On the other hand  Karmin26) applied a hypothesis 

of similarity to the equation of motion by taking 1 

and  p as the characteristic scales and ob-

tained the following:

( 31 )

And, an extension of Eq. (19) into this region 
yields

( 32 )

 Since Eq. (30) is deduced by averaging Eqs. (31) 
and (32) weighted with a ratio of 2 to -1, it 
may be supposed that this region overlaps to 
some extent with the wall region. When C1 is 
equal to 3.0 as given by this experiment, be-
comes 0.33 which is nearly 0.4. Eqs. (30), (31) 
and (32) are shown in Fig. 20. As expected, 
Eq. (30) coincides well with Eq. (31) based on 
Karman's hypothesis but becomes smaller than 
the observed values. This is because the bound-
ary condition in Eq. (30) has been given at  e=1. 
Now, Eq. (30) agrees with them fairly well when 
the curve is connected smoothly with Eq. (24). 
However, the differences among all of the theo-
retical mean  velocity are below  U. that is of 
the same order of turbulence intensity. For the 

practical purposes any of distribution curves will 
be able to be used in the whole range except 
very close to the wall. 

5. CONCLUSION 

In this paper turbulence measurements in open 
channel shear flow by making use of a single-
and a dual-sensor hot-film anemometers have 
been described. The effects of bed roughness 
on structures of wall turbulence have been main-
ly investigated by keeping Reynolds number and 
Froude number nearly  constant.

It has been recognized that the mean eddy 
size and the intensity u' decrease with increase 
of roughness, and consequently it is inferred that 
redistribution of turbulent energy in the flow 
over a rough bed may develop more rapidly than 
over a smooth one, so as to approach to iso-
tropic state. 

 The flow field has been divided into three re-

gions on the basis of a close analogy between 
the wave number space and the turbulent flow 
field. Then, the velocity distributions of the 
mean flow in each region have been deduced 
from the viewpoint of turbulent energy budget 
and discussed in comparison with the existing 
formulae. 
 Although a lot of knowledge about turbulence 
in open channel flow have been obtained here, 
the dynamics of turbulence in the wall region 
which is the most complicated and interesting 
remains to be solved because of insufficient meas-
urements, and it should be examined further 
together with the mechanism of turbulence gen-
eration. 
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