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Abstract. We investigate the relative dispersion properties of the well-mixed class of
Lagrangian stochastic models. Dimensional analysis shows that, given a model in the class,
its properties depend solely on a non-dimensional parameter, which measures the rela-
tive weight of Lagrangian-to-Eulerian scales. This parameter is formulated in terms of
Kolmogorov constants, and model properties are then studied by modifying its value in a
range that contains the experimental variability. Large variations are found for the quantity
g∗ =2gC−1

0 , where g is the Richardson constant.
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1. Introduction

Relative dispersion is a process that depends on the combination of the
Eulerian and Lagrangian properties of turbulence. If particle separation
falls in the inertial subrange, the Eulerian spatial structure affects the
dispersion, which can be regarded as a Lagrangian property (Monin and
Yaglom, 1975). The combination of these properties requires that both
descriptions be considered (see e.g., Boffetta et al., 1999).

Lagrangian Stochastic Modelling (LSM) is one turbulence represen-
tation that naturally combines Eulerian spatial structure and Lagrang-
ian temporal correlation. In fact, as formulated by Thomson (1990)
using the well-mixed condition (WMC), Lagrangian and Eulerian sta-
tistics are accounted for through the second-order Lagrangian structure
function and the probability density function (pdf) of Eulerian velocity.
Several studies prove that this approach leads to the qualitative repro-
duction of the main properties, as expected from the Richardson the-
ory (see, Thomson, 1990; Reynolds, 1999; Sawford, 2001, among others).
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Furthermore, recent experimental studies seem to confirm the validity of
the Markovian assumption for the velocity (Porta et al., 2001, Renner
et al., 2001; Mordant et al., 2001).

However, the intrinsic non-uniqueness of the WMC formulation (see,
e.g., Sawford, 1999) and the indeterminacy of the Kolmogorov constants
(see, e.g., Sreenivasan, 1995; Anfossi et al., 2000, for reviews) do not
allow for a completely reliable representation of the process. In particular,
the value of the Richardson constant g predicted by previous studies is
not uniquely determined (see, among others, Thomson, 1990; Borgas and
Sawford 1994; Kurbanmuradov, 1997; Reynolds, 1999). Whether this inde-
termination is a result of the different formulation of models, or of the
different values of the parameters adopted, is still unclear, and no system-
atic studies have been performed so far.

However, it is worth noting that variations of the model constants pro-
duce significant variability. As an example, Borgas and Sawford (1994,
hereafter BS94) present the variation of g with the Lagrangian Kolmogorov
constant C0. Moreover, some of the BS94 results are in disagreement with
an upper limit 2C0 for g whose existence is claimed by Thomson (1990)
and by Borgas and Sawford (1991, hereafter BS91), and which is consistent
with the Novikov (1963) arguments.

The aim of the present study is to investigate some general properties
of models based on the WMC with regard to inertial subrange rela-
tive dispersion features and to shed light on the variability of g with
turbulence parameters. In Section 2, the properties of the WMC are
highlighted through a dimensional analysis, while the limit for vanishing
spatial correlation is studied in Section 3. Subsequently a model formula-
tion is discussed in Section 4, and results analysed in Section 5.

2. The Non-Dimensional Form of the Well-Mixed Condition

Following the logical development of Thomson (1987), Thomson (1990,
here-after T90) extended the method for the selection of single parti-
cle LSM to models for the evolution of particle-pair statistics. In the
latter models, the state of a particle pair is represented by the joint
vector of position and velocity (x,u) ≡ (x(1),x(2),u(1),u(2)), where the
upper index denotes the particle, whose evolution is given by the set
of Langevin type equations (LE) (with implied summation over repeated
indices):

dxi =ui dt, (1a)

dui =ai(x,u, t)dt +bij (x, t)dWj(t), (1b)
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where i, j = 1, . . . ,6. The coefficients a and b are determined, as usual,
through the well-known WMC (Thomson, 1987) and the consistency with
the inertial subrange scaling, respectively. Further details are not given
here, in that they are well established and widely used in the literature (see,
e.g., Sawford, 2001, for a review). From now on, bij =√

C0εδij , where ε is
the mean dissipation rate of turbulent kinetic energy, will be used accord-
ing to the usual scaling of Lagrangian structure function (Thomson, 1987).

It should be remembered here that the WMC is satisfied by constrain-
ing the Fokker–Planck equation associated with Equation (1) (see, e.g.,
Gardiner, 1990) to be consistent with the Eulerian probability density func-
tion of the flow. In the case of particle pairs the considered pdf is the
one-time, two-point joint pdf of x(i) and u(i), i = 1,2, accounting for the
spatial structure of the turbulent flow considered. The open question about
the non-uniqueness of the solution in more than one dimension (see, e.g.,
Sawford, 1999) is not addressed here. However, it will be clear that the
following dimensional analysis is independent of the particular solution
selected although it cannot be excluded whether quantitative results are
also independent.

In order to highlight the effect of turbulence features on the model for-
mulation, characteristic scales for particle-pair motion must be identified.
Because the process of relative dispersion has to deal with both Euleri-
an and Lagrangian properties (see, e.g., Monin and Yaglom, 1975 p. 540),
such scales can be defined by considering the second-order Eulerian and
Lagrangian structure functions, i.e.,

〈�v2
i 〉=CK(ε�x)2/3, (2)

for Eulerian velocity v for a separation �x =||�x||, according to the stan-
dard Kolmogorov (1941) theory (hereinafter K41), and

〈�u2
i 〉=C0(ε�t), (3)

for Lagrangian velocity u (see, e.g., Monin and Yaglom, 1975), where �vi =
vi(x + �x) − vi(x) and �ui = ui(t + dt) − ui(t). A length scale λ can be
defined in the Eulerian frame, so that in the inertial subrange (namely, for
η ��x �λ where η is the Kolmogorov microscale) the structure function
for each component may be written as

〈�v2
i 〉=2σ 2

(
�x

λ

)2/3

, (4)

where σ 2 =〈||v||2〉/3, which, together with Equation (2), provides a defini-
tion for λ.

A Lagrangian time scale τ can be defined in a similar way using Equa-
tion (3) and the Lagrangian version of Equation (4). Thus, for τη � t � τ ,
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one has

〈�u2
i 〉=2σ 2 �t

τ
, (5)

from which one can retrieve the known relationship

ε = 2σ 2

C0τ
, (6)

suggested by Tennekes (1982). It should be observed that scales for the
inertial subrange, at variance with their integral version, can be defined
independently of non-homogeneity or unsteadiness, provided that the scales
of such variations are sufficiently large to allow an inertial subrange to be
identified. As far as the velocity is concerned, σ can be recognised as the
appropriate scale of turbulent fluctuations in both descriptions.

The quantities σ , λ and τ form a non-dimensional parameter

β = στ

λ
= C

3/2
K√
2C0

, (7)

the last equality being based on the combination of Equations (2) and (3)
with (4) and (5). The parameter β can be recognised as a version of the
well-known Lagrangian-to-Eulerian scale ratio. The approach adopted here
illustrates its connection to fundamental constants of the K41 theory.

Using λ as a scale for spatial variables when an argument of Euleri-
an functions, the non-dimensional variable xE can be defined. However,
στ can be considered as a more relevant scale for Lagrangian processes
and thus the non-dimensional Lagrangian position will be defined as xL =
β−1xE. Furthermore, the quantities σ and τ will be used to render velocity
and time non-dimensional, respectively.

In non-dimensional form, Equation (1) reads

dxLi
=uidt, (8a)

dui =ai(xE,u, t)dt +
√

2dWi (8b)

where, with a change of notation with respect to Equation (1), all the
quantities involved are without physical dimensions.

The associated Fokker–Planck equation is

∂pL

∂t
+βui

∂pL

∂xEi

+ ∂aipL

∂ui

= ∂2pL

∂ui∂ui

, (9)

where pL is the pdf of the Lagrangian process described by Equation (8)
for some initial conditions. Using the WMC, a can be written as

ai = ∂ ln pE

∂ui

+φi, (10)
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where

∂φipE

∂ui

=−∂pE

∂t
−βui

∂pE

∂xEi

, (11)

and pE is the Eulerian one-time, two-point joint pdf of x and u.
An advantage of this choice of scales emerges clearly in Equation (9).

It shows that, given a Eulerian pdf, once the non-uniqueness problem is
removed by selecting a suitable solution to Equation (10), or applying a
further physical constraint to Equation (11) (Sawford, 1999), any solu-
tion of Equation (9) will depend on one parameter only, namely on the
Lagrangian-to-Eulerian scale ratio. It can also be observed that this depen-
dence is completely accounted for by the non-homogeneity term, which
is an intrinsic property of the particle pair dispersion process in spatially
structured velocity fields.

In looking for the universal properties of pair-dispersion in the inertial
subrange, it is useful to rewrite the Richardson t3 law in non-dimensional
form, i.e., 〈�x2

L〉=g∗t3 where g∗ =2g/C0. Equations (8) and (9) show that
the numerical value of the ‘normalised’ Richardson constant g∗ depends on
β only. This dependence is investigated in the following Sections to high-
light the intrinsic properties of the LSM.

3. The Spatial Decorrelation Limit

In the limit β → ∞, corresponding to a vanishing Eulerian correla-
tion scale, the WMC solution reduces to an homogeneous process (see
Appendix). In particular, selecting a Gaussian pdf will give the Ornstein–
Uhlenbeck (OU) process. Although the absence of a spatial correlation
contradicts the intimate nature of turbulence, the OU process has some-
times been used to describe relative dispersion processes in turbulent flows,
for instance by Gifford (1984), who pioneered the stochastic approach to
atmospheric dispersion. The Novikov (1963) model and the NGLS model
(Thomson, 1990, p. 124) are simple applications of this concept.

The OU process equivalent to Equation (8) is described by the non-
dimensional set of linear LE

dxLi
=ui dt, (12a)

dui =−uidt +
√

2 dWi, (12b)

where i =1, . . . ,6. The equations for the relative quantities (�ui,�xLi
) can be

obtained from the difference between quantities relative to the first (i =1,2,3)

and second (i =4,5,6) particles. The resulting set of equations reads
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d�xLi
=�ui dt, (13a)

d�ui =−�ui dt +2 dWi, (13b)

where i =1, . . . ,3.
Equation (13) can be solved analytically to obtain correlation functions

and variances (see e.g., Gardiner, 1990). Some basic results are summarised
below (see also Gifford, 1984). The correlation function of velocity differ-
ence turns out to be an exponential function dependent on the time inter-
val only

〈�ui�u0i〉=〈�u2
0i〉 exp (−t), (14)

while the displacement variance for a single component is

〈(�xLi
−�xL0i

)2〉= (〈�u2
0i〉−2)(1− exp (−t))2 +4t

−4(1− exp (−t)). (15)

For short times (expanding Equation (15) to the third power of t), it turns
out that

〈(�xLi
−�xL0i

)2〉	〈�u2
0i〉t2 + ( 4

3 −〈�u2
0i〉

)
t3. (16)

From Equation (16) it can be observed that, when initial relative velocity
�u0i is distributed in equilibrium with Eulerian turbulence (i.e., 〈�u2

0i〉=2),
a t2 regime takes place with a negative t3 correction. On the other hand, if
〈�u2

0i〉=0 the short-time regime displays a t3 growth with a coefficient 4/3,
i.e., 2C0ε/3 for the dimensional version (Novikov 1963; Monin and Yaglom
1975; Borgas and Sawford 1991).

4. Model Formulation and Numerical Simulations

In order to proceed with the analysis of the dependence of model features
on the parameter β, we select as a possible solution to Equation (10), the
expression given by T90 (his Equation (18)) for Gaussian pdf. The spa-
tial structure is accounted for using the Durbin (1980) formula for longi-
tudinal velocity correlation, which is compatible with the 2/3 scaling law
in the inertial subrange. Although this form is known not to satisfy com-
pletely the inertial subrange requirements (it prescribes a Gaussian distri-
bution for Eulerian velocity differences, while inertial subrange requires a
non-zero skewness), it has been successfully used in basic studies (BS94)
and applications Reynolds (1999), and provides a useful test case for study-
ing the results shown above.
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The stochastic model is formulated for the variable (x, u) rather than
for the (dimensional) variable (�x/

√
2, �u/

√
2) as in Thomson’s origi-

nal formulation. In the present case, assuming homogeneous and isotropic
turbulence, the covariance matrix V(x) of the Eulerian pdf is expressed by

V =
( I R(1,2)(x)

R(2,1)(x) I
)

, (17)

where I is the identity matrix and

R(p1,p2)

ij (x)=〈u(p1)

i u
(p2)

j 〉, (18)

where p1, p2 = 1,2 (p1 
= p2) are the particle indices. The quantity
〈u(p1)

i u
(p2)

j 〉≡ 〈ui(x(p1))uj (x(p2))〉 is the two-point covariance matrix, which is
expressed in terms of the longitudinal and transverse functions F and G (see,
e.g., Batchelor, 1970) as

Rij =F(�x)�xi�xj +G(�x)δij , (19)

where

F =− 1
2�x

∂f

∂�x
, (20)

and

G=f + �x

2
∂f

∂�x
. (21)

It goes without saying that R(p1,p2)

ij = R(p2,p1)

ij = R(p1,p2)

j i . As in Durbin
(1980), F and G are computed from the parallel velocity correlation

f (�x)=1−
(

�x2

�x2 +1

)1/3

, (22)

which is K41 compliant for �x �1.
Using the above formulation, Equation (8) were solved numerically for

a number of trajectories large enough to provide reliable statistics for the
relevant quantities. Particular attention was paid to the timestep indepen-
dence of the solution (details are not reported here). It was found that
the non-dimensional timestep strongly depends on β because large values
of the parameter increase non-homogeneity, which requires greater accu-
racy. Despite the widespread use of variable timestep algorithms (see, e.g.,
Thomson, 1990; Schwere et al., 2002) based, in particular, on spatial deriv-
atives, here a fixed timestep short enough for timestep independence of the
solution was used throughout the computation.

Simulations were performed for initial velocity differences given accord-
ing to the second-order Eulerian structure function, i.e., in equilibrium with
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the flow. The initial condition for the spatial variable was �xLi
(0) = 10−5

for all simulations. It can be noted that this corresponds to different posi-
tions in the inertial subrange, i.e., different �xEi

(0) for different simula-
tions. In other words V(β�xL(0)) differs from case to case. However, this
initial separation is chosen small enough to provide a well-defined range of
the ‘quasy-asymptotic’ regime as defined by Batchelor (1952).

The β parameter was varied in the range [10−2 : 102], well beyond physi-
cally meaningful values. In fact, values reported in the literature range from
O(10−1) to O(101) (Hinze, 1959; Hanna, 1981; Sato and Yamamoto, 1987;
Koeltzsch, 1999) with β =O(1) taken as a reference (Corrsin, 1963). This
choice was made in order to infer asymptotic properties of the model. Note
that, from a numerical point of view, different values of β were obtained by
varying the length scale λ, keeping σ , τ and C0 fixed. In other words, with
reference to Equation (7), the variation of β is equivalent to a variation of
CK .

5. Results and Discussion

Figure 1(a–c) show the results of simulations for some values of β in
the range defined above. The mean square separation δ = 〈�xL(t)2〉 and
the mean square separation referred to an inertial system moving with
the initial velocity difference, δ′ = 〈[�xL(t)−�xL(0)−�u(0)t ]2〉 are plotted
against the time t . The OU analytical solutions (β =∞) are also reported
for reference: the solution with initial condition 〈�u(0)2〉=σ 2 is the refer-
ence for δ while the solution with initial condition 〈�u(0)2〉= 0 is the ref-
erence for δ′.

The general behaviour qualitatively fulfils the expectations of the Taylor
(1921) and Richardson (1926) theories. It presents an initial regime that
differs for the two variables: δ shows a t2 growth, while δ′ grows as t3

according to Equation (16). After this initial regime there is a transition
to an inertial range, the ‘quasi-asymptotic’ state referred to by Batchelor
(1952), in which both δ and δ′ grow as t3. In particular, the time t1 at
which δ 	 δ′ can be used to define the starting point of the ‘quasi-asymp-
totic’ regime itself, being the time at which memory of the initial conditions
is lost.

Particles separate faster as β increases, as expected because the space
correlation (two-point correlation) becomes less and less important with
respect to that along the trajectories (two-time Lagrangian correlation).

Thus, the time t2 >t1 at which the process tends to forget any memory
of the spatial structure and to behave like an OU process (see Figure 1),
decreases as β increases: for β < O(1) it results that t2 > 1 while for β >

O(1) is t2 < 1 (compare Figure 1a with Figure 1c). It goes without saying
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Figure 1. Mean square separation δ and δ′ as a function of time for different values of β.
Thick lines represent results of present simulations, while the thin lines are the analytical
Ornstein–Uhlenbeck solutions (continuous for δ and dashed for δ′). (a) β =0.5, (b) β =1.0,
(c) β =5.0.
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that the OU process with equilibrium initial condition represents the upper
limit for the overall process of two-particle dispersion.

It appears that the t3 regime begins earlier and lasts for shorter inter-
vals as β increases. An inspection of the variations of t1 and t2 confirms
that the extension of the inertial regime remains a decreasing function of
β, which asymptotically converges to zero.

From the simulations it results that, in the Richardson regime for β

larger than a value O(1), the model separation is greater than that pre-
dicted by the OU process for the quantity δ′. As already mentioned in the
Introduction, this fact violates the BS91 statement for which g∗ <4.

Values of g∗ as a function of β are shown in Figure 2; in the investi-
gated range, g∗ grows monotonically with β. In Figure 2 the results from
BS94 and the Kurbanmuradov (1997) Q1D model are also reported. Note
that the results take from the literature were studied for varying C0 but,
because of the constancy of ε, variations of C0 correspond to variations of
β. It can be observed that different versions of the WMC model, based on
the same Gaussian pdf but on different forms for φ, as tested by BS94, give
rise to different g∗ for the same β. They tested different models against the
‘two-to-one reduction’ property (see Thomson 1990, p. 123). They used a
simple quadratic model (their Equation (4.2a)), the T90 model (their Equa-
tion (4.3)) and a modified version according to a ‘two-to-one reduction’
constaint (their Equation (7.6) with different values of a parameter ϕ). In
particular, it seems that the ‘4.2’ and ‘7.6 with ϕ =−0.4’ models of BS94,
satisfies the upper limit for g∗ in the range studied. However the tendency
of the ‘7.6 with ϕ = −0.4’ model indicate that it will display g∗ > 4 for
larger values of β. The Q1D closure with a non-Gaussian pdf gives very
large values of g∗ and violates the BS91 constraint for values of β smaller
than for the other models. As a last remark, it can be pointed out that lab-
oratory experiments Ott and Mann(2000) and direct numerical simulations
(see, e.g., Boffetta et al., 1999, among the most recent) suggest g 	 0.5.
Using standard values for Ck (	 2) and C0 (from 2 to 6), g∗ can be esti-
mated in the range [0.17 : 0.5] with a variation of β in the range [0.33 : 1].

6. Conclusions

The dimensional analysis of the WMC, through the non-dimensionalisa-
tion of the Fokker–Planck equation has shown that only one parameter
plays a role in the determination of two-particle dispersion properties. This
parameter is the Lagrangian-to-Eulerian scale ratio β, which can be reli-
ably defined in terms of inertial subrange constants. The dimensional anal-
ysis leads to the definition of a normalised Richardson constant g∗ whose
scale is identified with C0, as suggested by the comparison of Lagrangian
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Figure 2. Normalized Richardson coefficient versus β. Horizontal line is the theoretical
upper limit g∗ = 4. Present results are represented by � connected with a line; �, © and
� are taken from Borgas and Sawford (1994, their symbols) for the ‘4.2a’, ‘4.3’ and ‘7.6
with ϕ =−0.4’ models, respectively; ♦ are the results from the Q1D model Kurbanmuradov
(1997).

and Eulerian properties. Given a particular model, the numerical value of
g∗ depends solely on the value of β adopted. This also applies to the dura-
tion of the t3 regime.

Using the T90 formulation, it has been shown that the results of
Novikov (1963) are recovered for β →∞, i.e., the spatial structure is neg-
ligible with respect to the Lagrangian time correlation. This limit corre-
sponds to the OU process, whose general properties highlight that the
observed t3 growth is actually a correction to the ballistic regime t2.

There is an inconsistency of the model behaviour in the Richardson
regime for large β. The origin of this problem is not understood in detail,
but it seems to be attenuated with a proper choice of the φ function as
shown by the BS94 results, their ‘4.2a’ model. Unfortunately, this does not
correspond to the ‘best’ choice as far as the ‘two-to-one reduction’ is con-
cerned (BS94).
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Appendix

The stationary structure function of the second order of an homogeneous
field, Equation (4), can be generalized to an arbitrary integer order n, in
non-dimensional terms as

〈�un〉=Ch,n�rhn, (A1)

where Ch,n is a proportionality coefficient. The inertial subrange and spa-
tial decorrelation limit are recovered for h=1/3 and h=0, respectively. In
particular, when n=2, C0,2 =2 denotes the Eulerian equilibrium statistics.

Considering the characteristic function p̂E(�w;�r) of the stationary
Eulerian pdf of velocity differences pE(�u;�r) and using Equation (A1),
it turns out that

p̂E(�w;�r)=
∞∑

n=0

(i�rh�w)nCh,n(n!)−1 = f̂ (�rh�w), (A2)

with i =√−1. From Equation (A2) it follows that

pE(�u;�r)= 1
�rh

f

(
�u

�rh

)
, (A3)

where the factor �r−h conserves the normalization and, for the constant
values h=1/3,0, Equation (A3) defines the self similar regimes of the iner-
tial subrange and the spatial decorrelation limit, respectively.

Using the dimensional quantities �r ′ = λ�r and �u′ = σ�u for the
particle separation and the velocity differences, respectively, for any finite
Lagrangian correlation time τ and particle separation �r ′, the following
identity holds

lim
β→∞

�(�r)≡ lim
λ→0

�(�r ′/λ), (A4)

where � is a generic continuous bounded function. Since continuity is
required in the transition from the inertial subrange regime to the equi-
librium, the scaling exponent h is assumed to be a monotonic decreasing
function of �r ′/λ. Thus

lim
λ→0

λh =1. (A5)

As observed in Section 2, the only term affected by variations of β in
Equation (9) is the non-homogeneous one. Therefore for any finite �r ′

using Equation (A3) and Equation (A5), it turns out that

lim
β→∞

β
∂pE

∂r
∼ lim

λ→0

{
λh h

�r ′h+1 f

(
�u′σ−1

(�r ′λ−1)h

)
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+λ2h h

�r ′2h+1

�u′

σ
f ′

(
�u′σ−1

(�r ′λ−1)h

)}
→0, (A6)

which shows that the non-homogeneous term vanishes in this limit.
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