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Turbulence Regeneration in Pipe Flow at Moderate Reynolds Numbers
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We present the results of an experimental investigation into the nature and structure of turbulent pipe
flow at moderate Reynolds numbers. A turbulence regeneration mechanism is identified which sustains a
symmetric traveling wave within the flow. The periodicity of the mechanism allows comparison to the
wavelength of numerically observed exact traveling wave solutions and close agreement is found. The
advection speed of the upstream turbulence laminar interface in the experimental flow is observed to form
a lower bound on the phase velocities of the exact traveling wave solutions. Overall our observations
suggest that the dynamics of the turbulent flow at moderate Reynolds numbers are governed by unstable
nonlinear traveling waves.
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Turbulent shear flows have been a major focus of fluid
dynamics research since the classical experiments of
Reynolds [1]. Flows such as that of a fluid down a straight
pipe are known to become turbulent at large enough flow
rates. Stability theory, on the other hand, suggests [2] that
laminar pipe flow is stable to infinitesimal perturbations
for all values of the nondimensionalized flow rate, the
Reynolds number Re. (Here Re � UD=�, where U is the
mean velocity, D is the diameter of the pipe, and � is the
kinematic viscosity of the fluid.) Similar observations have
been made in related shear flows such as Couette [3–5],
Poiseuille, and boundary layer flows where turbulence sets
in despite linear stability [2] or the linear instability mecha-
nism can be bypassed. Understanding the transition sce-
nario and the nature of the resulting turbulent flows is one
of the greatest challenges in fluid dynamics.

A process which is believed to be of relevance for
transition in shear flows is the so called lift-up mechanism
[6]. Here streamwise vortices of relatively small magnitude
transport low momentum fluid away from the wall and high
momentum fluid towards the wall creating strong anoma-
lies in the velocity profile, so-called low- and high-speed
streaks (elongated regions of low or high streamwise ve-
locity with respect to their surroundings). During this
process the initial perturbation amplitude can grow sub-
stantially. Since the mechanism is of a linear nature, in
linearly stable flows eventually all perturbations will de-
cay. However it is assumed that once the perturbation has
reached a sufficiently large amplitude nonlinear effects
will become important and lead to secondary instabilities.
The mathematical reason for the transient growth of initial
perturbations is the non-normality of the linearized Navier-
Stokes operator and this mechanism has attracted consid-
erable attention [7–9].

In more recent studies the relevance of nonlinear effects
and, in particular, the role of nonlinear solutions has been
discussed [10,11]. Such solutions have been calculated for
Couette and Poiseuille flow [12–16] and more recently
also for pipe flow [17,18]. These new flow states arise at
finite values of the control parameter (Re) and in the case
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of pipe flow they take the form of traveling waves (TWs),
which are coherent flow structures propagating at a con-
stant phase speed in the streamwise direction. Typically
these TW solutions are unstable so that the laminar flow
state remains the only stable solution. In analogy to ob-
servations in low dimensional models [19,20] it has been
suggested that as the Reynolds number is increased further
the unstable states undergo secondary bifurcations and
form an attracting region in phase space which gives rise
to turbulent dynamics. The basin of attraction of the tur-
bulent state grows with increasing Reynolds number, so
that smaller and smaller perturbations are sufficient to
destabilize the laminar flow.

Confirmation of this picture has been provided by recent
experiments in pipe flow where transients of unstable TWs
have been observed that are in close agreement with the
numerical solutions [21]. Further experimental investiga-
tions have demonstrated that the stability boundary be-
tween the laminar and the turbulent flow indeed de-
creases [22–24], which supports the view of a diminishing
basin of attraction of the laminar state.

A self-regeneration cycle for such TW and periodic
solutions has been proposed by Hamilton et al. and
Waleffe [25,26]. In the initial step, streamwise vortices
create streaks essentially through the lift-up mechanism
discussed above. This configuration of low- and high-
speed streaks is inflexionally unstable, leading to a wavy
modulation of the streaks in the streamwise direction.
Finally, the nonlinear development of the streak insta-
bility regenerates streamwise vortices, closing the feed-
back loop. This self-sustaining process (SSP) was first
observed by constraining a turbulent flow to a small com-
putational box with periodic boundary conditions [25]
which resulted in the spontaneous formation of the above
described three-dimensional vortex streak configuration.
Similarly in a numerical study of turbulence in a mini-
mal flow unit [27,28] a TW consisting of a wavy streak
aligned by streamwise vortices was identified in a wall
shear flow. Wavy streaks sandwiched between counter-
rotating streamwise vortices have also been observed by
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FIG. 1 (color online). Traveling wave transient observed in a
turbulent slug at Re � 3000. The frames are separated by 0.2 s,
which corresponds to a spatial separation of 0.18 D. The color
scheme represents the streamwise velocity component. Instead
of subtracting the laminar profile (LP) from the streamwise
component as in previous studies [17,21] we have here chosen
to subtract 0:5LP� 0:5TP, where TP is the time averaged
turbulent profile at Re � 3000. We found that this visualization
method resolves the streaks in the near wall region more clearly
than subtraction of the laminar profile alone. The cross-stream
components are indicated by the arrows.
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Brandt et al. [29] during the transition process in boundary
layers.

In this Letter we present the first experimental observa-
tion of the self-regeneration cycle in a turbulent shear flow.
Whereas all previous observations of this cycle were made
in numerical confinements with periodic boundary condi-
tions, in our study no periodicity is imposed on the system.
In additional measurements we relate the advection speed
of macroscopic turbulent structures such as turbulent puffs
and slugs to the phase speed of TWs.

A detailed description of the experimental setup can be
found in [21,30]. The measurements were carried out in a
26 m long pipe made of 2 m long perspex sections with an
inner diameter of 4 cm. The working fluid was water and
the flow was driven by a pump. A smooth contraction in
combination with several screens and meshes at the pipe
entrance ensured that the flow could be kept laminar up to
Re � 60 000 [23]. The laminar flow was perturbed
450 pipe diameters downstream of the inlet, where the
laminar profile was fully developed. The perturbation con-
sisted of a water jet which was injected perpendicularly to
the mean flow through a 1 mm hole in the pipe wall.
Velocity and duration of the jet were controlled by a
syringe pump. Typically amplitudes were chosen suffi-
ciently large to cause transition to turbulence. The so-
created turbulent region was investigated a further
150 pipe diameters downstream with a stereoscopic high-
speed particle image velocimetry (PIV) system. Here a
cross-sectional plane of the pipe is illuminated with a laser
light sheet using a pulsed Nd:YLF laser and this plane is
viewed with two 1000 Hz cameras positioned in forward
scatter on opposite sides of the light sheet at 45� to the
observation plane. For visualization purposes the water
was seeded with 10 �m spherical particles. During a single
PIV measurement each camera records two images 3 ms
apart. The displacement of the tracer particles between the
two recorded images allows the reconstruction of the in-
plane velocity field. The additional information gained
from the second camera angle enables us to also determine
the out-of-plane component so that the full three compo-
nent velocity field in the measurement plane is obtained
[31]. In the first measurement reported here a turbulent
region at Re � 3000 is investigated. The turbulent struc-
tures found in this Reynolds number regime are called
turbulent slugs [32]. They travel in the downstream direc-
tion at approximately the bulk flow speed, which is 7 cm=s.
The sampling rate of the PIV system was set to 250 Hz.
Hence approximately 140 independent PIV measurements
were recorded while the turbulent slug was advected by a
nondimensional distance of 1 pipe diameter in the stream-
wise direction. Since the advection speed of the turbulent
region is approximately 10 times larger than the cross-
stream components, changes in the velocity field due to
the turbulent motion are small over the observation time
(approximately 2 s). Consequently, the time spacing of the
measurements can be converted into a spatial separation in
the mean flow direction (Taylor’s hypothesis) allowing the
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full spatial reconstruction of the turbulent structure. Four
velocity fields in the cross-sectional plane measured during
the passage of the turbulent slug are shown in Fig. 1. The
colors indicate the relative streamwise velocity (see figure
caption for details) and high- and low-speed streaks are
shown in red (dark gray) and blue (gray). The arrows depict
the cross-stream velocities. The four cross sections shown
in Fig. 1 are separated by 0.1 s, which, based on the bulk
flow speed, corresponds to a spacing of 0.18 pipe diame-
ters. Four elongated high-speed streaks can be observed
close to the pipe wall and a low-speed streak region domi-
nates the central part of the pipe. The streak configuration
is approximately symmetric to a rotation by 180� with
respect to the central point. The rotational symmetry of
the streak structure in the cross-sectional plane and the
dynamics of the low-speed streaks in the streamwise di-
rection are characteristic for a TW. Two distinct low-speed
streak arms are distinguishable, which initially point out-
wards from the pipe center in the horizontal direction.
They subsequently undergo an antisymmetric up and
down motion while the high-speed streaks essentially re-
main in the same position. This dynamical behavior is in
excellent qualitative agreement with that reported for the
numerically observed TWs [17,18]. The reconstruction of
the three-dimensional streak structure is shown in Fig. 2.
Again high-speed streaks are shown in red and low-speed
streaks in blue and the periodic modulation of the low-
speed structure corresponding to the up and down motion
of the left streak in Fig. 1 is clearly observable here. As
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discussed above, the streamwise periodic modulation
manifests the wavy instability of the streak, which is an
essential part of the SSP. In Fig. 3 the same streak is
displayed together with the streamwise vorticity. As sug-
gested in the turbulence regeneration cycle, the streak is
sandwiched between two counter-rotating streamwise vor-
tices, which are shown in yellow and red. A second pair of
streamwise vortices aligns the streak approximately 0.7 D
further downstream. The periodicity of the vortices con-
firms the regeneration of the streamwise vorticity by the
wavy instability of the streak and closes the feedback loop
of the SSP. Overall, Fig. 3 is in very close agreement with
the streak instabilities observed in the numerical studies
[14,28]. From the periodic modulation of the streak and the
streamwise vortices the wavelength of the TW can be
estimated to approximately 0.75 D. This value is well
within the bandwidth of wavelength observed for twofold
or fourfold waves in the numerical studies [17,18].

A further test of the relevance of TWs to turbulent shear
flows can be sought in a comparison of the phase speed of
such TWs to the typical advection speeds observed for
macroscopic turbulent structures. Depending on the
Reynolds number two different turbulent structures are
found in transitional pipe flow, turbulent slugs and puffs
[32]. The former occur at Re> 2600 and the latter are
observed for Re< 2600. The main difference between the
two is that slugs have a sharp laminar turbulence interface
at their leading edge and at their trailing edge; for puffs
only the trailing interface is sharp. Here we concentrate on
FIG. 2 (color online). Reconstruction of the three-dimensional
streak structure of the traveling wave. High and low-speed
streaks are shown in red and blue, length units are in milimeters.
The blue low-speed streak undergoes a wavy instability. The
overall three-dimensional structure is in excellent agreement
with that of similar traveling wave solutions observed in nu-
merical simulations [18].
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the advection speed of the trailing edge (i.e., the upstream
laminar turbulence interface), which is the slowest part of
these turbulent structures. Whereas in previous studies it
has been reported that the trailing edge travels at velocities
slower than the mean velocity [32], the phase speeds
reported for TW solutions are typically larger than the
mean velocity. Our measurements of the trailing edge
velocity are represented by the square and circular symbols
in Fig. 4, whereas the triangles correspond to the data of
previous experimental studies [32]. In our measurements
the experimental procedure was again to create localized
regions of turbulence by injection of a jet. Subsequently,
the center line velocity was monitored with a laser doppler
anemometer several hundred pipe diameters downstream.
Each data point represents the average over 10 realizations
of a turbulent puff or slug. The advection velocities were
determined from the time that passed between the pertur-
bation and the passage of the trailing edge of the puff at the
measurement point. The distance between the perturbation
and the measurement location was 300 D in the experi-
ments presented by the (green) circles and 150 D for these
presented by the (red) squares. For Re> 2000 both data
sets show very close agreement indicating that the trailing
edge travels at a constant speed downstream. The data are
also in good agreement with the previous measurements
[32] presented by the (blue) triangles in Fig. 4. Whereas
previous studies did not extend below Re � 2000, here we
find that the advection speeds of the turbulent puffs indeed
becomes larger than the bulk velocities for Re< 2000.
Below Re, 1800 turbulence is not sustained but can only
FIG. 3 (color online). Three-dimensional reconstruction of the
wavy low-speed streak and the streamwise vorticity. The wavy
streak (blue) is sandwiched between counter-rotating streamwise
vortices (yellow and red). Positive and negative vorticity is
shown in yellow and red. The periodicity of the wave is evident
from the wavy streak as well as from the vorticity field.
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FIG. 4 (color online). The data points give the speed of the
trailing edge of turbulent puffs and slugs as a function of Re (see
text for details). The curves show the phase speed of the traveling
wave solutions at their optimal wavelength as observed by
Wedin and Kerswell [18]. The numbers denote the n-fold rota-
tional symmetry of the respective TWs. Velocities are normal-
ized by the bulk/mean velocity.
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be observed in transients. In agreement with numerical
studies [19] we observed that the lifetimes of these tran-
sients (i.e., the distance they travel downstream before they
decay) decreases with decreasing Re. We also observed
that the propagation of these transients increases towards
the end of their lifetime. We have marked the propagation
speeds measured for the three lowest Reynolds numbers
investigated with error bars. Here the actual data point in-
dicates the measured mean velocity over a distance of
62 D, the lower end of the error bar shows the speed mea-
sured over the first 37 D and the upper end the speed over
the last 25 D. The curves superimposed on the data show
the phase speeds of the traveling waves observed numeri-
cally [18]. Especially at the lower Reynolds numbers, the
data points accurately mark the line of minimum phase
speeds of the TWs at their optimal wavelength. Overall the
speed of the trailing edge of puffs and slugs forms a lower
bound for the phase speeds of the TWs observed so far.
This observation is in line with the suggestion that unstable
TWs provide the building blocks for these turbulent flow
structures. Further experimental and numerical studies are
necessary to clarify if turbulent puffs and slugs can be in-
terpreted as wave packages of nonlinear TWs. Since it is
likely that many other TW solutions exist it will be inter-
esting to observe if their phase speeds will also lie above
the limit set by the advection speeds of puffs and slugs.

In conclusion we observed a turbulence sustaining
mechanism which has previously only been identified in
numerical calculations and which is believed to be of
relevance to transition [29] and energy regeneration in
shear flows [14,25,28]. This mechanism was identified as
part of a traveling wave transient in the turbulent flow. Our
measurement of the advection speed of turbulent puffs
suggests that the speed of the upstream laminar turbulence
interface is related to the phase speed of the slowest
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relevant TW. Overall our observations support the propo-
sition that turbulent pipe flow is organized around unstable
nonlinear traveling waves.
2-4
*Present address: Nonlinear and Liquid Crystal Physics
Group, School of Physics and Astronomy, Brunswick
Road, University of Manchester, Manchester M13 9PL,
United Kingdom.
Electronic address: bjorn@reynolds.ph.man.ac.uk

†Electronic address: J.Westerweel@wbmt.tudelft.nl
‡Deceased.

[1] O.Reynolds,Philos.Trans.R.Soc.London174, 935 (1883).
[2] P. Drazin and W. Reid, Hydrodynamic Stability

(Cambridge University Press, Cambridge, England, 1981).
[3] N. Tillmark and P. H. Alfredsson, J. Fluid Mech. 235, 89

(1992).
[4] F. Daviaud, J. Hegseth, and P. Bergé, Phys. Rev. Lett. 69,
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