
Journal of Hydraulic Research Vol. 43, No. 3 (2005), pp. 276–289

© 2005 International Association of Hydraulic Engineering and Research

Turbulence particle models for tracking free surfaces

Modèles particulaires turbulents pour suivre les surfaces libres
SONGDONG SHAO, Formerly Postdoctoral Fellow of Japan Society for the Promotion of Science (JSPS). Coastal and Offshore
Engineering, Department of Urban and Environmental Engineering, Kyoto University, Kyoto 606-8501, Japan.
E-mail: shao@coast.kuciv.kyoto-u.ac.jp. Currently Joint Research Fellow of School of Mathematics and Statistics and
School of Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK. Tel.: +44 175223 2791;
fax: +44 175223 2780; e-mail: songdong.shao@plymouth.ac.uk (author for correspondence)

HITOSHI GOTOH, Associate Professor,Waterfront Environmental Engineering, Department of Urban and Environmental
Engineering, Kyoto University, Kyoto 606-8501, Japan. Tel.: +81 75 753 5098; fax: +81 75 753 5098;
e-mail: gotoh@coast.kuciv.kyoto-u.ac.jp

ABSTRACT
Two numerical particle models, the Smoothed Particle Hydrodynamics (SPH) and Moving Particle Semi-implicit (MPS) methods, coupled with a
sub-particle scale (SPS) turbulence model, are presented to simulate free surface flows. Both SPH and MPS methods have the advantages in that
the governing Navier–Stokes equations are solved by Lagrangian approach and no grid is needed in the computation. Thus the free surface can be
easily and accurately tracked by particles without numerical diffusion. In this paper different particle interaction models for SPH and MPS methods
are summarized and compared. The robustness of two models is validated through experimental data of a dam-break flow. In addition, a series of
numerical runs are carried out to investigate the order of convergence of the models with regard to the time step and particle spacing. Finally the
efficiency of the incorporated SPS model is further demonstrated by the computed turbulence patterns from a breaking wave. It is shown that both
SPH and MPS models provide a useful tool for simulating free surface flows.

RÉSUMÉ
Deux modèles numériques particulaires, SPH (hydrodynamique de particules lissée) et MPS (Méthodes semi-implicites de particules mobiles), couplés
à un modèle de turbulence à une échelle sub-particulaire (SPS), sont présentés pour simuler des écoulements à surface libre. Les deux méthodes SPH
et MPS ont l’avantage de résoudre les équations de Navier-Stokes utilisées, par une approche lagrangienne sans nécessité de mailler le calcul. Ainsila
surface libre peut se définir facilement et exactement par des particules sans diffusion numérique. Dans cet article différents modèles de l’interaction
particulaire pour les méthodes SPH et MPS sont résumées et comparées. La robustesse des deux modèles est validée par des données expérimentales
de l’écoulement d’une rupture de barrage. En outre, une série d’exécutions numériques sont effectuées pour étudier la convergence des modèles
en fonction du pas de temps et de l’espacement des particules. Enfin l’efficacité du modèle SPS incorporé est de plus démontrée par le calcul de
la configuration turbulente d’une vague déferlante. On montre ainsi que les deux modèles SPH et MPS fournissent un outil utile pour simuler des
écoulements à surface libre.
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1 Introduction

Modeling free surface flows is of great significance in the field
of hydrodynamics and hydraulic engineering. However, these
flows are difficult to simulate because the surface boundary con-
ditions are specified on an arbitrarily moving surface. The MAC
(Harlow and Welch, 1965) and VOF (Hirt and Nichols, 1981)
methods are two of the most flexible and robust approaches for
treating free surfaces in Eulerian grid methods. The former uses
marker particles to define the free surface while the latter solves a
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transport equation for the volume fraction of the fluid. However,
as for both the MAC andVOF methods, the Navier–Stokes (N–S)
equations are solved on a fixed grid, which brings the problem
of numerical diffusion due to the existence of the advection term
in the N–S equations. The numerical diffusion becomes severe
especially when the deformation of free surface is very large and
complicated.

Thus numerical models that do not use the grid have been
developed to overcome this problem and the mesh-free modeling
has become increasingly popular. Among them, the deterministic
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meshless or gridless methods can be roughly classified into two
groups, i.e., those based on the gridless Eulerian methods, such
as the gridless Euler/N–S solution algorithm (Batina, 1993) and
element free Galerkin (Belytschkoet al., 1994); and those based
on fully Lagrangian particle approaches, such as the Smoothed
Particle Hydrodynamics (SPH) (Lucy, 1977) and Moving Parti-
cle Semi-implicit (MPS) (Koshizukaet al., 1995) methods. The
second group of particle models is the focus of interest in this
paper.

Both the SPH and MPS methods have the common feature
in that the modeled media, such as the water, is modeled as an
assembly of particles. The interaction zone is supposed around
each individual particle. All of the terms in governing equa-
tions are described as the interaction between the reference
particle and its neighbors and thus the computational grid is
not required. If combined with necessary initial and boundary
conditions, a particular hydrodynamic problem can be solved
exclusively through particle properties. Unlike the particle-in-
cell (PIC) method (Shaoet al., 2002), the SPH and MPS models
do not need the grid to calculate spatial derivatives and therefore,
the back and forth interpolations between the grid and particles
are avoided.

Initially developed by Koshizukaet al. (1995), the MPS
method has been widely applied in both the hydrodynamics and
nuclear mechanics, to deal with a variety of practical problems
such as the dam-breaking (Koshizuka and Oka, 1996), vapor
explosion (Koshizukaet al., 1999) and two-phase gas–liquid
flows (Yoonet al., 1999). Later it was improved and extended
by Gotoh and Sakai (1999) and Gotohet al. (2001a) into coastal
engineering to study wave breaking and two-phase sediment–
water interactions. On the other hand, the conception of SPH
method was first put forward by Lucy (1977) for astrophysics
applications. Later Monaghan (1992) summarized the SPH the-
ory and extended its applications into many other fields including
the fluid flow. The initial SPH algorithm was fully explicit and
the fluid flow was assumed to be weakly compressible when it
was applied to a solitary wave running up a beach (Monaghan
and Kos, 1999) and a low Reynolds number flow inside the
porous media (Zhuet al., 1999). Based on the classical SPH the-
ory, an incompressible semi-implicit SPH projection scheme was
later developed by Cummins and Rudman (1999) for a non-free
surface flow. Since both the SPH and MPS methods employ a
similar semi-implicit numerical scheme to treat incompressible
flow in this paper, the major differences between the two lie only
in the use of different kernel functions or particle interaction mod-
els. The basic governing equations and equation solvers have the
same form.

The current paper is organized in the following ways. First, the
governing equations and equation solvers are presented for both
the SPH and MPS methods. The Large Eddy Simulation (LES)
conception is employed to formulate a sub-particle scale (SPS)
model to address the turbulence issues. Next the treatment of free
surfaces and wall boundaries by particles is described. Then var-
ious kernel functions or particle interaction models employed for
the formulation of gradient, divergence and Laplacian operators

are presented and compared. In the model applications, both mod-
els are used to reproduce a documented dam-break experiment
to verify their robustness. Meanwhile a series of numerical runs
using different particle spacing and time steps are carried out to
investigate the order of convergence. Finally the efficiency of the
coupled SPS turbulence model is further demonstrated by com-
paring the computed surface profiles and turbulence intensities
of a breaking wave with those found in the literatures.

2 Governing equations and equation solvers

2.1 Governing equations

Both the SPH and MPS models employ the Lagrangian form of
N–S equations, which are represented in the following form as

1

ρ

Dρ

Dt
+ ∇ · u = 0 (1)

Du
Dt

= −1

ρ
∇P + g + ν0∇2u + 1

ρ
∇ · ⇒

τ (2)

whereρ = fluid density;t = time; u = velocity; P = pressure;
g = gravitational acceleration;ν0 = laminar kinematic viscosity
and

⇒
τ = SPS or turbulence stress contributed by the unresolved

small motions.
In order to account for the above unresolved small motion

term
⇒
τ , the philosophy of LES (Rogallo and Moin, 1984) is ref-

erenced here. According to the original LES conception, eddies
capable of being resolved by the computational grid are allowed
to evolve according to the N–S equations and a model is employed
to represent the turbulence at sub-grid scales. By introducing the
turbulence eddy viscosityνt , the unresolved SPS turbulence stress
τij in Eq. (2) can be written as

τij

ρ
= 2νtSij − 2

3
kδij (3)

whereδij is Kronecker’s operator; andSij = strain rate andk =
turbulence kinetic energy, which can be incorporated into the
pressure term when solving the momentum equation (2).

The widely used Smagorinsky (1963) model is employed here
to formulate the turbulence eddy viscosity as

νt = (Cs�X)2|S̄| (4)

whereCs = Smagorinsky constant (taken as 0.1 in the com-
putations);�X = particle to particle spacing (equivalent of the
mixing length in a grid method) and|S̄| = local strain rate, which
can be calculated from the resolved variables.

2.2 Equation solvers

The prediction–correction numerical schemes of the SPH and
MPS methods consist of two steps, similar to the two-step pro-
jection method by Chorin (1968) to solve the N–S equations.
The first prediction step is an explicit integration in time without
enforcing incompressibility. Only the stress tensor, laminar vis-
cosity and gravitational terms in the N–S equation (2) are used and
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thus an intermediate particle velocity and positions are obtained

�u∗ =
(

g + ν0∇2u + 1

ρ
∇ · ⇒

τ

)
�t (5)

u∗ = ut + �u∗ (6)

r∗ = rt + u∗�t (7)

where�u∗ = changed particle velocity during the prediction
step;�t = time increment;ut andrt = particle velocity and posi-
tion at timet; andu∗ andr∗ = intermediate particle velocity and
position.

In the second correction step, the pressure term is used to
update the particle velocity obtained from the prediction step

�u∗∗ = − 1

ρ∗
∇Pt+1�t (8)

ut+1 = u∗ + �u∗∗ (9)

where�u∗∗ = changed particle velocity during the correction
step;ρ∗ = intermediate particle density after the prediction step;
andPt+1 andut+1 = particle pressure and velocity at timet + 1.

Finally the positions of a particle are calculated by

rt+1 = rt + (ut + ut+1)

2
�t (10)

wherert andrt+1 = positions of particle at timet andt + 1.
The pressure for updating the particle velocity in the correc-

tion step is obtained by settingDρ/Dt = 0 at each particle
according to the mass conservation equation (1) after the pre-
diction step. The aim of this semi-implicit process is to enforce
the incompressibility or mass conservation, which has been vio-
lated by the prediction computations. By combining Eqs (1) and
(2), a pressure Poisson equation for the SPH numerical schemes
is formulated as follows

∇ ·
(

1

ρ∗
∇Pt+1

)
= ρ0 − ρ∗

ρ0�t2
(11)

whereρ0 = initial density at each of the particles.
The source term on the right side of the above equation is the

deviation of particle density, while it is usually the divergence of
intermediate velocity in a grid method. Here it should be pointed
out that the MPS model employs a slightly different form of the
source term, in which the particle densityρ is replaced by the
particle number densityn. However, since the number densityn

is proportional toρ only by a constant (which will be shown in the
later section), Eq. (11) is applicable to both numerical schemes.

Besides, for the purpose of stable and accurate computations,
the time step�t is controlled in SPH and MPS simulations to
constrain the particle displacement in one step. Therefore, the
requirement of Courant condition and viscous diffusion can be
satisfied, which is the same as the stability requirement in a grid
method.

3 Numerical treatment of free surfaces
and wall boundaries

3.1 Free surfaces

For SPH and MPS models free surfaces can be easily identified
and tracked by particles. Since no particle exists in the outer
region of the free surface, the particle densityρ or number den-
sity n drops abruptly on the surface. A particle is regarded as a
surface particle if its density is 1% (for SPH) or 3% (for MPS)
lower than that of the inner fluid.

The kinematic free surface boundary condition states that the
fluid particles at a free surfaceη = η(x, t) should remain on the
free surface, represented by

∂η

∂t
+ u

∂η

∂x
= w (12)

wherew = vertical velocity of surface particles. In the com-
putation, this requirement can be easily satisfied by assigning
all surface particles an identifier at the beginning and then
continuously maintaining their identity in the code.

The dynamic free surface boundary condition requires that,
along the free surface boundary, the normal stress is equal to
the atmospheric pressure and the tangential stress is zero. This
condition is also simplified by giving a prescribed pressure value
to all surface particles.

3.2 Solid walls

Solid walls such as the impermeable bottom bed and inclined
slope are also modeled by particles, which balance the pressure
of inner fluid particles and prevent them from penetrating the
wall. The pressure Poisson equation (11) is solved on these wall
particles to repulse the inner fluid particles accumulating in the
vicinity of the wall. The homogeneous Neumann boundary con-
ditions are enforced when solving the pressure equation. Usually
the velocities of wall particles are set zero to represent the non-slip
boundary condition.

4 SPH and MPS formulations

In this section, the major differences between the SPH and MPS
formulations are presented and compared to show their respective
characteristics.

4.1 Kernel functions/interaction models

SPH and MPS methods employ different kernel functions or
interaction models in their formulations. The use of different
interaction models is similar to the use of different difference
schemes in a finite difference method. While different governing
equations can employ different interaction models, usually the
same interaction model is used throughout all governing equa-
tions in one numerical method. By balancing the computational
accuracy and efficiency, the following kernel based on the spline
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function and normalized in 2-D is widely adopted in the SPH
formulation (Monaghan, 1992)

ω(r) = 10

7πr2
e

[
1 − 3

2

(
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re

)2

+ 3

4

(
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re

)3
]

0 ≤ r

re

≤ 1

ω(r) = 10

28πr2
e

[
2 −

(
r

re

)]3
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r

re

≤ 2

ω(r) = 0
r

re

> 2

(13)

wherer = separation distance between two particles andre =
smoothing distance or interaction range, which determines the
degree by which a particle interacts with its neighbors. In the
current SPH computations,re is set to be 2.0�x, where�x is
the initial particle spacing. The SPH kernel equation (13) has the
advantage of possessing compact support. Its second derivative is
continuous and the dominant error term in the integral interpolant
is the order ofr2

e . The continuity of the second derivative means
that the kernel is not too sensitive to particle disorder and the
errors in approximating the integral interpolants by summation
interpolants are small provided the particle disorder is not too
large.

On the other hand, the following basic interaction model by
Koshizukaet al. (1995) is often employed in the MPS formulation

ω(r) = re

r
− 1 0 <

r

re

≤ 1

ω(r) = 0
r

re

> 1
(14)

This function, which also has the finite interaction zone, is equally
effective for saving the computational time and memory. Besides,
the value of this interaction model is infinity atr = 0, which is
quite efficient of avoiding the clustering of particles and thus
improves the numerical stability. In comparison, the SPH kernel
equation (13) has a finite value atr = 0. However, the derivatives
of MPS kernel are not always continuous and thus it is less smooth
than the SPH counterpart.

In the MPS computation, different sizes of the interaction
range are used, i.e., the sizere is 2.1�x for the calculation of
density and gradient, while it is 4.0�x for the calculation of
Laplacian and viscosity. These values have been selected through
a large number of optimum MPS numerical tests (Koshizuka and
Oka, 1996).

4.2 Density models

Using both the SPH and MPS conceptions, any quantity of parti-
clea can be approximated by the direct summation of the relevant
quantities of its neighboring particlesb. For example, the density
of particleρa is represented by SPH formulation as

ρa =
∑

b

mbω(|ra − rb|) (15)

wherea andb = reference particle and its neighbors;ra andrb =
position of particles; andmb = particle mass.

Another kind of particle density, the number densityna, is
defined in the MPS model as follows

na =
∑

b

ω(|ra − rb|) (16)

It is very obvious that there is almost no difference between the
particle density defined by Eq. (15) and number density defined
by Eq. (16), since they are simply proportional to each other
through a constantmb. Although the kernel functionsω(r) in
Eqs (15) and (16) are different, the integration ofω(r) over the
entire interaction area keeps constant ifre is fixed (Koshizuka
and Oka, 1996).

4.3 Gradient and divergence models

In the SPH conception, the gradient term has many different
forms depending on the derivation used. The following symmet-
ric form is widely used since it conserves linear and angular
momentum exactly (Monaghan, 1992)(

1

ρ
∇P

)
a

=
∑

b

mb

(
Pa

ρ2
a

+ Pb

ρ2
b

)
∇aωab (17)

where∇aωab = gradient of the kernel taken with respect to the
positions of particlea. Similarly, the divergence of a vectoru at
particlea can be formulated by

∇ · ua = ρa

∑
b

mb

(
ua

ρ2
a

+ ub

ρ2
b

)
· ∇aωab (18)

On the other hand, the following more intuitive formulations
in the form of particle interactions are employed by the MPS
method for gradient and divergence(

1

ρ
∇P

)
a

= 1

ρa

Dim

n0

∑
b

ω(|ra − rb|) Pa − Pb

|ra − rb|2 (ra − rb)

(19)(
1

ρ
∇ · u

)
a

= 1

ρa

Dim

n0

∑
b

ω(|ra − rb|) ua − ub

|ra − rb|2 · (ra − rb)

(20)

where Dim= the number of space dimensions andn0= initial
particle number density.

It is shown that in the SPH formulation, the gradient or diver-
gence is always related to the differentiation of the kernel function
in form of ∇aωab, while in the MPS approach it has nothing to
do with the differentiation of kernel itself, but calculated directly
through the difference of particle properties. The MPS kernel
serves as something like a weight function. The same character-
istics are also observed in the following formulations of Laplacian
and viscosity terms. Besides, the turbulence shear stress in Eq. (2)
is also formulated in the same way as the divergence model.

4.4 Laplacian and viscosity formulations

In the SPH model, for the purpose of particle pressure stabil-
ity, the Laplacian is formulated as a hybrid of a standard SPH
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first derivative with a finite difference approximation for the first
derivative, and thus it is globally first-order accurate

(∇2P)a =
∑

b

mb

4

ρa + ρb

(Pa − Pb)(ra − rb) · ∇aωab

|ra − rb|2 (21)

The same approach is applied to treat the laminar viscosity term
so that it has a clear physical meaning

(ν0∇2u)a =
∑

b

mb

2(νa + νb)

ρa + ρb

(ua − ub)(ra − rb) · ∇aωab

|ra − rb|2
(22)

In the MPS formulation, the Laplacian is discretized as the
re-distribution of the scalar quantity in the following form

(∇2P)a = −2Dim

n0λ

∑
b

(Pa − Pb)ω(|ra − rb|) (23)

The above equation is derived based on a simple time-
dependant diffusion problem by Koshizuka and Oka (1996). The
model is conservation because the quantity lost by particlea is
gained by particleb. The coefficientλ is introduced to make the
increase of variance due to the re-distribution of Eq. (23) equal
to the increase of variance estimated from the unsteady diffusion
equation, which is approximately estimated by (Gotoh and Sakai,
1999)

λ =
∑

b ω(|ra − rb|)|ra − rb|2∑
b ω(|ra − rb|) (24)

By using a same approach, the laminar viscosity term for MPS
model is represented by

(ν0∇2u)a = −2ν0Dim

n0λ

∑
b

(ua − ub)ω(|ra − rb|) (25)

Using the present Laplacian model of either SPH or MPS, the
left side of the pressure Poisson equation (11) is discretized into
simultaneous linear equations. The linear equations are solved
using the Incomplete Cholesky Conjugate Gradient (ICCG)
method, which is the most time-consuming part of simulations.
The particle-list generation optimum method by Koshizukaet al.
(1998) and Monaghan and Lattanzio (1985) significantly reduced
the computational load from∼N2 to ∼N, whereN is particle
numbers.

5 Model applications

The SPH and MPS models are validated here using a classic
dam-break problem for two reasons. Firstly, dam-break flow is an
important practical problem in civil engineering and its prediction
is the required element in the design of a dam and its surrounding
environment. Secondly, this is also a good test for the numerical
model because the existence of both a vertical and horizontal
free surfaces provides a convincing check on the accuracy of
numerical schemes. In this example, a rectangular column of
water in hydrostatic equilibrium is confined between two vertical
and one bottom walls. The water column isa = 0.1 m wide and
H = 0.2 m high. At the beginning of the computation, the right

wall (dam) is instantaneously removed and the water is allowed
to flow out along a dry horizontal bed.

During the simulations the total number of fluid particles is
N = 20 × 40, corresponding to a particle spacing of 0.005 m
in the initial configuration. The fluid particles were initially
arranged in a regular, equally spaced grid, with boundary parti-
cles added to form the left-hand wall and bed. In the computation
a constant time step of�t = 0.0004 s was employed. The laminar
viscosity isν0 = 10−6 m2/s.

The particle configurations computed by the SPH and MPS
models for the flow at different timest = 0.06, 0.12 and 0.20 s,
are shown in Fig. 1(a)–(c), respectively. It is seen that both mod-
els well reproduce the formation of the shock as well as the
subsequent turbulence bore, which is due to the advantage that
particle methods can clearly describe the free surface without
numerical diffusion. The simulated flow patterns are very similar
to the computational results by the MAC (Harlow and Welch,
1965) and VOF (Hirt and Nichols, 1981) approaches. In order
to quantitatively evaluate the accuracy of the numerical results,
the computed time-dependent leading edge is given in Fig. 2, in
which the experimental data from Martin and Moyce (1952) are
shown for comparison. In the figure, the non-dimensional time
T = t

√
2g/a and leading edgeX = x/a are used. The good

agreement between them is quite satisfactory.
Fig. 1 clearly shows that the instantaneous collapse of the dam

causes an abrupt change of the flow pattern, characterized by the
resulting unsteady motion. Computations by both the SPH and
MPS models indicate the formation of the shock on the right cor-
ner near the bottom as shown in Fig. 1 (b) at timet = 0.12 s
and the propagation of subsequent turbulence bores as shown
in Fig. 1 (c) at timet = 0.20 s. Almost the same flow patterns
have been obtained by both numerical methods. However, as can
be seen from Fig. 1 (c), the turbulence bore front simulated by
the MPS model is much more splashing and violent than that
obtained by the SPH. This is due to the use of different inter-
action models in the numerical schemes. The MPS interaction
model of Eq. (14) is much “stiffer” than the corresponding ker-
nel equation (13) employed by the SPH, in that it approaches an
infinite value as the distance between two particles becomes too
small. Thus it created a huge repulsive force to disperse particles.
Besides, according to Figs 1 and 2, in which the time-dependent
leading edge tends to be a straight line after the initial non-linear
increase, it can be roughly estimated that the stable turbulence
bore forms aroundT = 2.8 or t = 0.2 s. Also the bore veloc-
ity is estimated to be about 2.0 m/s. For engineering purpose,
a useful relationship can thus be established between these two
parameters and the dam heightH . For example, the bore velocity
is estimated by

√
2gH and the time of bore formation is around√

2H/g. Similar conclusions have also been reported in other
literatures (Monaghan, 1992).

In order to further disclose some important flow features of
the dam-break, the computed dynamic pressure contours by MPS
and turbulence eddy viscosity contours by SPH are shown in
Figs 3(a)–(c) and 4(a)–(c), respectively. Since the distribution
patterns from two numerical models are almost the same, the
results are presented here only for one of them. Dynamic pressure
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Figure 1 (a)–(c) Particle snapshots of dam-break flows at timet = 0.06, 0.12 and 0.20 s by SPH and MPS models.

Pd is the difference between the total pressure and hydrostatic
pressure and its value was normalized byρg in Fig. 3. Turbu-
lence eddy viscosityνt is a measurement of turbulence intensities
of the flow, which is also related to the turbulence energyk

(Gotoh et al., 2001b). In Fig. 4, its value was normalized by

the laminar viscosityν0 = 10−6 m2/s. From the pressure con-
tours in Fig. 3, it is shown that at the early stage of the dam-break
at timet = 0.06 s, the dynamic pressure is quite strong and glob-
ally distributed in the whole flow domain. The absolute value
of peak negative pressure is close to the total pressure. This is
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Figure 2 Comparisons between experimental and computational
time-dependant leading edges by SPH and MPS models.

due to the large downwards particle acceleration after the sudden
release of the right dam. As time goes on, the initial large acceler-
ation decreases and the pressure distributions gradually become
uniform at timet = 0.12 s. The large dynamic pressure is locally
concentrated near the initial dam-site and the amplitude of the
negative pressure is only 1/3 of its previous value att = 0.06 s.
After a stable turbulence bore forms att = 0.2 s, the pressure
distribution is almost hydrostatic everywhere and the influence
of dynamic pressure is so small as to be neglected. From the
above pressure analysis, another useful conclusion can be drawn
for practical purposes. The widely used shallow water equation
(SWE), which is based on the hydrostatic assumption and uniform
velocity over the depth, should be used with discretion when
addressing the dam-break problem, especially at the early stage.
SWE would be accurate enough during the later stages of the
dam-break flow after a stable turbulence bore has fully evolved,
which is characterized by the time scale of∼√

2H/g.
The capability of the incorporated SPS turbulence model to

deal with turbulence is shown in Fig. 4, in which the time-
dependant turbulence production and transportation processes
are illustrated. It shows that at the early stages of dam-break
at timet = 0.06 s, the turbulence is initiated and confined to the
right corner of the flow near the bottom. The turbulence level
is quite low, the peak value of which is only 300 times higher
than the laminar value. As time elapses on, the turbulence con-
vects with the flow front and its intensity also increases rapidly,
reaching two times higher at timet = 0.12 s than the previous
one. When a stable turbulence bore forms at timet = 0.20 s, the
high turbulence area is widely distributed inside the main flow
and the general turbulence intensity is between 500–1000 times
of that of the laminar flow. Based on the above findings, it is
concluded that the turbulence levels of the dam-break flow vary
significantly in both temporal and spatial domains. In the early
simulation of a similar problem by Shao and Lo (2003), only a
large constant viscosity was assumed throughout the simulation
without using an appropriate turbulence model. Thus it could not
treat this problem in a realistic way. Especially at the early stages
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Figure 3 (a)–(c) Dynamic pressure contours of dam-break flow (by
MPS model).

of the dam-break, the assumed large viscosity dampened the fluid
motion, thus causing delay to the prediction of dam-break disas-
ter. However, in the later stages of the dam-break after a stable
turbulence bore has formed, we believe that numerical models
employing a constant viscosity value would be accurate enough
for engineering purposes.
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Figure 4 (a)–(c) Turbulence eddy viscosity contours of dam-break flow
(by SPH model).

Conservation of mass or incompressibility provides a con-
vincing self-check on the accuracy of incompressible numerical
models. For the incompressible SPH and MPS models proposed
in the paper, a quantitative measurement of the conservation
of incompressibility is provided by evaluating the difference
of time-dependant particle densitiesρ(t) (or number density
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Figure 5 Time-dependant density errors by SPH and MPS computa-
tions.

n(t)) with the initial valueρ0 (or n0). It is calculated as the
averaged-density variation of all particles, normalized with
respect to the initial density, which is formulated by

ESPH
density(t) = 1

N

N∑
i=1

abs[ρi(t) − ρ0]/ρ0 (26)

EMPS
density(t) = 1

N

N∑
i=1

abs[ni(t) − n0]/n0 (27)

In an ideal computation, particles should be moved to posi-
tions to satisfyEdensity(t) to be zero at all times. However, it is not
applicable in the real situation and the local particle density error
cannot be avoided. This accumulation in the density error is not
beyond expectation. For any incompressible numerical scheme,
the resulting velocity divergence free or incompressibility is
achieved only within a spatial truncation error either by the
computer processor or by the numerical scheme itself. Errors
in particle positions will lead to density errors. Similar problems
were also reported in the SPH projection method by Cummins and
Rudman (1999). In a stable numerical computation, the particle
density errorEdensity(t) would also be expected to be stable.

For further analysis, the normalized time-dependant particle
density errorsEdensity(t) are shown in Fig. 5 based on the SPH
and MPS results. It is shown that the general accuracy of both
models is equally satisfactory in that the density error is within
the order of 10−4. The maximum density error occurs around
T ∼ 2.0 (just prior to the formation of turbulence bore) and then
decreases rapidly to near zero without accumulating. In addition,
comparisons of the density error between two numerical models
indicate that the peak density error from the MPS computation
is about 50% of that from the SPH result, which means that
the MPS conserves incompressibility better than the SPH. This
can be attributed to the use of different kernels or interaction
models. The infinite kernel of Eq. (14) employed by MPS is
more effective in suppressing particle density error as compared
with the finite kernel of Eq. (13) employed by SPH, which leads
to higher density error accumulations.
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6 Analysis of SPH and MPS numerical schemes

In this section, a series of numerical runs using different particle
spacing�X and time steps�t are carried out to determine the
order of convergence of the SPH and MPS models.

6.1 Numerical error with initial particle spacing �X

To evaluate the accuracy of the numerical scheme with particle
spacing�X, additional two runs with coarser and finer parti-
cle spacing are implemented, i.e.,N = 10 × 20 and 40× 80,
respectively, corresponding to a particle spacing of 0.01 and
0.0025 m, as compared with the initial run with particle number
of N = 20× 40 and particle spacing of 0.005 m. The time step
�t is maintained at 0.0004 s throughout all runs for consistency.
The normalized leading edge and time for the original and two
additional runs are plotted in Fig. 6 (a) and (b) for SPH and MPS
computations, respectively. It is shown clearly that in both cases
the tendency of curves approaches an asymptotic line as the par-
ticle spacing�X becomes smaller, i.e., the particle numberN
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Figure 6 (a) Order of convergence with particle spacing�X using
different SPH runs. (b) Order of convergence with particle spacing�X

using different MPS runs.

becomes larger. However, the convergence rate of the MPS runs
seems to be slower than that of the SPH.

Since neither the converged nor the exact solution is known,
the order of convergence can be quantitatively determined only
through the differences among three numerical trials. A simi-
lar approach was also employed by Ogami (1999) to analyze
a Lagrangian scheme for compressible flow. According to his
proposal, the numerical errorE�x of any run with the accu-
rate solution is proportional to a function of the particle spacing
(�X)CR, whereCR is the order of convergence. Thus the fol-
lowing relationship can be approximately established to relate
the numerical error with particle spacing as

E10×20 − E20×40

E20×40 − E40×80
≈ (�X10×20)

CR − (�X20×40)
CR

(�X20×40)CR − (�X40×80)CR
(28)

According to the design of numerical runs, it has

�X10×20 = 2�X20×40 = 4�X40×80 (29)

Thus Eq. (28) is simplified to

E10×20 − E20×40

E20×40 − E40×80
≈ 2CR (30)

In order to calculate the numerical differences between two
adjacent runs, the following sampling method is applied to Fig. 6

E10×20 − E20×40 = Xs
10×20 − Xs

20×40 (31)

E20×40 − E40×80 = Xs
20×40 − Xs

40×80 (32)

whereXs
10×20, X

s
20×40 andXs

40×80 are sample values of the leading
edgeX and the sample pointss are uniformly distributed along
the horizontal time axis. Each sample point corresponds to a
specifiedCR. We can use enough points to get a series ofCR and
then take the mean value to represent the order of convergence.

By using 100 points from Fig. 6 (a) and (b), the mean value
of CR is calculated to be 1.25 for the SPH and 0.95 for the MPS.
Thus the accuracy of SPH numerical scheme is represented by
O(�X1.25). This conclusion is also consistent with the theoret-
ical analysis by Monaghan and Kos (1999), who suggested that
the error from the SPH integral interpolant is about the order
of O(�X2). But further error is introduced when the integral
interpolant is replaced by the summation interpolant as shown in
various SPH formulations. Also in developing the Laplacian and
viscosity equations (21) and (22), a first-order finite difference
scheme was incorporated. Thus the total accuracy of the proposed
incompressible SPH model would be expected to be lower than
the theoretical value ofO(�X2). On the other hand, the mean
value ofCR calculated from Fig. 6 (b) indicates that the accu-
racy of the current MPS numerical scheme is aroundO(�X).
Although the MPS computations have lower density errors as
shown in Fig. 5, its spatial accuracy lags behind the SPH scheme,
which employed highly accurate integral interpolants.

6.2 Numerical error with time step �t

For checking the accuracy of the numerical scheme with time
step �t, another additional two runs with finer time steps
�t = 0.0002 and 0.0001 s are carried out, in comparison with
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Figure 7 (a) Order of convergence with time step�t using different
SPH runs. (b) Order of convergence with time step�t using different
MPS runs.

the initial run with�t = 0.0004 s. In all runs the particle spacing
�X = 0.005 m is kept unchanged, i.e., the particle number is
N = 20× 40. The normalized leading edge and time are given
in Fig. 7 (a) and (b) for the SPH and MPS runs, respectively. The
convergence of the numerical results with the halved time step is
very obvious.

To determine the convergence rate, a similar analysis as
employed in the previous section is used. If we assume that the
numerical errorE�t of any run with the accurate solution is pro-
portional to a function of(�t)CR, a relationship analogous to
Eq. (30) can be established to relate the numerical errors to time
step as

E0.0004− E0.0002

E0.0002− E0.0001
≈ 2CR (33)

Again by using 100 points from Fig. 7 (a) and (b), the mean
value ofCR is calculated to be 0.97 and 0.98 for the SPH and
MPS computations, respectively, suggesting that the numerical
accuracy of both models is aboutO(�t) in temporal domain.
This finding is consistent with the formulations of SPH and MPS
equation solvers, in that the pressure projection is performed
at intermediate particle positionsr∗ which were found from an

O(�t) integration of velocityu through Eq. (7). Besides, the
particle is updated to its corrected position by Eq. (10), which
is also first-order accurate in time. Thus the general accuracy of
both numerical schemes should be aroundO(�t).

Finally it should be noted that Fig. 6 (a) and (b) and the like
clearly show the different sequences of three curves. For exam-
ple, in Fig. 6 (a) for the SPH result, theN = 40× 80 curve is
above theN = 20×40 curve but theN = 10×20 curve is below.
While with regard to the MPS runs in Fig. 6 (b), the sequence of
three curves is just the opposite. This is attributed to the differ-
ences in the direction of convergence in two methods. The MPS
converged to the final solution (which could be represented by the
experimental data in the figures) in the downward direction while
the SPH converged to the final solution in the upward direction.
The same explanation is also applicable to Fig. 7.

7 Validation of SPS turbulence model

In order to fully demonstrate the robustness of the incorporated
LES SPS turbulence model as well as the accuracy of SPH and
MPS numerical schemes, a solitary wave breaking on the beach is
used as another convincing test. Solitary wave breaking is also an
important practical problem relevant to tsunami hazard mitigation
in coastal regions. In this section, the laboratory breaking solitary
wave data from Synolakis (1986) is used for verification.

The basic parameters are summarized here. In the experiment,
the still water depthd varied from 0.21 to 0.29 m and the incident
wave height wasH/d = 0.28. The wave broke and ran up on a
mild 1 : 20 slope. In the SPH and MPS simulations, the compu-
tational domain starts at a distance of 3.0 m upstream of the toe
of the beach and extends to the location beyond the maximum
runup point. Considering the spatial resolution, the still water
depth ofd = 0.29 m is selected. The initial particle spacing is
�X = 0.01 m and thus at least 29 particles are distributed along
each of the vertical lines in the main flow area. Totally about
N = 18, 000 particles are used in the simulations. The time step
�t is automatically adjusted to achieve computational efficiency
and meanwhile, to satisfy the stability requirement. To be consis-
tent with the experimental results, the time scale was normalized
to t(g/d)1/2 and the water surface elevation was normalized to
η/d. The initial solitary wave profile was produced according to
Monaghan and Kos (1999).

In order to improve the computational accuracy in the near-
wall region and swash zone where the wave runs up and down,
a simple wall function is used to relate the velocity at the com-
putational particles closet to the bed to the instantaneous shear
stress at the bed. A quadratic resistant law based on a logarithmic
velocity profile is used in the paper, similar to that presented by
Christensen and Deigaard (2001) in their 3-D LES computations
of plunging and spilling breakers.

The computed wave profiles by SPH and MPS models are
shown in Fig. 8 (a)–(d), corresponding to the events of wave
pre-breaking at timet(g/d)1/2 = 15, breaking att(g/d)1/2 =
20, post-breaking att(g/d)1/2 = 30 and maximum runup
at t(g/d)1/2 = 45, respectively. The experimental data from
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Figure 8 (a)–(d) Experimental and computational wave profiles by SPH and MPS models.

Synolakis (1986) are given for comparison. Once again, the
good agreement between them verifies the accuracy of the pro-
posed particle models for tracking free surfaces with less or no
numerical diffusion. The maximum runup height in Fig. 8 (d)
calculated by both SPH and MPS models is about 0.45d, which
is quite close to the numerical results of 0.48d reported by Lin
et al. (1999), using a RANS approach. This suggests that parti-
cle models could give out good results in the region where there
is not sufficient number of particles on condition that a suitable
treatment procedure is implemented. It is also seen that MPS
computations always overestimate the height of wave profiles as
compared with the SPH results. This is due to the employment
of different particle interaction models as had been illustrated in
the previous section.

In the computations, no obvious reflections of the wave from
the slope are observed. This phenomenon is completely differ-
ent from the reflections of a non-breaking solitary wave running
up the beach, in which the reflection is continuous and quite
strong. One of the main reasons is that the breaking solitary wave
dissipates out much of the wave energy during the breaking pro-
cess, while there is no significant energy loss in a non-breaking
solitary wave.

In order to give some proofs to support this assumption,
the computed time sequences of turbulence energy intensities

(2k)1/2/c (which have been normalized by the phase velocity of
solitary wave in constant depth) by two numerical models are
plotted in Fig. 9 (a)–(d). It is shown that the small scale turbu-
lence begins to appear near the wave front prior to breaking at time
t(g/d)1/2 = 15. The turbulence intensity increases to the peak
level during the breaking att(g/d)1/2 = 20, when the high turbu-
lence area is widely distributed in the wave front and thus the wave
energy is significantly dissipated by this process. Later the broken
wave runs up the slope and the remaining turbulence energy has
been gradually dampened out by the mean flow att(g/d)1/2 = 30.
When the wave tongue reaches its maximum runup height at
t(g/d)1/2 = 45, the overall turbulence level is close to zero
and only very small scale turbulence emerges near the still-water
shore line. This indicates that the lower part of wave front had
already begun to retreat and therefore, producing slightly higher
turbulence levels. The similar turbulence production, transporta-
tion and dissipation processes have also been reported in detail by
Lin et al. (1999), who solved the RANS equations coupled with
a k–ε model. Besides, the general turbulence evolution features
computed by both SPH and MPS models are analogous to each
other. This is not beyond expectation since the same turbulence
model is coupled to the two numerical solvers.

Finally it should be pointed out that the spatial resolution in
the above SPH and MPS runs is still not fine enough so that
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Figure 9 (a)–(d) Computed turbulence intensity distributions of breaking wave by SPH and MPS models.

the real essence of LES modeling has not been fully explored.
Nonetheless, the good agreement of turbulence evolutions with
those obtained by Linet al. (1999) demonstrates that the LES
modeling is a fairly promising approach in that the computa-
tional effort is reduced since there is no need to solve additional
turbulence transportation and dissipation equations.

8 Conclusion

The paper presented the SPH and MPS methods for simulating
free surface flows. The two particle models solve the Lagrangian
form of N–S equations and track free surfaces simply and accu-
rately by particles without numerical diffusion. A series of
numerical runs using different particle spacing and time steps for
a dam-break simulation show that the spatial and temporal accu-
racy of the SPH numerical scheme isO(�t + �X1.25) and it is
O(�t+�X) for the MPS scheme. In addition, the computed tur-
bulence evolution patterns from a wave-breaking simulation indi-
cate that the incorporated LES SPS turbulence model provides
an effective tool to address turbulence issues in wave dynamics.
Computationally, the advantages of the proposed SPH and MPS
models lie in that they are easy to program. The dam-break runs
were finished within 30 min and the wave breaking runs were
finished within 3 h using a CPU 2.2 G and RAM 1.0 G PC.

Future work is needed to quantitatively validate the SPS turbu-
lence model. Besides, the particle modeling conceptions should
be extended into two-phase flows to study sediment motion under
the breaking wave.
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Notation

a = Dam width
c = Wave phase celerity

CR = Order of convergence
Cs = Smagorinsky constant
d = Constant water depth
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Dim = Number of spatial dimensions
Edensity= Normalized density error

E�t = Numerical error with time step
E�X = Numerical error with particle spacing

g = Gravitational acceleration
H = Dam height or wave height
k = Turbulence energy
m = Particle mass
n = Particle number density

n0 = Initial number density
N = Number of particles
P = Pressure
Pd = Dynamic pressure

r = Distance between particles
r = Position vector
re = Kernel range or interaction distance

|S̄| = Local shear rate
Sij = Element of strain tensor
T = Normalized time
u = Velocity vector
w = Vertical velocity of surface particle
X = Normalized leading edge
δij = Kronecker operator
�t = Time increment
�u = Changed velocity
�X = Initial particle spacing

η = Water surface elevation
λ = Diffusion coefficient
ν0 = Laminar viscosity
νt = Turbulence eddy viscosity
ρ = Fluid density

ρ0 = Initial density
τij = Element of stress tensor
⇒
τ = Sub-particle scale stress tensor
ω = Kernel function or interaction model

Subscripts and symbols

a = Reference particle
b = Neighboring particle

ab = Values between particlea andb

s = Sample point
t = Time
∗ = Intermediate value

∗∗ = Corrective value
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