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Disentangling the evolution of a coherent mean-flow and turbulent fluctuations, interacting through the

nonlinearity of the Navier-Stokes equations, is a central issue in fluid mechanics. It affects a wide range of

flows, such as planetary atmospheres, plasmas, or wall-bounded flows, and hampers turbulence models.

We consider the special case of a two-dimensional flow in a periodic box, for which the mean flow, a pair of

box-size vortices called “condensate,” emerges from turbulence. As was recently shown, a perturbative

closure describes correctly the condensate when turbulence is excited at small scales. In this context, we

obtain explicit results for the statistics of turbulence, encoded in the Reynolds stress tensor. We demonstrate

that the two components of the Reynolds stress, the momentum flux and the turbulent energy, are

determined by different mechanisms. It was suggested previously that the momentum flux is fixed by a

balance between forcing and mean-flow advection: using unprecedently long numerical simulations, we

provide the first direct evidence supporting this prediction. By contrast, combining analytical computations

with numerical simulations, we show that the turbulent energy is determined only by mean-flow advection

and obtain for the first time a formula describing its profile in the vortex.

DOI: 10.1103/PhysRevLett.120.204505

More often than not, turbulence appears hand in hand

with a coherent mean flow. At high Reynolds numbers,

the interactions between the two are strong, and closed

equations describing each component separately cannot be

obtained. This is a central problem in fluid mechanics [1],

with far-reaching consequences. Indeed, turbulence retro-

acts on the mean flow, through a term called the “Reynolds

stress tensor,” which encapsulates the important physical

quantities: the turbulent momentum flux and the turbulent

energy. For instance, numerical models that do not fully

resolve turbulence require a parametrization of the

Reynolds stress [2]. This term also drives atmospheric jets

such as the jet stream, which governs weather at mid-

latitudes [3]. It is therefore crucial to better understand the

statistics of this object.

While an understanding of the interactions between a

mean flow and turbulence remains elusive for general 3D

flows, progress can be made for the class of quasi-2D

flows, in which turbulence can spontaneously generate a

mean flow, rather than feeding on it [4]. This occurs in 2D

turbulence [5], on which we focus next, but also in large-

scale geophysical flows [3]. In such flows, the turbulent

energy tends to be transferred towards increasingly larger

scales. Eventually, if the large-scale dissipation mechanism

is slow enough, energy accumulates at the domain scale and

a mean flow emerges, referred to as a condensate [6]. Its

structure depends on the domain geometry: in the follow-

ing, we consider the vortex condensate, which appears in a

square box or on a flat torus (as part of a vortex dipole). The

condensate is expected to become asymptotically strong

compared to turbulence when the large-scale dissipation rate

tends to zero, which justifies a perturbative treatment. More

precisely, if the mean-flow shear rate is much larger than the

rate of nonlinear turbulence-turbulence interactions, then

the latter can generically be neglected. This is called the

quasilinear approach: it has inspired statistical closures for

quasi-2D flows, such as stochastic structural stability theory

[7] or, equivalently, cumulant expansion [8]. The idea has

also been applied to 3D wall turbulence [9] and investigated

numerically in atmospheric dynamics [10]. For a pro-

nounced mean flow, this approach can be justified theoreti-

cally using adiabatic reduction [11], but has some success

also outside that regime [12]. Actually, if turbulence is

excited at asymptotically small scales, the perturbative

treatment allows us to analytically derive an explicit formula

for the mean-flow and momentum flux profiles, as demon-

strated for the vortex condensate [13,14] and discussed for

jets [15,16] and on the sphere [4]. Until now, the only part of

these predictions that was quantitatively checked against

data from direct numerical simulation (DNS) is the profile of

the mean flow [13].

In this Letter, we present new results on the statistics of

the Reynolds stress in 2D. First, using long time integra-

tion, we provide the first numerical evidence supporting the

explicit formula for the momentum flux [13,14]. Second,

we show that the turbulent energy is determined by a

different mechanism: while the momentum flux results

from a balance between forcing and shear at small scales,
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the energy is determined solely by advection at large scales.

We explain its structure by combining a self-consistent

theoretical framework and numerical results, hence describ-

ing the full Reynolds tensor. To our knowledge, this is the

first time that such explicit formulas are derived either in

2D or 3D turbulence. Furthermore, while the results for the

mean flow and momentum flux rely on features specific to

2D turbulence, the mechanism governing turbulent energy

may apply more generally.

Framework and numerical methods.—We consider an

incompressible flow on a square domain of length L with

periodic boundary conditions, with linear friction as the

large-scale dissipation mechanism. The governing equa-

tions for the velocity field v are the 2D Navier-Stokes

equations

∂tv þ v ·∇v ¼ −∇P − αv − νð−ΔÞp=2v þ F; ð1Þ

where P is the pressure, α is the friction coefficient, ν is

the hyperviscosity, and F is a random forcing. We work

with an isotropic, white in time forcing acting in a narrow

shell in Fourier space centered on wave number Kf, with

ε ¼ hv · Fi the average energy injection rate [17].

DNS results are obtained by integrating (1) using the

GHOST pseudospectral code, at resolution 5122 and 10242,

with parameters L ¼ 2π, Kf ¼ L=lf ¼ 100, p ¼ 16, and

ν ¼ 5 × 10−35. We carried out runs covering almost 2

orders of magnitude in the friction coefficient α (see

Table I). In agreement with previous studies, the flow

reaches a condensate steady state, taking the form of a

vortex dipole (see Fig. 1). The vortices drift slowly across

the box, with fast turbulent fluctuations superimposed onto

them. We carry out a Reynolds decomposition in polar

coordinates centered on one of the vortices: the mean flow

hvi ¼ Ueϕ is purely azimuthal, while the fluctuations read

ṽ ¼ ver þ ueϕ. Angular brackets h·i denote a time average

[21]. The dimensionless parameter δ ¼ αL2=3=ε1=3, intro-
duced as the ratio between the condensate spin-down time

α−1 and the eddy turnover time L2=3ε−1=3, measures the

timescale separation.

As shown previously [13,14,16], within the quasilinear

approximation—justified for δ ≪ 1—and once Kf ≫ 1, so

that the mean flow can be approximated locally by a

uniform shear, it is possible to derive an explicit formula for

the mean flow U and momentum flux huvi

U ¼
ffiffiffiffiffiffiffiffiffiffi

3ε=α
p

; huvi ¼ −r
ffiffiffiffiffiffiffiffiffiffi

αε=3
p

: ð2Þ

This profile is expected to hold in the range lf ≪ r ≪ Ru,

where Ru ¼ δ−1=2K
−2=3
f L measures the radius where the

rate of nonlinear interactions is comparable to the mean-

flow shear rate. At larger radii, the quasilinear approxima-

tion is expected to break, while for r ≪ lf, the uniform

shear approximation for the mean flow is no longer

applicable. Of course, once Ru ≳ L, the range of validity

should be set by the boundary—be it a wall or a second

vortex. The mean-flow profile in our simulations (shown in

the Supplemental Material [17]) is compatible with the

theoretical prediction in a region that expands with

decreasing δ. This is consistent with earlier numerical

results [13], over a wider range of friction coefficient α.

In the figures, we represent the range lf ≪ r ≪ Ru by a

shaded area and the empirical range of validity by vertical

dashed lines. Focusing on this region, we now discuss the

three terms of the average Reynolds stress tensor: huvi,
hu2i, and hv2i.
The average momentum flux profile.—Until now, unlike

the mean flow, no experimental or numerical evidence has

been given for the average momentum flux (2). The dif-

ficulty is that it is a small quantity [huvi=U2 ¼ Oðδ3=2Þ]
and it is not sign definite: the average value results from

cancellations of strongly fluctuating contributions.

Leveraging the hybrid parallelization of GHOST [22], we

were able to integrate our runs over extremely long times

(about 320 000 turnover times) and accumulate enough

statistics to observe partial convergence of the average

momentum flux huvi, shown in Fig. 2. Although con-

vergence is restricted to a subregion of the region of interest

that does not match the empirical range defined above, we

find that the momentum flux is consistent with the

prediction (2): the numerical data unambiguously confirm

the negative sign and the scaling with α and are compatible

TABLE I. Parameters for the DNS runs.

Z A B C D E

105 × α 20 11 5.5 2.5 1.25 0.625

103 × δ 12.3 8.14 4.58 2.4 1.45 1.09

FIG. 1. Snapshot of the vorticity field (10242) in the stationary

state of the DNS; the vortex dipole forming the condensate is

clearly visible.
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with the theoretical prediction at the outer edge of the

region, r=L≲ 10−1 (smaller radii have less statistics).

The average turbulent energy profile.—Symmetry con-

siderations imply that the magnitude of the diagonal terms

of the Reynolds tensor, hu2i and hv2i, as well as the

mechanism that dictates them, are different than those for

the momentum flux [13,14]. We therefore take a different

approach than [23], where the turbulent energy is computed

within the same framework used for the momentum flux.

Instead, we will show that hu2i and hv2i are determined by

the zero modes of the advection equation for two-point

correlation functions. Indeed, in the quasilinear framework,

fluctuations are linearly advected by the mean flow.

Because of incompressibility, the dynamics is characterized

by a single field: vorticity, for instance, obeys the equation

ð∂t þDÞωþ LUω ¼ fω, with D ¼ αþ νð−ΔÞp=2, and

LUω ¼ ðU=rÞ∂ϕωþ Ω
0v. From here, a closed equation

for two-point correlation functions directly follows; for

Φ ¼ hω1ω2i, with C ¼ hfω1fω2i, the steady-state advec-

tion equation reads ½Lð1Þ
U þ L

ð2Þ†
U þD1 þD

†

2
�Φ ¼ 2C. In

general, the operator LU is nonlocal and this is an

integrodifferential equation (mixed hω1v2i terms appear).

The mean-flow profile (2), however, holds only in part of

the domain. Furthermore, we are eventually interested in

velocity statistics. Therefore, we transform this equation

into a partial differential equation for the radial velocity

correlation function, using incompressibility: ∂ϕ1
∂ϕ2

Φ ¼
Δ1Δ2r1r2hv1v2i. We now claim that hv1v2i is dominated

by zero modes of the resulting advection operator. This

entails two approximations. First, we neglect the contri-

bution from dissipation. This is justifiable in the region r1,
r2 ≪ Ru, where fluctuations are weak compared to the

mean flow. Second, we neglect the injection by the forcing,

which is justified as long as jr1 − r2j ≫ lf. In fact, we

eventually need to take the limit r1 → r2, passing through

lf, to compute the energy hu2i and hv2i. However, for
Kf ≫ 1, we expect to recover the correct result in this limit,

since velocity correlation functions should be continuous—

the energy being mainly determined at scales larger than the

forcing scale. We shall solve explicitly the resulting

homogeneous advection equation characterizing the zero

modes, with the mean-flow profile (2). It reads

½L2r2ð2∂r1
r1 þ L1Þ − L1r1ð2∂r2

r2 þ L2Þ�∂ϕ1
hv1v2i ¼ 0;

ð3Þ

with the notation Li ¼ r2iΔi, using isotropy (∂ϕ1
¼ −∂ϕ2

).

Given the form of the advection operator, it is natural

to decompose the fluctuations into angular harmonics:

vðr;ϕÞ ¼
P

∞
m¼−∞ v̂mðrÞeimϕ (and similar for u). The

resulting equation for hv̂mðr1Þv̂�mðr2Þi is scale invariant

and independent of the value of the mean flow U. This

prompts the ansatz hv̂mðr1Þv̂�mðr2Þi ¼ rλ
1
fmðr2=r1Þ, which

allows us to convert our partial differential equation into an

ordinary differential equation in the variable R ¼ r2=r1.
It can be written compactly as the hypergeometric

equation [24]:

Y

4

i¼1

�

R
d

dR
− γi

�

fmðRÞ ¼ R
Y

4

i¼1

�

R
d

dR
þ αi

�

fmðRÞ; ð4Þ

with the parameters ðγ1; γ2; γ3; γ4Þ ¼ ðλ̄ −m; λ̄þm;−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 − 1

p
;−1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 − 1

p
Þ, ðα1;α2;α3;α4Þ¼ð1−m;1þm;

−λ̄þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

m2−1

p
;−λ̄−

ffiffiffiffiffiffiffiffiffiffiffiffiffi

m2−1

p
Þ, and λ̄ ¼ λþ 1. This equa-

tion has four families of solutions, described in detail in the

Supplemental Material [17], each parametrized bym and λ.

We now turn to the numerical simulations to identify which

solutions derived in our theoretical framework (i.e., which

parameters λ) contribute to the turbulent energy profile.

Decomposing the DNS data into harmonics, we see that

turbulent energy in the region of interest is strongly

dominated (about 90%) by the m ¼ 1 modes (see the

dashed curve in Figs. 3 and 4 and also the Supplemental

Material [17]). Figure 3 also suggests that, in the universal

region, hjû1j2i ≈ ℑhû1v̂�1i ≈ const and hjv̂1j2i ≈ constþ rβ

with some β < 0. Comparing this form to the possible

solutions to (4), we find that it corresponds to a unique

superposition of two solutions, one with λ ¼ 0, which has

hjû1j2i ¼ hjv̂1j2i, and the second with λ ¼ β ¼ −2 [17].

Indeed, a very good match to such a power law can be seen

in Fig. 4, once hjû1j2i is subtracted from hjv̂1j2i. In its

current form, our theory does not determine the scaling of

the correlation functions with δ. We again turn to the DNS

results and find that hjû1j2i and ℑhû1v̂�1i collapse for the

different runs when rescaled by δ−1=3, while the r−2 part of

hjv̂1j2i scales like δ−1. However, we also have U2 ∝ δ−1

FIG. 2. Rescaled profile of average momentum flux huvi from
DNS. The horizontal blue line corresponds to the theoretical

prediction. Vertical dashed lines denote the range where the

mean-flow profile (2) is observed to hold.
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and we have relied throughout on the ratio hjv̂1j2i=U2 being

small. Thus, we expect this term to be suppressed by some

power of K−1

f . We finally obtain

hjv̂1j2i ¼ ðεRuÞ2=3
�

A1 þ A2

�

Ru

L

�

4=3
�

lf

r

�

2
�

;

hjv̂1j2i ¼ A1ðεRuÞ2=3; hû1v̂�1i ¼ iA1ðεRuÞ2=3; ð5Þ

where the dependence on Kf is a plausible guess leading to

order one numerical coefficients A1 and A2. In this case, we

have at most hjv̂1j2i=U2 ∼ K
−4=3
f , which is obtained at

r ¼ lf. Equation (5) is our main quantitative result, since it

provides a formula for the turbulent energy hu2i and hv2i.

The agreement with these formulas observed in Figs. 3

and 4 improves with decreasing δ. The constant part of the

m ¼ 1mode is probably due to uniform shifts of the vortex,

induced by turbulent fluctuations. A detailed study of such

mechanisms is left for future work.

The mode m ¼ 1, which dominates the energy, is the

lowest mode determined by mean-flow advection. Indeed,

as a consequence of the isotropy of the mean flow, it does

not interact with the m ¼ 0 harmonic. Note also that the

zeroth harmonic of the radial velocity v identically vanishes
due to incompressibility. Formulas for higher-order har-

monics, however, can be deduced from our formalism. Let

us demonstrate that with m ¼ 2. The DNS results indicate

that hû2v̂�2i is constant in the universal region. In addition,

since λ ¼ −2 contributes to m ¼ 1, we check if it contrib-

utes tom ¼ 2 as well. This leads to a superposition of three

solutions: the first has λ ¼ 0 and is of the form

f
ð1Þ
2
ðRÞ ¼ R

ffiffi

3
p

−1gðRÞ, for R ≤ 1, where gðRÞ is a quadratic
polynomial. The two other solutions have λ ¼ −2, and they

come in a particular combination, which reads f
ð2Þ
2
ðRÞ ¼

R
ffiffi

3
p

−1 − ð
ffiffiffi

3
p

=2ÞR for R < 1 [17]. Like for m ¼ 1, we use

the DNS data to identify the scaling with δ and deduce the

coefficients in the combination of solutions. This gives

hjv̂2j2i ¼ ðεlfÞ2=3
�

B1 − B2

�

Ru

L

�

4=3
�

lf

r

�

2
�

;

hjû2j2i ¼ ðεlfÞ2=3
�

19

28
B1 −

ffiffiffi

3
p

2
B2

�

Ru

L

�

4=3
�

lf

r

�

2
�

;

hû2v̂�2i ¼ i
B1

2
ðεlfÞ2=3: ð6Þ

Figure 5 shows that DNS data seems compatible with (6),

except close to the inner boundary of the region, which

FIG. 3. Profile of the first harmonic hjû1j2i for all the runs,

rescaled according to (5). The dashed purple line corresponds

to the same quantity, normalized by the full field hu2i=2 for run E.
(Inset) The ratio ℑhû1v̂�1i=hjû1j2i.

FIG. 4. Rescaled profile of the power law part for the first

harmonic hjv̂1j2 − jû1j2i, for all the runs. The dashed purple line

corresponds to the same quantity, normalized by hv2 − u2i=2 for

run E.
FIG. 5. Combination of the second harmonics demonstrating

the constant and r−2 (inset) contributions to the profiles (6).
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could either come from the contribution of another solution

or a forcing effect.

We finally note that an analog of (3) was used in a

previous attempt [25] to determine the momentum flux and

mean flow. There, the hierarchy was closed at the level of

cubic terms. As was later realized [13,14], this produces a

zero momentum flux at any order, because the equations

are invariant under the transformation ϕ → −ϕ, t → −t,
while the momentum flux breaks this symmetry. The same

happens with the zero modes discussed here: because

the coefficients in (4) are real, so are the solutions

hv̂mðr1Þv̂�mðr2Þi, resulting in ℜ½hûmv̂�mi� ¼ 0.

Conclusion.—In this Letter, we have explored the

turbulent fluctuations statistics in a 2D vortex mean flow

sustained by turbulence. We demonstrated that the turbu-

lent energy and momentum flux are governed by different

mechanisms, dictated by symmetry. Through a combina-

tion of DNS and first-principles theoretical analysis,

we showed, for the first time, that the turbulent energy

profile (5)—and, more generally, two-point correlation

functions—is determined by zero modes of the mean-flow

advection equation. The contribution of these zero modes

to the momentum flux vanishes, which explains why it is

determined at next order by a balance between forcing and

advection. We provided the first evidence supporting the

resulting profile. A consequence is that the turbulent energy

and momentum flux scale differently with the small

parameter δ, at variance with the assumption used to justify

the quasilinear approach in a kinetic theory framework

[11]. Moreover, while the limit Kf ≫ 1 was discussed

before [15], our results point to its crucial role in sup-

pressing the fluctuations, which was not considered. We

have relied upon DNS results to identify which theoretical

solutions are realized and their scaling with δ. This leaves

open the question of their selection mechanism. In par-

ticular, it would be interesting to check if, in a box with

solid boundaries, such as found in experiments, the

turbulent energy profile would be the same or if, instead,

other solutions would be selected. Our results also re-

present an important first step for understanding turbulence

statistics in more complex flows, such as geophysical jets,

plasmas, and ultimately, long-standing problems such as

turbulent boundary layers.
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