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Turbulence structure above a vegetation canopy
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We compare the turbulence statistics of the canopy/roughness sublayer (RSL) and
the inertial sublayer (ISL) above. In the RSL the turbulence is more coherent and
more efficient at transporting momentum and scalars and in most ways resembles a
turbulent mixing layer rather than a boundary layer. To understand these differences
we analyse a large-eddy simulation of the flow above and within a vegetation canopy.
The three-dimensional velocity and scalar structure of a characteristic eddy is educed
by compositing, using local maxima of static pressure at the canopy top as a trigger.
The characteristic eddy consists of an upstream head-down sweep-generating hairpin
vortex superimposed on a downstream head-up ejection-generating hairpin. The
conjunction of the sweep and ejection produces the pressure maximum between the
hairpins, and this is also the location of a coherent scalar microfront. This eddy
structure matches that observed in simulations of homogeneous-shear flows and
channel flows by several workers and also fits with earlier field and wind-tunnel
measurements in canopy flows. It is significantly different from the eddy structure
educed over smooth walls by conditional sampling based only on ejections as a trigger.
The characteristic eddy was also reconstructed by empirical orthogonal function
(EOF) analysis, when only the dominant, sweep-generating head-down hairpin was
recovered, prompting a re-evaluation of earlier results based on EOF analysis of
wind-tunnel data. A phenomenological model is proposed to explain both the
structure of the characteristic eddy and the key differences between turbulence in
the canopy/RSL and the ISL above. This model suggests a new scaling length that
can be used to collapse turbulence moments over vegetation canopies.

1. Introduction

Within the inertial sublayer (ISL) of high-Reynolds-Number rough-wall boundary
layers, the mean wind profile is close to logarithmic and the log law relates
the momentum flux to the mean wind gradient in a convenient form that is
exploited in measurements and predictive models. When buoyancy forces are present,
Monin–Obukhov similarity theory (MOST) introduces an extra length scale – the
Obukhov length L – allowing the log law to be extended to diabatic conditions and
providing the theoretical basis for surface-layer meteorology. It has been known for a
considerable time, however, that sufficiently close to a rough surface, MOST formulae
must be modified to reflect changes in the character of the turbulence (Thom et al.
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1975; Raupach 1979; Chen & Schwerdtfeger 1989). These modifications are the result
of fundamental changes in the turbulence structure that occur near the interface
between the free flow and the porous, momentum-absorbing layer occupied by the
roughness elements.

This so-called canopy layer and the region of modified turbulence above it, the
roughness sublayer (RSL), have been studied most intensively in the atmospheric
boundary layer over vegetation and also over urban canopies and in hydraulic flows
over aquatic vegetation and gravel beds (Ghisalberti & Nepf 2002). Here we focus on
horizontally uniform vegetation canopies in which the individual roughness elements –
leaves, stems and branches – are much smaller than energetic eddies in the boundary
layer so that a dynamically meaningful volume-averaged flow field can be defined.
This allows us to represent momentum absorption in the canopy as a body force
and the turbulent flow within and above the canopy as a continuum (Finnigan 2000).
Furthermore, the physical scale of tall plant canopies means that a body of data with
good vertical resolution is available both within and above the canopy.

Collection of these data has been motivated by many practical and theoretical
problems. For logistical reasons, measurements of surface–atmosphere exchange from
meteorological towers over crops or forests are often restricted to the RSL, and an
understanding of its dynamics is critical to interpreting these results. See for example
the international FLUXNET program, which aims to quantify carbon and energy
exchange between the atmosphere and the terrestrial biosphere (Baldocchi et al.
2001). Numerical models of climate, weather or scalar dispersal typically use MOST
formulae as their lower boundary condition, and over tall roughness elements, the
lowest resolved grid points lie within the RSL so that departures from MOST have
implications for predictions throughout the boundary layer (Physick & Garratt 1995;
Harman & Finnigan 2007, 2008). Consequently, for many years micrometeorologists
have devoted attention to the failure of MOST near rough surfaces and have produced
empirical corrections (Raupach 1979, 1992; Garratt 1980, 1983; Cellier & Brunet 1992;
Mölder et al. 1999). However, an explanation of these corrections at a fundamental
level has remained elusive.

Turbulence statistics in the canopy/RSL are significantly different from those in
the ISL of a rough- or smooth-wall boundary layer. Scaling of turbulence moments
on distance from the wall (or from a displacement plane if the wall is rough) breaks
down and is replaced by dependence on height-independent length and velocity scales
related to the canopy geometry. The large energetic eddies responsible for most of
the turbulent kinetic energy and transport in the canopy/RSL are significantly more
coherent than eddies in the ISL. Most importantly, the turbulence is more ‘efficient’
at transferring momentum and scalars in the sense that a given flux is associated with
a weaker mean gradient of velocity or concentration than is required in the ISL. It is
these features that cause the breakdown of MOST. These differences are summarized
in Appendix A. We hypothesize that that they can be ascribed to the fundamentally
different eddy structures of the two layers.

A ‘standard model’ of the eddy structure of boundary layers over smooth wall or
over rough walls above the RSL has emerged over the last few decades. It consists of
a superposition of wall-attached ‘head-up’ hairpin vortices that generate Q2 ejection
events (u′ < 0, w′ > 0) between the hairpin legs (Tomkins & Adrian 2003; Adrian
2007). Detailed analysis of laboratory flows, direct numerical simulations (DNSs) and
large-eddy simulations (LESs) has shown that this structure can be self-sustaining
(Zhou et al. 1999). At a different level it is implicit in the attached-eddy hypothesis
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of Townsend (1976; see also Perry & Marusic 1995), which provides a basis for
scaling the ISL. However, this mechanism is unable to explain the dominance of
Q4 sweep events (u′ > 0, w′ < 0) in momentum and scalar transport just above and
within rough walls and canopies. Neither can it explain the spatial configuration of
near-wall sweeps over rough surfaces or the smooth transition from sweep domination
near the wall to ejection domination above the RSL in rough-wall shear layers. Finally,
it is inconsistent with eddy structure derived from DNSs and LESs of uniform shear
layers and smooth-wall channel flows (Moin & Kim 1985; Kim & Moin 1986; Rogers
& Moin 1987; Gerz, Howell & Mahrt 1994).

Finnigan & Shaw (2000) proposed a model of canopy eddy structure consisting of
a family of ‘head-down’ hairpin vortices which generated Q4 sweep events between
their legs. This structure was educed by empirical orthogonal function (EOF) analysis
of two-point data obtained from a wind-tunnel simulation. The scale and coherence
of these hairpins was assumed to be dictated by the mixing-layer hypothesis of
Raupach, Finnigan & Brunet (1996), who proposed that canopy/RSL turbulence
displayed features that were closer to those of a mixing layer than a boundary layer.
However, while explaining many of the observed features of canopy/RSL flows, this
model also failed to account for the transition from sweep dominance to ejection
dominance as we move further from the wall.

Elucidation of the three-dimensional structure and dynamics of large eddies in
canopy flows has been hampered by the difficulty of collecting multi-point data in
real canopies or even in wind-tunnel models. In this study, therefore, we employ a
high-resolution LES of a canopy flow. Applying conditional sampling to this database,
we extract an average eddy structure that consists of superposed pairs of head-up
and head-down hairpin vortices, which generate first a Q2 ejection and then a Q4
sweep as the hairpin pair convects downwind. Two symmetry-breaking mechanisms
work in opposition to decide which hairpin is stronger. Close to and within the
canopy, stretching by the mean shear preferentially amplifies the trailing head-down
hairpin so that Q4 sweeps dominate. Further from the canopy top, blocking by the
solid ground surface limits the growth of head-down hairpins, and the Q2 ejection-
producing head-up hairpins dominate through the rest of the boundary layer. The
hydrodynamic instability that is associated with the inflected mean-velocity profile
at the canopy top accounts for the greater coherence of these eddies in comparison
with those in the ISL and also suggests that the head-up and head-down hairpins are
generated simultaneously as an instability mode rather than one appearing first and
triggering the other. Our data are consistent with this view.

This structural model successfully explains a large set of observations from real and
model canopies and changes the definition of the RSL from a layer of finite depth to a
region in which a particular physical mechanism (head-down Q4 generating hairpins)
dominates. This mechanism is present through the entire depth of the boundary
layer, where it is responsible for Q4 sweep events, but above the RSL it is much
less important than Q2 ejection generation by head-up hairpins. The model is also
in accordance with eddy models derived from studies of uniform shear flows and
channel flows in contrast to the ‘standard model’ described above, which consists
entirely of head-up hairpins. We speculate that the standard-model viewpoint may
have been biased by the selection of Q2 ejections as a conditional-sampling trigger.
Our dual-hairpin model replaces the earlier single head-down hairpin model proposed
by Finnigan & Shaw (2000) using EOF analysis, and we use this to illustrate the
possible traps involved in such analysis if it is applied uncritically.
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This paper is organized as follows. Necessary notation is defined in § 2; then in
§ 3 we introduce the LES canopy data set, and in § 4 use this as well as earlier
wind-tunnel, field and simulation data to derive the space–time structure of the
energy-containing eddies. In § 5 we compare the new results with structures in other
shear flows and propose a phenomenological model for the eddy dynamics. Finally,
in § 6 we summarize and emphasize the main conclusions.

2. Coordinates and averaging

We adopt the meteorological convention of right-handed Cartesian coordinates
with x aligned in the streamwise, y in the spanwise and z in the vertical direction.
Corresponding velocity components are u, v and w. We use vector or tensor notation
as convenient with x ≡ {x1, x2, x3} ≡ {x, y, z} and u ≡ {u1, u2, u3} ≡ {u, v, w}. Time
averages are denoted by an overbar and departures therefrom by a prime; hence,

u(t) =
1

T

∫ t+T/2

t−T/2

u(t ′) dt ′, ui = ūi + u′
t . (1)

It is impractical to account for the detailed spatial variation of velocity and scalar
fields in the canopy airspace. Instead, statistics within the canopy are volume averaged
over horizontal slabs of volume V, which exclude solid plant parts. These slabs
are extensive enough to contain many canopy elements so that element-to-element
variability is smoothed out but are thin enough that systematic vertical variation in
canopy properties is retained.

The volume average of a scalar or vector function φj is defined as

〈φj 〉 (x, t) =
1

V
d3

∫∫

V

∫
φj (x + r, t) d3

r, (2)

and local departures from the volume average are denoted by a double prime; so

φj = 〈φj 〉 + φ′′
j , φj = 〈φj 〉 + φ

′′
j . (3)

The averaging volumes are intercepted by solid foliage elements, and so the airspace
in V is multiply connected. In canopies of solid elements, expressions like (2) should
be adjusted for the fraction of V occupied by solids. This can be important in some
flows such as in dense urban canopies but is a small correction that is usually ignored
in vegetation canopies where the solid fraction is O[0.01].

Flow statistics are formed by averaging first in time and then spatially over the
volume V (Raupach & Shaw 1982; Finnigan 1985; Raupach, Coppin & Legg 1986;
Brunet, Finnigan & Raupach 1994; Finnigan & Shaw 2008). To compute mean
statistics in a uniform, horizontally homogeneous canopy, we take T much larger
than the integral time scale of the turbulence, while the horizontal dimensions of the
averaging volumes V are much larger than the horizontal integral length scales of the
turbulence. Volume averaging has two consequences. First, steady systematic spatial
variations in velocity and scalar concentration can be correlated under the volume-
averaging operation to form ‘dispersive fluxes’ which bear the same relationship to
volume averaging as Reynolds fluxes do to time averaging. Hence, the kinematic
stress τij and scalar flux fχi in the canopy are written as

τij = 〈ui
′′uj

′′〉 + 〈u′
iu

′
j 〉 and fχi = 〈ui

′′ χ ′′〉 + 〈u′
iχ

′〉, (4)
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where χ represents an arbitrary scalar. Viscous stresses and molecular diffusion are
ignored, as they are much smaller than the Reynolds and dispersive terms. The very
high turbulent intensities within the canopy airspace act to minimize the dispersive
fluxes. Observations show that in artificial wind-tunnel-model canopies with solid,
geometrically regular elements or in urban canopies, they can be of comparable
magnitude to Reynolds fluxes in the lower canopy but typically only 10 % of the
Reynolds fluxes in the upper canopy (Raupach et al. 1986; Bohm, Finnigan &
Raupach 2000; Coceal et al. 2006). In natural vegetation canopies, they are difficult
to measure but are assumed to be smaller than in artificial canopies; therefore we
focus on the Reynolds fluxes in this paper.

Second, in the multiple-connected canopy airspace, differentiation and volume
averaging do not commute for variables which are not constant at the interfaces
between air and solid canopy elements. This is also true for differentiation with respect
to time when the canopy elements are moving. As a result, source or sink terms appear
in conservation equations for the volume-averaged variables. For example the sink
term for momentum, 〈F i〉, representing the time-mean aerodynamic drag of foliage
elements on the volume-averaged velocity, takes the form

〈F i〉 = −
1

V

N∑

n=1

∫

Sn

∫
pni dS +

ν

V

N∑

n=1

∫

Sn

∫
∂ui

∂n
dS. (5)

Here, p is the time-mean kinematic pressure and ν the kinematic viscosity; Sn is the
nth member of the N foliage-element surfaces in the averaging volume V and ni is
the unit vector pointing from Sn into the airspace. Hence the total drag is the sum
of the pressure and viscous drags on each solid element in V. Full derivation of
first and second-moment equations for velocity and scalars using time and volume
averaging may be found in Finnigan (1985), Raupach et al. (1986) and Brunet et al.
(1994).

3. LES of neutrally stratified canopy flow

3.1. The equations and numerical implementation

Elements from a number of previously described versions of the National Center for
Atmospheric Research’s (NCAR’s) LES code were merged to create the LES code
used here. In particular, the canopy representation presented in Patton et al. (2001)
and Patton, Sullivan & Davis (2003) was implemented in the most recent version of
NCAR’s LES code (e.g. Patton, Sullivan & Moeng 2005; Sullivan & Patton 2008)
which utilizes the message-passing interface to decompose the computation domain
in two dimensions in order to distribute the computational load across processors.

LESs solve directly for the ‘resolved’ scales of motion, which are separated from the
sub-filter scales (SFSs) by a spatial filter, analogous to the volume-averaging operator
(2). The SFS motions are treated statistically. The NCAR LES uses pseudo-spectral
methods in the horizontal and a second-order finite-difference method in the vertical.
Its spatial filter consists of an explicit sharp wave cutoff in the horizontal and an
implicit top-hat filter in the vertical. Application of this filter to the neutrally stratified
Navier–Stokes equations in the multiply connected canopy space yields

∂ũi

∂t
+ ũj

∂ũi

∂xj

= −
∂P̃

∂xi

−
∂τ̃ij

∂xj

− F̃i, (6)
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where we introduce the tilde (̃) to distinguish the spatial filtering used to derive the

LES equations from the volume-averaging operator defined in (2). In (6), P̃ is the
resolved kinematic pressure and τ̃ij = ũiuj − ũi ũj is the SFS stress tensor, which
represents the action of the unresolved SFSs of motion on the resolved velocity,
ũi . As in (4), we neglect viscous stresses. τ̃ij incorporates not just the conventional
Reynolds stresses but also the ‘Leonard’ terms and cross-terms, which arise because
spatial averaging over finite domains does not obey conventional Reynolds-averaging
rules (Leonard 1974; Wyngaard 1982; Sullivan et al. 2003; Finnigan & Shaw 2008).

The deviatoric part of τ̃ij is estimated using a Smagorinsky-like eddy-diffusivity
model (Smagorinsky 1963),

τ̃ij −
1

3
τ̃kk δij = −KM

(
∂ũi

∂xj

+
∂ũj

∂xi

)
(7)

with KM = C�f Es , where C is a constant. The length scale �f is the filter scale,
�f = (3/2�x × 3/2�y × �z)1/3, where �x, �y and �z represent the LES grid
resolution in the x, y and z directions. The velocity scale Es = (τ̃kk/2)1/2 is formed
from the SFS turbulent kinetic energy, which is estimated using the canopy-induced
modification of Dwyer, Patton & Shaw (1997) to the SFS turbulent-kinetic-energy
model of Deardorff (1980).

Thom (1968) showed that the time-averaged pressure drag of the canopy (first
term in (5)) is about three times larger than the viscous drag (second term in (5)).
Therefore, following Shaw & Schumann (1992), Dwyer et al. (1997) and Patton et al.
(2001), we model the total kinematic drag of the canopy as the product of a drag
coefficient Cd , a one-sided plant area density a and the square of the resolved velocity

ũi . The canopy-drag force F̃i is three-dimensional and time dependent and is therefore
written as

F̃i = Cda Uũi, (8)

where U = (ũi ũi)
1/2 represents the resolved scalar wind speed. F̃i is modelled as a

smooth function of space, which implies that the filter scale, �f , is large enough to
remove any irregularity in the drag force caused by the heterogeneity of the foliage
distribution.

We separate a mean streamwise-pressure gradient ∂P ∗/∂x1 from the total

three-dimensional fluctuating-pressure gradient; thus, ∂P̃ /∂xi = ∂P ∗/∂x1 δi1 + ∂p̃/∂xi ,
where δi1 is the Kronecker delta and ∂p̃/∂xi is therefore the resolved turbulent-
pressure gradient. Combining all these assumptions, the final set of equations being
solved can be written as

∂ũi

∂t
+ ũj

∂ũi

∂xj

= −
∂P ∗

∂x1

δi1 −
∂p̃

∂xi

−
∂τ̃ij

∂xj

− F̃i . (9)

For the case presented here, the externally imposed pressure gradient ∂P ∗/∂x1, which
is uniform throughout the domain, is adjusted at every time step to maintain a
constant mass flux of 6 m s−1 through the upwind boundary.

To compute derivatives in (9), the code uses pseudo-spectral methods in the
horizontal, a second-order finite-difference method in the vertical and a third-order
Runge–Kutta scheme in time. To eliminate aliasing errors the sharp cutoff filter is
applied to remove the highest one-third horizontal wavenumbers. Periodic boundary
conditions are implemented for both horizontal directions. The upper boundary is
specified as a frictionless rigid lid. A logarithmic law defines the flow between the lower
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Canopy momentum-absorption
Grid points Domain size parameter Drag coefficient

Run (Nx , Ny , Nz) (Lx/h, Ly/h, Lz/h) (h Cd a) (Cd )

A1 288, 144, 100 28.8, 14.4, 10 0.236 0.4725
B1 576, 576, 100 57.6, 57.6, 10 0.236 0.4725
C1 1024, 1024, 128 102.4, 102.4, 12.8 0.236 0.4725

Table 1. Parameters of the LES runs.

boundary and the first grid point above the boundary, using a specified roughness
length z0 = 1.9 × 10−4h, where h is the canopy height.

In our LESs, a conservation equation for a passive scalar χ is solved in a way
similar to that for momentum, namely

∂χ̃

∂t
+ ũi

∂χ̃

∂xi

= −
∂τ̃iχ

∂xi

+ S̃χ (10)

where τ̃iχ is the SFS flux of χ̃ , which is estimated assuming an SFS turbulent
Schmidt number of 3 (Deardorff, 1980). The scalar source from the foliage S̃χ follows
the formulation of Brown & Covey (1966), where an imposed and time-invariant
canopy-top flux density (= 0.05 (arbitrary units) s−1 m−1) decays exponentially with
height according to the downward-integrated plant area density with a decay constant
of 0.6. Periodic boundary conditions are imposed in the lateral directions, and
zero-flux conditions are imposed at both the top and the bottom of the domain.
Therefore, the volume-averaged scalar concentration increases continually in time.

3.2. Parameter choices

The LES model’s canopy parameters correspond to the wind-tunnel model described
by Brunet et al. (1994) and Finnigan & Shaw (2000) with the following difference. The
Cd value used in this LES study is 70 % of the Cd quoted by Brunet et al. (1994) for
wind-tunnel runs performed at a free-stream velocity of 10.2 m s−1. They found that
because of the small diameter of their roughness elements, their wind-tunnel-model
Cd decreased as the Reynolds number Re increased; so we have chosen a smaller
value of Cd to reflect the full-scale Re values reproduced in the LES (table 1).

The grid resolution and domain sizes for the simulations are also presented in
table 1. The parameters Lx , Ly and Lz refer respectively to the streamwise, spanwise
and vertical dimensions of the computational domain. The three simulations (denoted
by the names run A1, run B1 and run C1) differ only in the overall horizontal
domain size. Initial results in configuration A1 displayed clear maxima and minima in
streamwise-averaged ũ1 velocity, corresponding to weak streamwise vortices. The
lateral wavelength of these vortices was similar to the height of the domain Lz. To
establish whether this feature was a consequence of insufficient domain size, runs
B1 and C1 were computed. These runs also exhibited lateral heterogeneity in mean
velocity, although the amplitude of spanwise variations in ũ1 was reduced. Extending
the computation time failed to remove these features, and we conclude that they are
real features of the simulated flow.

Interestingly, despite stringent inflow conditioning, it was also impossible to
completely remove weak streamwise vortices from the wind-tunnel flow described
in Brunet et al. (1994) and Finnigan & Shaw (2000). It is well known that streamwise
vortices are a pervasive instability mode of plane shear flows (e.g. Reynolds et al. 2007
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and the references therein); so we conclude that the periodic boundary conditions
in the LES, together with the ambient turbulence levels in the LES (particularly
during the initialization phase), result in persistent large-scale streamwise vorticity
as an intrinsic feature of the simulated flow. Except for the EOF and time-evolving
characteristic eddy analysis (which were performed on run A1), all the results reported
below were obtained from the large domain run, C1. For reference, run C1 required
10 restarts of 8 h each on 2048 Cray XT4 CPUs. Each restart consisted of 10 000
time steps of approximately 0.1 s; therefore the turbulence evolved over more than
2 h of simulated time.

3.3. Forming mean statistics from LES output

Before we can compare the LES data with measurements from the field or wind
tunnel, we need to define the way turbulence statistics are formed from the LES
output. First, the LES was run to steady state. Next, for each member of a set
of realizations separated by time intervals much longer than the integral time scale,
horizontally averaged moments were constructed from the local perturbations around
the horizontally averaged mean. The corresponding SFS contributions were then
added to the resolved scale moments. Finally the sum of resolved and SFS moments
were ensemble averaged over the set of realizations.

For example the standard deviation of streamwise velocity is calculated as

σu(z) = 〈(ũ(x, y, z, t) − 〈ũ〉(z, t))2 + τ̃11〉
1/2

, (11)

where τ̃11 is the contribution to u variance computed by the SFS model (7). The
volume average operator 〈 〉 is defined in (2), and here the volume, V, has horizontal
dimensions spanning the entire LES domain (Lx × Ly) and vertical extent of one
grid unit �z so that within the resolution of the LES, it is equivalent to a horizontal
average. The overbar represents a time average as defined in (1) with duration T
spanning the complete set of realizations. In order to avoid confusion between the
tilde notation used in this section to denote resolved scale output from the LES and
that used for measurements, from now on we will use the notation introduced in § 2
for both data derived from the LES and data from other sources. The operations
used to derive composited structures from the LES output are described in § 4.

3.4. Comparison with wind-tunnel results

Turbulence moments from the LES computed using (11) are compared with the wind-
tunnel data of Brunet et al. (1994) in figure 1(a–c). The wind-tunnel data correspond
to the ensemble of 71 runs presented by Brunet et al. (1994) rather than their ‘reference
run’, as their ensemble statistics were computed by a process that combined horizontal
and time averages in a way that was equivalent to the combination of horizontal and
ensemble averaging defined in (11).

The normalized mean-velocity profiles (figure 1a) are closely matched through the
canopy and then diverge, the tunnel ratio 〈u〉/u∗ being about 10 % higher at z/h = 6
(where u∗ = (−〈u′w′〉(h))1/2 is the friction velocity). This difference is primarily due
to the differing outer-boundary conditions on the two flows. The LES is driven by an
imposed pressure gradient, while the wind-tunnel flow has zero streamwise-pressure
gradient, the momentum being supplied to the canopy by the steady entrainment
of free-stream velocity into the growing wind-tunnel boundary layer. This difference
is also reflected in the shear-stress profiles (figure 1c). Above the canopy, the LES
shear-stress profile exhibits a constant slope exactly matching the imposed pressure
gradient, while the wind-tunnel data show a shallow constant-stress region between
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Figure 1. Comparison of wind-tunnel data of Brunet et al. (1994) and LES: dashed lines, wind
tunnel; solid lines, LES. (a) Mean streamwise velocity, (b) standard deviation of the streamwise
velocity σu and vertical velocity σw and (c) momentum flux. All profiles are normalized by
u ∗ . The dashed–dotted lines in (b) and (c) show the SFS contribution to the LES results. The
horizontal line at z/h = 1 depicts the canopy top.

the canopy top and z/h = 2. Above this height, the shear stress in the wind tunnel
decreases towards zero at the outer edge of the boundary layer. Below z/h = 6 the
two profiles differ by less than 10 %. Both σu/u∗ and σw/u∗ LES profiles (figure 1b)
are slightly lower than the wind-tunnel data. This is most probably a result of the
70 % lower Cd value used in the LES. Overall, given that the differences between the
LES and wind tunnel are small, we conclude that an analysis of the eddy structure
based upon the LES data is justified.

Quadrant-hole analysis of the new LES data is compared with data from four
other canopies in figure 2 in the form of the ejection/sweep Q2/Q4 ratio, that is the
contribution to total shear stress 〈u′w′〉 from ejections divided by that from sweeps.
We can see that the LES data follow the general pattern with the sweep contribution
being dominant within the canopy and up to z/h ≃ 1.3 and the ejection contribution
becoming increasingly more important above that level. Such behaviour is consistent
with the large skewness values observed within and just above the canopy (Katul et al.
2006).

4. Eddy structure in the canopy/RSL and ISL

4.1. Structure educed by compositing

A variety of events can be used to trigger the collection of three-dimensional fields
that can be ensemble averaged or ‘composited’ to form characteristic eddies. Zhou
et al. (1999), in applying linear stochastic estimation to fields derived from DNS and
PIV measurements, triggered on Q2 ejection events. Working with canopy-resolving
LES, Watanabe (2004) used the scalar microfront that is generated ahead of a sweep
as a trigger. We use the transient peaks in static pressure, which occur near the
canopy top. Fitzmaurice et al. (2004) showed that these provide a robust indicator
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Q2/Q4 ratio of contributions to Reynolds stress
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Figure 2. Vertical profiles of the ratio of contributions to the Reynolds stress from the
ejection quadrant (Q2) and the sweep quadrant (Q4) from the LES (solid line) and from
four other sources: circles, almond orchard (Baldocchi & Hutchison 1987); diamonds, cork
oak plantation (Christen & Vogt 2004); triangles, wind-tunnel-model canopy (Raupach et al.
1986); squares, DNS of ‘urban’ blocks (Coceal et al. 2007).

of sweeps and ejections and also reliably identify scalar microfronts. Static-pressure
peaks at the canopy top are associated with both Q2 ejections and Q4 sweeps so
that using pressure as a trigger avoids artificial biasing of the composited flow fields
towards either event.

A given number of realizations N of the three-dimensional velocity, scalar and
pressure fields were examined, and structures were extracted in the following manner.
Regions of the {x, y} plane at z = h, where the pressure trigger pT exceeded a chosen
threshold pT = αu2

∗, were identified, and the highest pressure within this region was
taken as the location of the ith sampling trigger {xp, yp}

i
. Pressure peaks located

within a specified horizontal distance of a larger pressure peak were discarded; M
pressure peaks were detected and M three-dimensional volumes of the instantaneous
LES perturbation velocity field were then shifted horizontally so that {xp, yp}

i
were

coincident in a new coordinate system {rx, ry}, with {rx, ry} = {0, 0} at the trigger
location. Finally, the three-dimensional volumes were ensemble averaged, and the
composite eddy was defined as the coherent velocity and scalar pattern surrounding
the pressure trigger.

The sensitivity of the educed structure to the trigger magnitude was tested by
varying α. We found that the resulting eddy structure was independent of the trigger
magnitude in the approximate range 2 > α > 10. However, we did observe that the
physical size of the eddy increased somewhat with increasing trigger threshold. For
this reason, we chose to impose both a minimum and a maximum pressure threshold,
pTmin and pTmax , respectively. In the examples that follow structures were extracted
from N = 18 realizations. With pTmin = 2 m2 s−2 and pTmax = 3 m2 s−2 (equivalent to
the minimum and maximum values of α equal to 4.34 and 6.51, respectively), the
number of detected events M was 5508.

The resulting characteristic eddy is displayed in figure 3 as a field of {u′, w′} vectors
in the plane {rx, 0, z} and in figure 4 as fields of {v′, w′} vectors in {ry, z} planes
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Figure 3. Vectors of fluctuating streamwise velocity u′ and vertical velocity w′ over an x, z
slice through the centre of a composite average structure identified according to minimum and
maximum kinematic pressure fluctuation limits of 2 and 3 m2 s−2. Maximum vector is 1.35 m s−1.
The contours with shading are of pressure perturbation ranging from 1.8 to 2.4 m2 s−2.

at successive rx locations. We see immediately from figure 3 that on the {rx, 0, z}
plane, the eddy consists of a coherent ejection extending from 2.5 > rx/h > 0.5 with
maximum amplitude around z = h, followed by a stronger sweep extending over
0 > rx/h > −2.5 with its maximum amplitude just above z = h.

Figure 4 is more revealing. Starting at rx/h = −1.6, the rearmost {ry, z} cross-
section through the eddy, we can clearly see two counter-rotating streamwise vortices
with flow towards the wall generated between them. The vortex cores are found at
ry/h ≃ ±1.1, z/h ≃ 1.1. As we move downwind through rx/h = −1.2, −0.8, −0.4,
the cores move apart such that at rx/h = −0.4, they are located at ry/h ≃ ±1.7 and
move upwards to z/h ≃ 2.2, while the downdraft between them becomes stronger.
This downdraft is blocked by the lower boundary and produces strong lateral flow
in the lower canopy. This vortex pair weakens after rx/h = 0, and the downdraft is
replaced by an updraft. By rx/h = 0.8 we can see that a new pair of vortices has
emerged at a lower level, rotating in the opposite sense and generating an updraft
between them. At rx/h = 0.8 the vortex cores are located at ry/h ≃ ±1.05, z/h ≃ 0.8.
The circulation around the cores strengthens in the downstream direction. The cores
retain a consistent lateral separation but become higher and by rx/h = 1.6 are found
at z ≃ 1.2h. A clear picture has emerged of two pairs of counter-rotating vortices, the
downstream pair rotating in such a way as to generate an ejection and the upstream
pair generating a sweep. The vortex pairs are both inclined in the {rx, z} plane with a
slope of around 37◦ in the downstream direction for the sweep and about 27◦ for the
pair associated with the ejection. The strongest sweeps and ejections are found close
to the {rx, 0, z} plane of symmetry of the eddy, but the statistics shown in figure 2, of
course, include contributions from all parts of the structure, as many coherent eddies
are advected past a fixed point, blurring somewhat the dominance of strong sweeps
over strong ejections.

Ideally we would like to be able to define a variable whose density surfaces reveal
the three-dimensional structure of the vortices. Such a variable should reflect not only
the local vorticity but also the coherent swirling nature of the structure, which is a
global property. Several functions of the velocity gradient tensor ∂ui/∂xj have been
suggested as candidates. Jeong & Hussain (1995) proposed a definition of a vortex
in terms of the eigenvalues of the symmetric tensor S2 + Ω2, where S and Ω are
the symmetric and antisymmetric parts of ∂ui/∂xj . They specified a vortex core as
‘a connected region with two negative eigenvalues of S2 + Ω2’ and pointed out that
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Figure 4. Transverse slices across a composite average structure at a series of streamwise
displacements from the positive pressure peak, showing {v′, w′} velocity vectors. The left-hand
series passes through the region of the sweep from the most upwind location (d ) rx/h = −1.6
(bottom left panel) to (a) rx/h = −0.4. The right-hand series passes through the ejection from
(h) rx/h = +0.4 to the furthest downwind location at (e) rx/h = +1.6. For clarity, vectors
are not drawn to scale. Maximum arrow length is the same in each section, but the largest
{v′, w′}vector is found in the sweep at rx/h = −0.4, and the smallest peak vector is found in
the ejection at rx/h = +1.6. The horizontal line at z/h = 1 represents the top of the canopy.

since S2 +Ω2 is symmetric, this reduces to the requirement that the second eigenvalue
λ2 is negative. We selected a value for λ2 by trial and error in order to visualize the
vortex cores as clearly as possible. First, in figure 5, we compare contours of λ2 with
the field of {v′, w′} vectors on one of the {ry, z} planes of figure 4. We can see that
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Figure 5. A slice across a {y,z} plane of a composite average structure at a streamwise
displacement of rx/h = −0.4 near the centre of the sweep. Vectors show the {v′, w′} components
of velocity, while contours are negative values of λ2 with a peak value of approximately −2.

the λ2 values are biased towards the region of high vorticity in the strongly sheared
regions at the edge of the downdraft. As a result, contours of λ2 emphasize the inner
boundaries of the vortices shown in figure 5 and show a more compact structure. To
avoid this mismatch we have tried other vortex identification methods, specifically the
three other criteria compared to λ2 by Chakraborty, Balachandar & Adrian (2005)
(Q, � and λci) and the eigenhelicity method of Zhang & Choudhury (2006). All of
these methods, however, suffered from shortcomings the same as or more serious than
λ2, when applied to our data; so we use only the λ2 method henceforth.

In figure 6 we present isosurfaces of λ2 for the composite eddy, which show
that the inclined streamwise vortex pairs are connected to form hairpin vortices.
We see the head-up ejection-generating hairpin followed by a stronger head-down
sweep-generating hairpin. Note that if we decrease the λ2 threshold, the hairpins
transform into vortex loops connected at both head and tail. This is because we are
tracing perturbation rather than total vorticity, and so we should expect the vortex
lines associated with the cores of the hairpins to form closed loops of perturbation
vorticity (see Kim & Moin 1986, figure 4).

Head-up hairpin vortices have been directly observed in boundary layer and channel
flows over many years starting with the flow visualization of Head & Bandyopadhyay
(1981) and more recently by various eduction methods in real and computed flows
(e.g. Kim & Moin 1986; Zhou et al. 1999). Head-down hairpins are observed less
frequently, but in the homogeneous-shear-flow simulations of Rogers & Moin (1987)
and Gerz et al. (1994) they occurred with frequency equal to head-ups, and in the
simulations of Gerz et al. they appeared to be paired with head-up hairpins. They
also form a key part of the flow structure associated with sweeps in the channel-flow
results of Kim & Moin (1986).

Together with the two hairpins revealed by isosurfaces of λ2, figure 6 displays
isosurfaces of the contribution to the sweep and ejection quadrants of u′w′ from the
ensemble-averaged flow field. It is strikingly clear that the dominant contribution
to the Q4 sweep quadrant is generated between the legs of the head-down hairpin,
while that of the Q2 ejection quadrant is generated between the legs of the head-up
hairpin. Also included in figure 6 is a visualization of the scalar microfront. This
is revealed most clearly by choosing a particular value of the scalar concentration
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Figure 6. Three-dimensional representation of a structure as a composite average of a large
number of events identified according to a positive pressure pulse in the vicinity of the canopy
top. In this series of images, the objects rotate clockwise within the frame from (a) the right
rear quadrant to (d ) the right front quadrant, as shown by the coordinate system at the upper
right of each part. The isosurfaces shown in blue are of λ2 at a value of −0.77. The translucent
sheet in green is an isosurface of zero scalar concentration perturbation from the horizontal
average. The isosurface shown in orange is of u′w′ at a value of −0.6 m2 s−2 in the region of
the sweep, while that in yellow is the same quantity at a value of −0.15m2 s−2 associated with
the ejection. Note that the u′w′ isosurface of the sweep is drawn at a value that is four times
greater than that of the ejection.

close to c′ = 0 rather than an isosurface of the gradient ∂c/∂xi . We recall that the
scalar c is released with constant flux density from the canopy. The coherence of the
microfront is remarkable given the extremely high turbulent intensities in the canopy
and illustrates the organization imposed on the flow by the large canopy eddies. It is
evidently a result of the strong flow convergence between the ejection and the sweep.

An immediate question is whether the spatial relationship of the two hairpins is
an artefact of our compositing process. Blocking of a sweep by the ground produces
a positive pressure pulse downstream of the sweep (Shaw et al. 1990). Similarly, an
ejection encountering faster-moving air above will produce a region of convergence
and a positive pressure pulse upstream (Adrian, Meinhart & Tomkins 2000). It is
possible therefore that triggering on a pressure peak aligns head-up and head-down
hairpins that are spatially unrelated. We tested this by computing the conditional



Turbulence structure above a vegetation canopy 401

probabilities of pressure peaks given following sweeps, pressure peaks given preceding
ejections and pressure peaks given both following sweeps and preceding ejections. The
results are tabulated in Appendix B. While the statistics depend on the magnitude of
the thresholds used to identify the pressure peaks and the sweeps and ejections, it is
clear that for typically 60 % of the time, a pressure peak is preceded by an ejection
and followed by a sweep. This rises to 80 % if we include only the stronger sweeps
and ejections.

A second set of questions concerned the temporal relationship of the events: does
the sweep trigger the ejection? Does the ejection trigger the sweep? Or do the two
hairpins develop simultaneously? To test this we adopted the following procedure to
generate a time-evolution of an ensemble-averaged structure:

(i) The spatio-temporal locations {x, y, t}i of canopy-top pressure maxima were
identified as individual events within 12 instantaneous three-dimensional volumes of
LES output from run A1.

(ii) From each of these locations, the flow field at the canopy top was searched
backwards and forwards in time and space to determine the time and place at which
the pressure pulse reached its maximum amplitude. This time and space location,
{xp, yp, tp}

i
was taken as the centre of each event at its most mature stage. If multiple

events were identified within plus or minus 20 grid points in the x or y direction, then
only the event with the largest pressure pulse was retained.

(iii) The ensemble-averaged flow field coinciding with the pressure peaks was
created by averaging all these events. Between 15 and 25 events were identified
within each of the 12 independent time realizations (totalling NT = 253 events), and
each event was shifted in horizontal space and in time so that all {xp, yp, tp}

i
were

coincident in a new coordinate system {rx, ry, rt} whose origin {rx, ry, rt} = {0, 0, 0}
coincided with the ensemble maximum pressure peak.

(iv) The time-evolving ensemble-averaged flow field was created by ensemble
averaging the space–time-shifted events over the time period rt = −12.5 s and rt =
+12.5 s.

(v) The time-evolving three-dimensional ensemble-averaged eddy structure was
then visualized using an appropriate λ2 threshold.

Snapshots from the time evolution of an ensemble-averaged structure are presented
in figure 7. First we note that the λ2 isosurfaces are much noisier than those presented
in figure 6. This is largely because there are many fewer events contained within
this ensemble (253 compared with the M = 5508 events that went into computing
figures 3, 4 and 6). This is a result of the extremely large storage required to perform
this analysis (i.e. 250 consecutive three-dimensional volumes from 12 independent time
periods, a total of 3000 three-dimensional volumes of five 8 byte variables totalling
about 500 gigabytes). Second, the emergence and disappearance of the two-hairpin
structure may be a poor indication of the real eddy lifetime, as destructive interference
between individual eddies having different sizes, advecting at different speeds and/or
having different intrinsic lifetimes may set the limit to the duration of the ensemble
eddy. To the extent that this approach can resolve the question, however, it seems
that the head-up and head-down hairpins appear simultaneously. Focusing on the
first panel at −6.5 s we see that two fairly incoherent ‘lumps’ of λ2 have appeared
with the expected separation and inclination in the downstream direction, and by the
second panel at −1.5 s, the two hairpin vortex shapes are clear. There is no evidence
that one is triggered or induced by the other. In the last two panels we see that the
stronger head-down hairpin is more persistent than the head-up, but this may be an
artefact caused by the need to choose a single threshold value of λ2 with which to
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Figure 7. Snapshots of time evolution of the characteristic eddy as revealed by isosurfaces
of λ2. The four panels depict different times (rt ) and rotated views. The head-down hairpin is
more coherent than the head-up in this simulation, and both hairpins are much noisier than in
figure 6, as far fewer time-evolving realizations are included in the ensemble. The simultaneous
appearance of both hairpins is clear.
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Figure 8. Three-dimensional representation of a structure as a composite average of a large
number of events identified according to a positive pressure pulse detected at three times
the height of the canopy (3h). In this series of images, the objects rotate clockwise within
the frame from (a) the right rear quadrant to (d ) the right front quadrant, as shown by the
coordinate system at the upper right of each part. The isosurfaces shown in blue are of λ2 at
a value of −0.08. The translucent sheet in green is an isosurface of zero scalar concentration
perturbation from the horizontal average. The isosurface shown in orange is of u′w′ in the
region of the sweep, while that in yellow is the same quantity as that associated with the
ejection. Note that the u′w′ isosurface of the ejection is drawn at a value that is 1.8 times
greater than that of the ejection.

identify the structures. At a lower λ2 value, the head-up hairpin may persist for longer
in a coherent form.

In figure 8 we present a composite plot of an ensemble-averaged eddy similar to
figure 6 but this time triggered on pressure peaks at z = 3h, which is more than four
times the height above the canopy at which ejections first exceed sweeps in their
contribution to u′w′ (see figure 2). We can immediately see that the coherence of the
eddy structure and the scalar microfront is degraded and that the head-up hairpin
and its accompanying Q2 contribution greatly exceed the Q4 contribution of the
weak, head-down hairpin.

This three-dimensional eddy structure successfully explains observations by a
number of workers who have analysed field, wind-tunnel and numerical simulations of
canopy flow. Earlier observations are summarized in Finnigan & Shaw (2000), while
the more recent LES results of Fitzmaurice et al. (2004) and Watanabe (2004) confirm
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the picture (although Watanabe’s dynamical explanation of his results differs from
that which we will propose in § 5). All of these data show that strong sweep motions
are preceded by weaker ejections, that the sweep is preceded by lateral outflows or
at least high values of σv and that intense scalar microfronts are associated with
the leading edge of the sweep. The structure also reveals why momentum and scalar
transfer is concentrated in a narrow region elongated in the streamwise direction
(Shaw et al. 1996; Finnigan & Shaw 2000; Su et al. 2000) and located between the
legs of the hairpins so that the lateral extent of strong transfer is much smaller than
the width of the coherent eddy.

4.2. Instantaneous realizations

To test whether the composite eddies are representative of instantaneous structures,
we have looked at the flow fields of individual events that go into forming our
ensemble averages. We examined plots of pressure and vertical velocity in the
{x, y} plane at z = h and selected events that show a tight streamwise sequence of
downdraft–pressure peak–updraft. For each event, isosurfaces of λ2 were plotted
in the hope of identifying head-up and head-down vortices. An example is shown
in figure 9. To illustrate the sense of rotation, the isosurfaces of λ2 are coloured
according to whether the streamwise vorticity is positive (red) or negative (blue).
In addition, an isosurface of positive pressure perturbation is shown (in green) to
illustrate its positional relationship with the vortices. The isosurface of λ2 in the
example is λ2 = −10, which is much larger than the λ2 ≈ −0.77 surfaces chosen
for the composite average field. This difference is an indication of the degree of
destructive interference between the individual events that go to form the composites.

Whatever threshold value of λ2 is used to plot isosurfaces, the images are always
very complicated with no clear evidence of hairpins. However, in each case, a coherent
inclined vortex is seen, which could be the leg of a head-up or a head-down hairpin.
Examination of a number of such instantaneous events shows, in the region upwind
of the pressure maximum, a predominance of negative streamwise vorticity on the
right side and positive streamwise vorticity on the left side (looking downstream).
This implies a downdraft between the two legs, associated with a sweep. A clear
example of this is illustrated in figure 9, although in this particular case, the region of
negative vorticity appearing in blue is more extensive than that of positive vorticity.
An equivalent arrangement of λ2 surfaces and streamwise vorticity, but in reversed
sense, predominates in the downwind region, associated with an ejection, although
the weaker character of the ejection makes the feature less obvious.

Furthermore, figure 10 illustrates that {y, z} cross-sections of v′, w′ vectors exhibit
a tight correspondence between contours of λ2 and the rotation centres revealed
by the vectors, in contrast to what we find in the composite analyses, where λ2 is
influenced by shear, and the peak of λ2 is displaced significantly from the visual centre
of rotation as we saw in figure 5.

The failure of instantaneous snapshots to form clear hairpins corresponds to general
experience when eddies are educed by velocity patterns or functions of the strain
tensor, ∂ui/∂xj (see for example Robinson 1991; Adrian et al. 2000). Kim & Moin
(1986) showed that identifying the vortex as a compact region of space containing
parallel traces of the total vorticity vector allowed them to show instantaneous
structures as connected hairpins of vorticity albeit strongly distorted by the ambient
turbulence. The circulation about the cross-section of an instantaneous hairpin vortex
should remain constant even as it is distorted by ambient turbulence. If the vortex
cross-section increases at any point, however, due to random straining, so that the
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Figure 9. Three-dimensional representation of an instantaneous structure identified according
to a positive pressure pulse in the vicinity of the canopy top and extracted from a single
realization. In this series of images, the objects rotate clockwise within the frame from (a) the
right rear quadrant to (d ) the right front quadrant, as shown by the coordinate system at the
upper right of each part. The isosurface near the centre of the domain, shown in green, is of
pressure perturbation equal to approximately four times the standard deviation. Isosurfaces
of λ2 at a value of −10 are shown in red when the streamwise vorticity is positive and in
blue when the streamwise vorticity is negative. Arrows point to the region of negative vorticity
discussed in the text.

lines of vorticity that were required to keep the circulation around the hairpin axis
constant occupy a greater cross-sectional area, then λ2 might drop locally below
the chosen threshold. This would give the impression of disconnected vortex tubes.
This effect is exaggerated also because we are plotting perturbation rather than total
velocity and (by implication) vortical structures.

4.3. EOF analysis

In analysing a wind-tunnel-model canopy data set, Finnigan & Shaw (2000) applied
an approach first suggested by Lumley (1967) as a way to avoid the subjectivity
of educing characteristic eddies by conditional sampling. This was to compute the
EOF spectrum of the flow field. A flow field containing coherent structures has an
EOF spectrum that converges significantly faster than a purely random field; so EOF
analysis is a sensitive test of the presence of coherent eddies. Furthermore, with
the weak assumption that coherent eddies are spatially compact, it is possible to
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Figure 11. Vertical profiles of the variance of the u velocity reconstructed from the sum of the
first eigenmode, from the first 3, 5 and 10 eigenmodes and from the sum of all 90 eigenmodes
for (a) the RSL (nominally z= 0 to 3h) and (b) the ISL (nominally z= 3h–6h). The variance
is calculated as the sum over all wavenumbers kx and ky .

reconstruct the three-dimensional velocity (or five-dimensional velocity–pressure–
scalar) field of the characteristic eddy by truncating the EOF spectrum and retaining
only those eigenmodes responsible for most of the turbulent kinetic energy or variance.
Finnigan & Shaw (2000) closely followed the methodology developed by Moin &
Moser (1989). The same analysis has here been applied to the five-dimensional data
fields from the LES. For full details of the approach, see Finnigan & Shaw (2000)
and the references therein.

In figure 11 we illustrate the more rapid convergence of the EOF spectrum in
the canopy/RSL region relative to the ISL by comparing partial sums of the EOF
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Figure 12. Fractional contribution to total u variance from the sums of the first 1, 2, 3, . . . , 20
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three variables, u, v, w). The variance is calculated as the sum over all wavenumbers kx

and ky .

eigenmodes to the total variance of u velocity, in the same way as in figure 4 of
Finnigan & Shaw (2000). The rate at which the u variance approaches the total
variance as the eigenmodes are summed is shown more clearly in figure 12, where in
the RSL, the first eigenmode accounts for 70 % of the total variance, while in the ISL,
the first eigenmode accounts for less than 50 %. The rate of convergence is somewhat
slower than that found by Finnigan & Shaw (2000) from their two-dimensional wind-
tunnel velocity fields because higher-dimensional EOFs converge more slowly than
the lower-dimensional ones. The present analysis nevertheless confirms the earlier
result.

We have applied the compactness condition used by Finnigan & Shaw (2000)
to construct the three-dimensional velocity field of the characteristic eddy by using
just the first three eigenmodes of the EOF spectrum. These three eigenmodes carry
77 % of the turbulent kinetic energy of the LES model flow. The resulting eddy is
visualized using isosurfaces of λ2 in figure 13. What we see is very similar to the
head-down hairpin of figure 6 with the difference that the transverse part of the
structure is weaker. Reducing the visualization threshold for λ2 causes the transverse
vortex linking the legs to appear but at the expense of more noise. This corresponds
to the eddy structure educed from wind-tunnel data by Finnigan & Shaw (2000),
where it was identified as a sweep-generating vortex pair. How ever, EOFs are the
eigenmodes of the two-point velocity covariance tensor Rij (xk, xl) = u′

i(xk)u
′
j (xl), and

since Rij is invariant if the signs of u′
i and u′

j are exchanged, the contributions of a
characteristic eddy constructed from EOF modes to the Q2 or Q4 quadrant cannot
be distinguished. Another way of saying this is that we cannot tell which way the
legs of a vortex pair constructed from EOF modes are rotating.
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Figure 13. Representation of λ2 analysis of the characteristic eddy reconstructed from LES
output using the proper orthogonal decomposition of Lumley (1967) and applying the
compactness condition. Only the first three eigenmodes (which are responsible for 77 %
of the turbulent kinetic energy) are used in the reconstruction of the eddy.

Finnigan & Shaw (2000) deduced the direction of rotation of their vortex pair by
the fact that the sweep quadrant was dominant. We can now see that the contribution
of both the head-up and head-down hairpins to Rij must be of the same sign, so
that the EOF compactness condition superimposes their two fields, giving us a single
vortex pair of indeterminate rotation as a characteristic eddy. A series of authors
have presented eddy structures based on this procedure in both free and wall-bounded
flows (see for example Holmes, Lumley & Berkooz 1996), and the discrepancy we
see here between EOF and composite structures suggests that some of these results
might bear re-examination.

5. Discussion

5.1. Comparison with eddy structure in other shear flows

It is instructive to summarize the available data on three-dimensional eddy structure
in other shear flows to set our results in context. We will consider plane mixing layers,
homogeneous-shear flows and smooth-wall channel and boundary-layer flows, where
the three-dimensional structure has been educed directly.

The DNSs of plane mixing layers by Moser & Rogers (1993) and Rogers & Moser
(1994) provide the most detailed information on eddy structure in such flows, although
flow visualization of transverse vortices in mixing layers provided some of the earliest
evidence of coherent structures in turbulent flows (e.g. Brown & Roshko 1974). At
an early stage of development, the mixing layers are dominated by spanwise roller
vortices which pair stochastically as the layer develops. Quasi-streamwise ‘rib vortices’
develop in the strongly strained braid regions between the rollers, and these vortices
also pair to form coherent rib vortices with a preferred spanwise spacing. Interestingly,
in these numerical simulations it was found that the development of clean rib vortices
required low levels of ambient turbulence. The initial stages of kinking of spanwise
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rollers and the development of streamwise rib vortices is quite well described by linear
stability theory (Pierrehumbert & Widnall 1982; Liu 1988). Depending on the starting
point chosen, the rib vortices and the transverse rollers can be interpreted as head-up
or head-down hairpins.

Rogers & Moin (1987) computed instantaneous vorticity fields from a DNS
of homogeneous-shear flow at moderate Reynolds number. They observed both
head-up and head-down hairpins aligned with the direction of maximum positive
strain of the plane shear, ±45◦. Head-up and head-down hairpins seemed to occur
with equal frequency. Gerz et al. (1994) performed a similar study augmented by the
addition of a mean scalar gradient to the flow so that the simultaneous development
of the velocity and scalar fields could be observed. They also found an equal frequency
of head-up and head-down structures but noted in addition that they tended to occur
in pairs with an upstream, sweep-generating head-down overlying a downstream
ejection-generating head-up. Between the two, the region of strong convergence was
the location of intense scalar microfronts.

A consistent picture of the eddy structure of smooth-wall flows has been developed
over the last 10 years in a series of papers by R. J. Adrian and various collaborators,
using PIV measurements in real flows augmented by some numerical simulations.
Their conceptual view explains many earlier observations and also some of the
contemporary work that it incorporates. Its key mechanism is the generation of a
primary head-up hairpin in the buffer region by the upward deflection and straining
of ambient spanwise vorticity. The ejection generated between the legs of this primary
hairpin generates a secondary head-up hairpin upwind, and this in turn generates
another, and so on. The merging of these ejections results in a low-speed streak
straddled by a sequence or ‘packet’ of head-up hairpins. A further head-up hairpin
can be generated downwind of the primary. This mechanism has been demonstrated
numerically by Zhou et al. (1999) and physically, albeit in a laminar flow, by Haidari
& Smith (1994).

This vortex packet grows up into the ISL within an envelope inclined at around
15◦ to the wall, although the inclination angle of the individual hairpins is closer
to 45◦. In the outer region above the ISL, the vortex packets can become detached
from the wall (Adrian et al. 2000). Lateral-scale growth of the vortices occurs as they
age but not in the self-similar way required by logarithmic ISL scaling. Instead this
is accomplished by stochastic pairing of adjacent hairpins and cancellation of the
oppositely signed vorticity of adjacent legs. Linear-scale growth through the ISL
therefore occurs in a mean sense (Tomkins & Adrian 2003). Within the bottom of the
buffer region and in the viscous sublayer, the trailing legs of the hairpins are almost
parallel to the wall, being inclined at ∼10◦ in the {x–z} plane (Jeong et al. 1997). In
this model, Q2 ejections induced between the legs of the head-up hairpins are the
dominant contribution to 〈u′w′〉 within and above the buffer region; Q4 sweeps are
generated by the transverse rollers that comprise the connecting heads of the head-up
hairpins. Indeed, a good deal of the evidence for the head-up hairpins in the ISL and
outer region is obtained by detecting spanwise rollers in PIV slices in the x–z plane
(Adrian et al. 2000; Christensen & Adrian 2001).

A significantly different conceptual model is provided by the analysis of an
LES of channel flow by Moin & Kim (1985) and Kim & Moin (1986). They
produced ensemble-averaged three-dimensional vorticity fields by triggering on
regions of deceleration into and acceleration out of low streamwise velocity, i.e.
u′ < 0, ∂u′/∂x < 0 or u′ < 0, ∂u′/∂x > 0. Very close to the wall, y+ < 20, there were
no vortical structures, but in the ISL, 300 >y+ > 50, a clear pattern of head-up
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followed by head-down hairpins was detected with the head-downs appearing to lie
above the head-ups as in our canopy/RSL data set. Modifying the detection scheme
so that the sampling trigger was a Q2 ejection removed the head-down hairpins, and
similarly, triggering on Q4 sweeps removed the head-ups.

Kim & Moin (1986) were also able to extract instantaneous structures as coherent
bundles of vortex lines and so showed that the ensemble-averaged hairpins were
composed of strongly distorted and asymmetrical hairpin or horseshoe structures
rather than ‘walking sticks’ or ‘cane’ vortices that had been fortuitously assembled
into hairpins by the ensemble-averaging process as suggested by other authors (e.g.
Robinson 1991; Adrian et al. 2000). The results of Kim & Moin (1986) give strong
support to a dynamical process whereby the hairpins are generated by deflection of
sheets of ambient spanwise vorticity towards or away from the wall and where the
dominant sweep-generating mechanism is the same as the ejection mechanism, that
is induced flow between the hairpin legs, rather than downwash in front of the head
roller of a head-up hairpin.

There are clearly significant differences between the picture of eddy structure in
mixing layers and homogeneous-shear flows and in channel flows according to Kim
& Moin (1986) and that proposed by Adrian and collaborators. The free-shear
and homogeneous-shear flows have equal probabilities of head-up and head-down
hairpins, often linked in pairs, while in the channel flow of Kim & Moin (1986) both
are found within the buffer and ISLs, again with a strong indication that they occur
in pairs. In the conceptual model of Adrian and collaborators, in contrast, head-down
hairpins play no dynamic role, and both Q2 ejections and Q4 sweeps are generated
by different parts of a population of head-up hairpins. This physical picture maps
directly on to the conceptual picture of the attached-eddy hypothesis introduced by
Townsend (1976) and developed by Perry & Marusic (1995) amongst others and the
influential flow visualizations of Head & Bandyopadhyay (1981).

It is beyond the scope of this paper to reconcile these alternative views, but a few
comments may be apposite. In the analysis of Kim & Moin (1986), triggering on Q2
(Q4) events yielded only head-up (head-down) hairpins, suggesting that conditional-
sampling schemes that use only ejections as triggers may exclude head-down hairpins
from the resulting ensemble structures. Most of the eduction schemes used by Adrian
and collaborators assume a priori that the coherent structures are composed of head-
up hairpins. For example Adrian et al. (2000) and Christensen & Adrian (2001)
identified transverse vortices in the {x, z} plane as the heads of head-up rather than
the feet of head-down hairpins, while Tomkins & Adrian (2003) paired localized
regions of rotation in the {x, y} plane so as to form the legs of head-up rather
than head-down hairpins. Similarly, Liu, Adrian & Hanratty (2001) formed three-
dimensional structures from a truncated EOF spectrum in which, as we have noted
in § 4.3, the dominant structure will be the only one to emerge. Finnigan & Shaw
(2000), for example, found only a head-down sweep-generating hairpin because this
was more energetic than the coexisting head-up, and we would expect the converse
to occur where ejections dominated.

5.2. A phenomenological model of canopy/RSL dynamics

A conceptual model of the eddy structure in the canopy/RSL must explain the key
differences between turbulence statistics there and in the ISL above or in the buffer
layer and ISL of a smooth-wall flow. In particular we need to explain the greater eddy
coherence or scale selection in the RSL/canopy, the greater efficiency of transport
and the dominance of sweeps over ejections, Q2/Q4 < 1, changing smoothly to
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Q2/Q4 > 1 as the RSL is traversed (figure 2). Our starting point is to assume that
greater eddy coherence provides a sufficient explanation for the greater efficiency of
turbulent transport as the canopy top is approached as seen both in an increase in
|ruw| = u′w′/(σuσu) and mean gradients of wind speed and in scalars that are smaller
than logarithmic in the constant flux region.

The mixing-layer analogy advanced by Raupach et al. (1996) makes the primary
cause of the coherent eddy structure in the RSL/canopy layer an inviscid instability
of the inflected mean-velocity profile at the canopy top. An inflection point in the
mean-velocity profile is inevitable when momentum is absorbed over a finite-height
range rather than at a plane wall. Linear and nonlinear stability analysis of this
inflected profile predicts a sequence of unstable eigenmodes first in two and then in
three dimensions (Michalke 1964, 1965; Stuart 1967; Drazin & Reid 1981). The initial
linear instability is a Kelvin–Helmholtz wave, which can be interpreted as regions of
positive and negative perturbations in spanwise vorticity, alternating in the streamwise
direction with a wavelength λ that is proportional to the vorticity thickness δω. In
flow through a sufficiently dense canopy we assume δω = 2U (h)/[∂U/∂z](h), where the
location of the inflection point defines h, the canopy top (Raupach et al. 1996). The
background flow with this wave-like perturbation superposed is itself unstable, and
a nonlinear analysis shows that the vorticity wave can evolve into finite-amplitude
transverse vortices, which are spaced in the streamwise direction with the original
wavelength λ (Stuart 1967).

Identifying λ with the streamwise separation of distinct large eddies at the canopy
top, Raupach et al. (1996) obtained a good linear relationship, λ ≃ 4.0δω, over a range
of canopies with heights ranging from 50 mm (wind-tunnel models) to 24 m (deciduous
forests). This is midway in the range 5.0δω > λ > 3.5δω found from DNS models and
direct measurements of fully developed turbulent mixing layers but smaller than the
fastest growing mode predicted by linear stability analysis of a laminar mixing layer,
which is λ ∼= 7.0δω (Michalke 1964, 1965). Despite this discrepancy, it was evident that
the hydrodynamic instability associated with the inflection point results in strong scale
selection for the primary streamwise mode. A feature of this instability mechanism
is that the growth rate of the primary Kelvin–Helmholtz mode is proportional to
the mean shear. Hence, Raupach et al. (1996) proposed that these coherent vortex
structures should emerge preferentially when the canopy-top shear was augmented
by the passage of a large-scale sweep originating in the outer part of the boundary
layer. Evidence for this is the enhanced convection velocity of coherent canopy eddies,
which is typically ∼ 1.8U (h) (Shaw et al. 1995; Su et al. 2000).

We must next explain the strong preference for the occurrence of head-up and
head-down hairpins in pairs with head-downs following and overlying head-ups. Two
possibilities can be considered. The first is that a random head-down deflection
generates a downstream sweep, whereupon blocking by the wall produces a positive
pressure perturbation. This in turn produces a velocity excursion away from the wall
and eventually a head-up hairpin downstream of the sweep. Alternatively, a random
head-up deflection produces an ejection which blocks the higher-velocity fluid above,
producing a positive pressure perturbation. This forces a negative velocity excursion
upstream and eventually a head-down hairpin upstream.

While neither of these mechanisms can be definitively ruled out, the modelling of
Jeong et al. (1997) suggests that the latter mechanism would produce another head-up
hairpin rather than a head-down, while the former requires the close proximity of the
wall in order for the sweep to generate an outward excursion ahead of it. However,
the key characteristics of canopy/RSL turbulence are seen even in canopies in which
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a dense crown space is elevated far from the surface, as in a tropical rainforest. There
the sweep cannot be strongly blocked by the ground surface. A similar observation can
be made about the head-up, head down pairing observed in the homogeneous-shear
simulations of Gerz et al. (1994). Both of the mechanisms suggested above imply a
clear sequence in which one hairpin is formed before the other. As discussed in § 4.1,
as far as we can tell from space–time ensemble averaging, the head-up and head-down
hairpins form simultaneously, although it must be admitted that this technique is not
a strong discriminator.

An alternative mechanism is suggested by the linear stability analysis of
Pierrehumbert & Widnall (1982). They investigated the stability of a background
flow comprising a train of ‘Stuart’ vortices embedded in a hyperbolic-tangent mean-
shear flow. The spanwise vortex cores were located at z = 0 with a streamwise spacing
of λ. They described two unstable modes in detail, and the first, ‘helical-pairing’
mode is relevant to our observations. This mode results in adjacent Stuart vortices
approaching and rotating around each other. The nature of this instability is easy
to understand. If all the vortices remained a distance λ apart, then the upward
displacement of a vortex in the induced velocity field of its downstream neighbour is
exactly cancelled by the downward displacement generated by its upstream neighbour.
If two vortices approach more closely than λ, however, the effect of their mutually
induced velocity fields causes them to rotate around each other in a clockwise sense,
the downwind vortex being deflected below z =0 and the upwind one above z =0.
This vortex-pairing instability was described in two-dimensional mixing layers by
Winant & Browand (1974) and shown to be the primary mechanism of transverse
growth of the mixing layer. It has also been clearly observed in two-dimensional flow
above a canopy in a water channel (White & Nepf 2007).

Pierrehumbert & Widnall (1982) showed that the growth rate of this mode is
largest when the Stuart vortices remain parallel to the spanwise y axis, but this is
itself an impossibly unstable configuration, and two vortices will initially be caused to
approach closer than λ by ambient turbulent perturbations of finite spanwise extent.
If two Stuart vortices are caused to approach closer than λ at some y position by a
random turbulent fluctuation, then their upstream and downstream neighbour pairs
will also suffer an imbalance in their induced motions and will also commence to
rotate around each other, and in this way a streamwise train of vortex pairings centred
on the same y location will propagate upwind and downwind. Hence, Pierrehumbert
& Widnall (1982) showed that the most probable helical-pairing mode is periodic in
y with a period 2λ/3 and in x with a period 2λ. This pattern is displayed in figure 6
of Pierrehumbert & Widnall (1982), and it is clear that with one choice of origin, the
pattern can be interpreted as a series of head-down hairpins overlying head-ups or,
if we shift the origin laterally by half a period, as a series of the head-ups overlying
head-downs. If this instability is the origin of the twin-hairpin eddies we have educed,
their streamwise wavelength should match the sub-harmonic helical-pairing mode
with eddies having an average streamwise spacing of twice the fundamental Kelvin–
Helmholtz wavelength of λ ∼= 7.0δω. At first sight, this prediction is at odds with
the conclusion of Raupach et al. (1996), who found that their observed eddy spacing
was closer to λ ∼= 4.0δω. To resolve this roughly fourfold discrepancy we revisited the
calculations of Raupach et al. (1996) and made the following observations.

First Raupach et al. (1996) based their observations of λ on measurements of
the streamwise correlation in vertical velocity, w′, using primarily fwp , the peak
in the frequency spectrum of w′ and assuming Taylor’s hypothesis, adjusted for the
observed convection velocity of canopy-top eddies, which was taken as Uc ≃ 1.8〈u〉(h)
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(Finnigan 1979; Shaw et al. 1994; Su et al. 2000). However, a comparison between
the peak frequencies of w′ and u′ power spectra in the canopy/RSL reveals that the
streamwise velocity peaks at a normalized frequency, (fup h)/〈u〉(h), which is between
a quarter and a half of that of the vertical velocity (Kaimal & Finnigan 1994), so
that basing the relationship between λ and δω on fup rather than fwp brings us much
closer to a match with the sub-harmonic mode.

Furthermore, the data of Shaw et al. (1994) and Su et al. (2000) reveal that
streamwise integral length scales from two-point data are typically twice as large as
those obtained by applying Taylor’s hypothesis to single-point data. We conclude
that if we adjust the results of Raupach et al. (1996) for the discrepancy between
the streamwise correlation of w′ and u′ and also for the difference between single-
point and two-point length scales, we obtain a λ value that is consistent with the
sub-harmonic mode, viz. λ ≃ 15.0 δω. We can also compare the spanwise spacing of
the hairpin vortices (�ry ≈ ±1.1h) with the streamwise extent of the composite eddy
(�rx ≈ ± 2.5h). At �ry/�rx ≈ 2.2/5.0 this is slightly narrower than 2/3, the most
probable ratio predicted by Pierrehumbert & Widnall (1982), but is compatible
with it, given the eddy has evolved well past its linear phase. We note also that the
measurements of Ghisalberti & Nepf (2002) in a quasi-two-dimensional shallow-water
flow over a canopy and those of White & Nepf (2007) in a truly two-dimensional
canopy flow had transverse vortex wavelengths that matched the primary Kelvin–
Helmholtz value of λ ∼= 7.0δω rather than the shorter wavelength reported by Raupach
et al. (1996). In these two cases, the flow configuration does not allow the final three-
dimensional transition to coupled-hairpin eddies.

A possible sequence of instabilities leading to the development of a train of head-up
and head-down hairpins is sketched in figure 14. We suggest that the well-observed
sequence of instability from an initial Kelvin–Helmholtz wave to a train of coherent
transverse Stuart vortices is triggered when a large-scale sweep from the outer part
of the boundary layer raises the canopy-top shear above some threshold so that
the instability can emerge from the background turbulent ‘noise’ (figure 14a, b). At
some spanwise position yp this train of transverse vortices is perturbed by a random
turbulent eddy, triggering the upwind and downwind propagation of helical-pairing
instabilities as neighbouring vortex tubes approach and are deflected in each other’s
induced velocity fields at the same transverse location yp . As shown in figure 14c the
heads of the ‘proto’ head-up hairpins are deflected upwards and forwards by their
downwind neighbours, while the tails of the proto head-down hairpins are deflected
downwards and backwards by their upwind neighbours.

Finally, as the ‘proto hairpins’ are stretched by the mean shear, the vorticity in
their legs is amplified; their relative motion in a frame moving with the hairpins
is dominated by their self-induction; and the streamwise symmetry of the head-up,
head-down sequence is broken. The self-induced motion of the head-up hairpin is
upwards, while that of the head-down is downwards (Widnall 1975), so that a pair
of a leading head-up and a trailing head-down converge to generate a region of flow
convergence between them and a positive pressure pulse (figure 14d ). In contrast
the self-induced motions of a pair consisting of a leading head-down and a trailing
head-up act to move them apart.

This model, particularly the last phase shown in figure 14(c, d ), is highly speculative
and calls for a more rigorous explanation than the one we have advanced here. For
example we recall that this situation was also observed in a uniform shear flow by Gerz
et al. (1994), so that the mechanism of hairpin pairing must be independent of the
vertical heterogeneity of the mean flow and any instabilities that are associated with
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Figure 14. Schematic diagram of the formation of the dual-hairpin eddy. (a) The initial
instability is a Kelvin–Helmholtz wave of wavelength λ, which develops on the inflected
mean-velocity profile at the canopy top. (b) The resulting velocity field is nonlinearly unstable,
and successive regions of alternating spanwise vorticity clump into coherent ‘Stuart’ vortices,
which retain the wavelength, λ. (c) Two successive Stuart vortices are moved closer together
at some spanwise location yp by the ambient turbulence. The mutual induction of their
vorticity fields causes them to approach more closely and rotate around each other. Vortex
pairing doubles the wavelength of the disturbance to 2λ. Note that this disturbance of the
streamwise symmetry of the induced velocity fields of successive vortices will propagate
upwind and downwind at the same y location. (d ) As the initial hairpins are strained by
the mean shear, most of the vorticity accumulates in the legs, and self-induction by the
vortex legs dominates the motion of the hairpins. As a result, the head-down hairpin moves
down, while the head-up hairpin moves up. The broad arrows in (d ) indicate the direction
of hairpin movement under this self-induction. Note that in (d ) only the two central paired
vortices are shown in full. It is assumed that a similar pairing process proceeds upwind and
downwind.
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it. We also need to emphasize that this is a model of the ensemble structure and relies
heavily on the predictions of linear instability theory. This approach together with the
companion approach of rapid-distortion theory has a long provenance in explaining
aspects of turbulence structure (e.g. Townsend 1976; Hunt & Carruthers 1990). Liu
(1988) presented a detailed justification of the application of linear theory to free-shear
flows. In our case, the vortical structures obtained by compositing or EOF analysis
match the predictions of stability theory surprisingly well, but individual realizations
are strongly distorted around their composite averages by the ambient turbulence
(figure 9). The eigenmodes predicted by stability theory should be viewed, therefore,
as the preferred shapes towards which the fully turbulent flow tends (Frederiksen &
Branstator, 2005). Nevertheless, these models offer a compelling explanation for the
dominance of a single preferred mode shape and scale for the RSL–canopy eddies.

5.3. Transverse symmetry breaking

Head-up hairpins generate ejections, while head-down hairpins produce sweeps; so the
dominance of sweeps in the RSL/canopy region and of ejections in the ISL requires
some symmetry-breaking agency. There are two symmetry-breaking mechanisms at
work in a wall-bounded shear flow. Above the wall, downward motions with horizontal
scales comparable to the distance to the wall are effectively blocked (Hunt & Morrison
2000) so that at any z location, the probability of large deflections of hairpin vortices
away from the wall exceeds that of deflections towards the wall. At the same time, in a
roughly logarithmic velocity profile, hairpins deflected downwards experience stronger
strain and vortex amplification than hairpins deflected up by the same amount. In
a canopy–boundary-layer profile this effect is amplified near the canopy top so that
vortices deflected downwards are strained and rotated much more than those deflected
upwards the same distance. Note that in the conceptual model advanced in § 5.2, these
deflections are largely a result of self-induced motion of the hairpin vortices and strain
and advection by the mean flow.

We have illustrated this asymmetry in strain rates by plotting in figure 15(b)
∂2〈u1〉/∂z

2
versus z from the wind-tunnel data of Brunet et al. (1994), which matches

the LES results well as shown in figure 1. The second derivative is obtained by fitting
a cubic spline to the data with the fit shown in figure 15(a). We can interpret the

distribution of ∂2〈u1〉/∂z
2

around z = h as a measure of the rate that the shear is
changing with, z, and therefore of the strain that a deflected vortex would experience.
We see clearly in figure 15(b) that the shear falls much more rapidly above the canopy

(∂2〈u1〉/∂z
2
< 0) than within it.

Above a smooth solid wall, the greater probability of large upward deflections
outweighs the greater straining experienced by downward deflections, and head-up
hairpins dominate the dynamics, increasingly so as we move further from the wall.
At the canopy top, in contrast, the porous canopy allows downward deflections of
similar amplitude to upward deflections, at least for deflections whose vertical extent
is of the order of the canopy depth h or smaller, so that the greater strain downward
hairpins experience ensures that sweeps dominate. As we move above the canopy top
and the sizes of the eddies causing deflections become larger than h, the presence
of the wall again becomes the dominant factor so that sweep-generating head-down
hairpins become less important than ejection-generating head-ups. The crossover
point at which Q4 sweeps cease to make a larger contribution to momentum transfer
than Q2 ejections varies with the canopy structure but appears to be a function of
the vorticity thickness (see figure 2).
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Figure 15. (a) Cubic spline fit to the wind-tunnel observations of Brunet et al. (1994)
(crosses); (b) second derivative of the fitted curve from (a).

To summarize this conceptual model, the hydrodynamic instability associated
with the inflection in mean shear at the canopy top provides both strong scale
selection and a train of coherent spanwise Stuart vortices that is unstable to random
turbulent perturbations. When two Stuart vortices are locally deflected towards each
other, their mutual induction causes one to move up and the other to move down.
Because the vortex train develops above a porous canopy layer, significant downward
deflections are allowed, producing hairpins that are strained faster and whose vorticity
is preferentially amplified than those deflected upwards. As straining by the mean
shear amplifies the vorticity in the hairpin legs, the self-induced motion of the hairpins
results in preferred pairings with a leading head-up and trailing head-down and a
region of flow convergence between them. For vertical excursions much larger in
scale than the canopy height, blocking by the solid surface ensures that outward
excursions dominate, just as in smooth-wall flows. These two opposing symmetry-
breaking mechanisms explain the shift from sweep to ejection dominance as we move
up through the RSL into the ISL.

6. Summary and conclusions

This discussion of eddy structure in and above plant canopies has direct relevance
to rough-surface flows in general. Two key features of canopy/RSL flows – the
dominance of the sweep over the ejection quadrant in momentum transfer and the
existence of an RSL in which momentum is transferred more ‘efficiently’ towards
the surface than in the ISL above – are also seen over rough walls composed of
bluff objects (Bohm et al. 2000; Coceal et al. 2007). The rich data sets that have
been collected in and above vegetation canopies, however, as well as having intrinsic
interest, allow a more detailed investigation of the underlying processes than has so
far been possible over bluff surfaces.
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A series of other features of the turbulence, which are summarized in Appendix A,
show that the canopy/RSL turbulence is more coherent than that in the ISL and
that it is dominated by energetic eddies much larger in scale than the individual
elements of the vegetation. The five-dimensional velocity–pressure–scalar field of
these dominant eddies has been educed by compositing data from an LES. This
numerical simulation closely matches a wind-tunnel model (Brunet et al. 1994), which
in turn displays the key features of natural vegetation canopies. The trigger used for
compositing data volumes was a peak in the static-pressure fluctuation at the canopy
top. Earlier analysis of field data (Gao et al. 1989) and LES output (Fitzmaurice et al.
2004) has shown that this trigger was usually coincident with scalar microfronts in
canopies.

The eddy structure revealed was a linked pair of hairpin vortices, one upstream and
one downstream of the pressure peak and both inclined in the downstream direction.
The downstream hairpin had a head-up orientation, and the sense of rotation of
the vortex legs was such as to generate a strong Q2 ejection contribution to shear
stress between the legs. The upstream hairpin partly overlaid the downstream, and
it had a head-down orientation with an opposite sense of rotation; so a strong Q4
sweep event was generated between its legs. The convergence between the sweep and
ejection produces both the static-pressure pulse and an intense and coherent scalar
microfront lying between the two hairpins (see figures 3, 4 and 6).

This two-hairpin structure is different from that derived by EOF analysis of this
data set or of the prototype wind-tunnel data set by Finnigan & Shaw (2000). In
both of those cases a compactness condition was used to restore the inter-eigenmode
phase relationships, which are lost in the EOF procedure. This compactness condition
meant that the head-up and head-down hairpin vortices were superimposed, and the
sense of rotation of the vortex was defined by the need to generate a Q4 sweep as
the dominant shear-stress quadrant so that an eddy consisting only of a head-down
hairpin was inferred incorrectly. This experience sounds a warning for the use of
EOF eigenmodes in eddy reconstruction procedures in which the sense of rotation is
added empirically (e.g. Holmes et al. 1996).

The two-hairpin eddy is also distinctly different from the eddy structure inferred by a
range of conditional-sampling techniques in smooth-wall boundary-layer and channel
flows in which the conditional sampling has been triggered by Q2 ejections. These
approaches have produced a model for smooth-wall structure consisting of packets of
head-up Q2 ejection-generating hairpins, which straddle and synergistically generate
coherent low-speed streaks (e.g. Adrian et al. 2000). In this picture, the origin of any
Q4 sweep is the transverse roll vortex that connects the two legs of the hairpin (Zhou
et al. 1999). Above the buffer region, growth of individual hairpins and random
mergers of adjacent hairpins leads to steady scale growth. Other simulations of
smooth-wall channel flows, where eddy structure or coherent vortices are not selected
based on the presence of ejections, show populations of both head-up and head-down
hairpins. While contrasting with the picture developed in the references above, these
simulations do fit well with the present data set.

Based on the properties of this dual-hairpin structure together with earlier analysis
that has shown the similarities between canopy flows and plane mixing layers, we
have proposed a phenomenological model to explain the unique characteristics of
canopy/RSL turbulence. This model has three key features: strong scale selection by
a hydrodynamic instability; competing symmetry-breaking processes, one of which
dominates at the canopy top and the other at higher levels; and spatial eddy structure
corresponding to the linear eigenmodes associated with the hydrodynamic instability.
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Canopy/RSL eddies are much more coherent than those in the ISL, and we ascribe
this to the strong selection for a single instability mode of the inflected mean-velocity
profile at the canopy top. Raupach et al. (1996) showed a close relationship between
the scale of this inflection-point shear and the resultant eddy scale over a thousand-fold
size range in canopy heights. We have re-analysed the data of Raupach et al. (1996)
and have shown that it is compatible with the dual-hairpin structure once differences
between the integral length scales of vertical and streamwise velocity fluctuations are
accommodated. In contrast, above smooth walls no clear scale-selection mechanism
has been advanced for the observed spanwise spacing of ∼100y+ for the streamwise
vortices in the buffer and viscous sublayer (Jeong et al. 1997). Streamwise vortices
are certainly the dominant linear instability modes of plane shear flows, but explicit
parameter tuning is required to match the observed spacing (e.g. Butler & Farrell
1992).

Further indirect evidence for the fundamental role played by the hydrodynamic
instability is provided by the extension of MOST to the RSL by Harman & Finnigan
(2007, 2008). They used the vorticity thickness, δω, as an extra scaling length and were
able to match observed mean-velocity and scalar profiles in the upper canopy, through
the RSL and into the ISL across a range of canopy densities and diabatic stabilities.
Building on this work, we expect that δω is the appropriate length scale to collapse
higher moments of velocity in the RSL/canopy layers. This will be investigated in a
future publication.

Finally, we note that we have at several points highlighted the similarity between
the statistics of turbulence over vegetation canopies and rough surfaces consisting of
bluff objects as in urban canopies. The eddy coherence resulting from a hydrodynamic
instability provides a consistent explanation in the former case. Over a canopy of
bluff objects, however, it seems unlikely that the inflected velocity profile that exists
when we apply horizontal averaging can play the same dynamical role that it does in
vegetation, where the solid-element sizes are much smaller than the sizes of the large
eddies. Discovering the equivalent mechanism in canopies of bluff objects, therefore,
remains a challenging problem.
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Appendix A. Velocity statistics in the canopy/RSL and ISL

The differences between turbulent statistics in the ISL and in the canopy/RSL
have been comprehensively reviewed by Raupach et al. (1996) and Finnigan (2000).
Finnigan & Shaw (2000) also presented a detailed summary of conditionally sampled
statistics in these layers. Here we state the key differences:

(i) The mean-velocity profile 〈u〉(z) has an inflection point at the canopy top,
where its vertical location can serve as a dynamic definition of the canopy height, h.
Second moments, 〈u′w′〉, 〈u′2〉, 〈w′2〉, are approximately constant above the canopy
but decay rapidly with decreasing height within the canopy. Assuming the dispersive
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shear stress (4) is much smaller than the Reynolds stress, the decrease in 〈u′w′〉 is
necessary to balance the aerodynamic drag of the foliage.

(ii) Well above the canopy (z > 2h) the ratios of second moments take standard,
ISL values of σu/u∗ ≃ 2.5; σw/u∗ ≃ 1.25 (Garratt 1992), implying ruw = u′w′/(σuσw)
is about −0.32, while just above the canopy σu/u∗ ≃ 2.0; σw/u∗ ≃ 1.1, so that ruw

decreases to about −0.5.
(iii) Within the RSL the gradient of mean wind speed or scalar concentration is

weaker than would be the case if the MOST formulae applied all the way down to the
canopy top (e.g. Chen & Schwerdtfeger 1989). Hence in the RSL, a given turbulent
flux is supported by a weaker mean gradient than in the ISL above, and MOST ‘phi
functions’ must be modified (Raupach 1979, 1992).

(iv) Streamwise and vertical skewnesses (Sku, Skw) are small well above the canopy
(z > 2h) but large within where 1.0 � Sku � 0.5 and −0.5 � Skw � −1.0. Associated
with these large skewnesses are significant values of the turbulent-transport terms in
second-moment budgets, so that the turbulence in the canopy/RSL is not in local
equilibrium (Katul et al. 2006).

(v) Single- and multi-point measurements in wind tunnels show horizontal and
vertical Eulerian integral length scales of order h and convection velocities of the
dominant turbulent motions approximately equal to 2〈u〉(h) through the canopy
(Shaw et al. 1995; Finnigan 2000). This is in contrast to the ISL in which these
quantities scale on distance from the ground or displacement plane.

(vi) The rates of convergence of EOF (also called principal orthogonal
decomposition or principal component analysis) spectra are a sensitive test of the
presence of coherent structures in turbulent flows. EOF analysis of wind-tunnel-model
canopy data by Finnigan & Shaw (2000) and of the present LES data shows that
the spectral convergence rate in the canopy/RSL is significantly more rapid than in
the ISL.

(vii) The quadrant-hole technique has been widely applied to both smooth- and
rough-wall turbulent boundary layers. Grass (1971) was the first to point out that
close to rough surfaces, the sweep quadrant Q4 (u′ > 0, w′ < 0) dominates momentum
transport, whereas throughout the rest of the boundary layer, the ejection quadrant Q2
(u′ < 0, w′ > 0) is much larger. This is in marked contrast to smooth-wall boundary
layers in which the ejection quadrant Q2 is dominant almost all the way to the wall.
In the canopy/RSL Q4 sweeps dominate momentum and scalar transfer, the ratio
Q2/Q4 becoming larger than 1.0 around z =2h or lower and rising to 1.5 within the
ISL (Finnigan 1979, 2000; Shaw, Tavanger & Ward 1983; Katul et al. 2007).

(viii) Further details of the relationship of sweeps and ejections to large-scale
coherent structures spanning the canopy/RSL have been revealed by more elaborate
conditional-sampling techniques such as compositing (Gao et al. 1989; Shaw & Paw
U 1989; Gardiner, 1994) and wavelet transforms (Collineau & Brunet 1993a, b;
Katul & Vidakovic 1998). In particular, sweeps are large infrequent coherent events
transferring large quanta of stress; ejections are smaller and more frequent – they
cut off at around half the hole size that sweeps do. Quadrant-hole analysis and allied
conditional-sampling techniques are reviewed in the canopy context in Finnigan &
Shaw (2000).

Appendix B. Coincidence of pressure peaks and sweeps/ejections

Tests were performed to determine the relationship between sweeps and ejections
during events detected by regions of overpressure of given magnitude at the canopy
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top, z = h. Pressure peaks were detected by selecting minimum and maximum values
for pressure but excluding peaks that were exceeded in value by another point at

z = h within plus or minus a horizontal distance r =
√

x2 + y2 = h. The mean pressure
of all realizations was subtracted off all values of pressure, and no normalization was
performed. The standard deviation of pressure based on all realizations was 1.457.

For each detected pressure peak, upstream and downstream regions were examined
for the presence of, respectively, a sweep and an ejection. This test was performed
at z = h. The zones examined spanned a distance equal to ±h in the x direction
and ±0.7h in the y direction centred either immediately upstream or immediately
downstream of the peak-pressure location. If the value of u′w′ met the criterion
at any one point within the zone, it was declared a ‘hit’. Sweeps were defined as
u′ > 0, w′ < 0 and u′w′ more negative than a specified value for the sweep. Ejections
were defined as u′ < 0, w′ > 0 and u′w′ more negative than a specified value for
the ejection. Velocities were not normalized. Threshold values of u′w′ for sweeps and
ejections were based on the average values of u′w′ for Q4 events (mean u′w′ = −1.047)
and for Q2 events (mean u′w′ = −0.631) based on all realizations.

Pressure Press Sweep Ejection Pressure Ejection Sweep
minimum maximum threshold threshold Pressure Pressure Pressure + sweep given given
(m2 s−2) (m2 s−2) (m2 s−2) (m2 s−2) hits + sweep + ejection + ejection sweep ejection

1 2 −0.5 −0.3 684 493 547 361 73 % 66 %
72 % 80 % 53 %

1 2 −1.0 −0.6 684 385 478 217 56 % 45 %
56 % 70 % 32 %

2 3 −0.5 −0.3 671 594 541 472 79 % 87 %
89 % 81 % 70 %

2 3 −1.0 −0.6 671 520 470 349 67 % 74 %
77 % 70 % 52 %

3 4 −0.5 −0.3 395 387 327 319 82 % 98 %
98 % 83 % 81 %

3 4 −1.0 −0.6 395 367 273 249 68 % 91 %
93 % 69 % 63 %

Given the detection of a pressure pulse, there is a high likelihood of the presence
of an upstream sweep and of a downstream ejection. The numbers are high (up to
98 % for a sweep and up to 83 % for an ejection) when large pressure thresholds
are examined and thresholds for u′w′ are relatively low (half their mean values).
The numbers are lowest when a low value is selected for the pressure threshold but
relatively large u′w′ thresholds are chosen.

Given an upstream sweep or a downstream ejection, there is a high likelihood of
the accompanying element on the other side of the pressure peak. It does not appear
that sweeps commonly occur without ejections, or vice versa.

REFERENCES

Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301-1–
041301-16.

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of
the turbulent boundary layer. J. Fluid Mech. 422, 1–54.

Baldocchi, D. D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P.,

Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee,

X., Malhi, Y., Meyers, T., Munger, W., Oechal, W., Paw U, K. T., Pilegaard, K., Schmid,

H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K. & Wofsy, S. 2001 FLUXNET: a new



Turbulence structure above a vegetation canopy 421

tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water
vapour and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434.

Baldocchi, D. D. & Hutchinson, B. A. 1987 Turbulence in an almond orchard: vertical variation
in turbulence statistics. Boundary-Layer Meteorol. 40, 177–146.

Bohm, M., Finnigan, J. J. & Raupach, M. R. 2000 Dispersive fluxes and canopy flows: just how
important are they? In Proceedings of 24th Conference on Agricultural and Forest Meteorology,
American Meteorological Society, Davis, CA.

Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers.
J. Fluid Mech. 64, 775–816.

Brown, K. W. & Covey, W. 1966 The energy-budget evaluation of the micro-meteorological transfer
process within a corn field. Agric. Meteorol. 3, 73–96.

Brunet, Y., Finnigan, J. J. & Raupach, M. R. 1994 A wind tunnel study of air flow in waving
wheat: single-point velocity statistics. Boundary-Layer Meteorol. 70, 95–132.

Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear
flow. Phys. Fluids A 8, 1637–1650.

Cellier, P. & Brunet, Y. 1992 Flux-gradient relationships above tall plant canopies. Agric. Forest
Meteorol. 58, 93–117.

Chakraborty, P., Balachandar, S. & Adrian, R. J. 2005 On the relationships between local vortex
identification schemes. J. Fluid Mech. 535, 189–214.

Chen, F. & Schwerdtfeger, P. 1989 Flux-gradient relationships above tall plant canopies. Quart.
J. R. Meteorol. Soc. 115, 335–352.

Christen, A. & Vogt, R. 2004 Direct measurement of dispersive fluxes within a cork
oak plantation. In Proceedings of 26th Conference on Agricultural and Forest Meteorology,
American Meteorological Society, Vancouver, BC, Canada.

Christensen, K. T. & Adrian, R. J. 2001 Statistical evidence of hairpin vortex packets in wall
turbulence. J. Fluid Mech. 431, 433–443.

Coceal, O., Dobre A., Thomas, T. G. & Belcher, S. E. 2007 Structure of turbulent flow over
regular arrays of cubical roughness. J. Fluid Mech. 589, 375–409.

Collineau, S. & Brunet, Y. 1993a Detection of turbulent coherent motions in a forest canopy.
Part 1. Wavelet analysis. Boundary-Layer Meteorol. 65, 357–379.

Collineau, S. & Brunet, Y. 1993b Detection of turbulent coherent motions in a forest canopy.
Part 2. Timescales and conditional averages. Boundary-Layer Meteorol. 66, 49–73.

Deardorff, J. W. 1980 Stratocumulus-capped mixed layers derived from a three-dimensional model.
Boundary-Layer Meteorol. 18, 495–527.

Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.

Dwyer, M. J., Patton, E. G. & Shaw, R. H. 1997 Turbulent kinetic energy budgets from a
large-eddy simulation of airflow above and within a forest. Boundary-Layer Meteorol. 84,
23–43.

Finnigan, J. J. 1979 Turbulence in waving wheat. Part 2. Structure of momentum transfer. Boundary-
Layer Meteorol. 16, 213−236.

Finnigan, J. J. 1985 Turbulent transport in flexible plant canopies. In The Forest–Atmosphere
Interaction (ed. B. A. Hutchison & B. B. Hicks), pp. 443–480. Reidel.

Finnigan, J. J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519–571.

Finnigan, J. J. & Shaw, R. H. 2000 A wind tunnel study of airflow in waving wheat: an empirical
orthogonal function analysis of the large-eddy motion. Boundary-Layer Meteorol. 96, 211–255.

Finnigan, J. J. & Shaw, R. H. 2008 Double-averaging methodology and its application to turbulent
flow in and above vegetation canopies. Acta Geophys. 5, 534–561.

Fitzmaurice, L., Shaw, R. H., Paw U, K. T. & Patton, E. G. 2004 Three-dimensional scalar
microfront systems in a large-eddy simulation of vegetation canopy flow. Boundary-Layer
Meteorol. 112, 107–127.

Frederiksen, J. S. & Branstator, G. 2005 seasonal variability of teleconnection patterns. J. Atmos.
Sci. 62, 1346–1365.

Gao, W., Shaw, R. H. & Paw U, K. T. 1989 Observation of organized structure in turbulent flow
within and above a forest canopy. Boundary-Layer Meteorol. 47, 349–377.

Gardiner, B. A. 1994 Wind and wind forces in a plantation spruce forest. Boundary-Layer Meteorol.
67, 161–186.



422 J. J. Finnigan, R. H. Shaw and E. G. Patton

Garratt J. R. 1980 Surface influence on vertical profiles in the atmospheric near-surface layer.
Quart. J. R. Meteorol. Soc. 106, 803–819.

Garratt J. R. 1983 Surface influence upon vertical profiles in the nocturnal boundary layer.
Boundary-Layer Meteorol. 26, 69–80.

Gerz, T., Howell, J. & Mahrt, L. 1994 Vortex structures and microfronts. Phys. Fluids 6, 1242–
1251.

Ghisalberti, M. & Nepf, H. 2002 Mixing layers and coherent structures in vegetated aquatic flow.
J. Geophys. Res. 107, 1–11.

Grass, A. J. 1971 Structural features of turbulent flow over smooth and rough boundaries. J. Fluid
Mech. 50, 233–255.

Haidari, A. H. & Smith C. R. 1994 The generation and regeneration of single hairpin vortices.
J. Fluid Mech. 277, 135–162.

Harman, I. N. & Finnigan, J. F. 2007 A simple unified theory for flow in the canopy and roughness
sublayer. Boundary-Layer Meteorol. 123, 339–363.

Harman, I. N. & Finnigan, J. F. 2008 Scalar concentration profiles in the canopy and roughness
sublayer. Boundary-Layer Meteorol. 129, 323–351.

Head, M. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary layer structure. J. Fluid
Mech. 107, 297–338.

Holmes, P., Lumley, J. L. & Berkooz, G. 1996 Turbulence, Coherent Structures, Dynamical Systems
and Symmetry. Cambridge University Press.

Hunt, J. C. R. & Carruthers, D. J. 1990 rapid distortion theory and the ‘problems’ of turbulence.
J. Fluid Mech. 212, 497–532.

Hunt, J. C. R. & Morrison, J. F. 2000 Eddy structure in turbulent boundary layers. Eur. J. Mech.
.B 19, 673–694.

Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 69–94.
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent

channel flow. J. Fluid Mech. 332, 185–214.
Kaimal, J. C. & Finnigan, J. J. 1994 Atmospheric Boundary Layer Flows: Their Structure and

Measurement. Oxford University Press.
Katul, G. & Vidakovic, B. 1998 Identification of low-dimensional energy containing/flux

transporting eddy motion in the atmospheric surface layer using wavelet thresholding
methods. J. Atmos. Sci. 55, 377–389.

Katul, G. G., Poggi, D., Cava, D. & Finnigan, J. J. 2006 The relative importance of ejections and
sweeps to momentum transfer in the atmospheric boundary layer. Boundary-Layer Meteorol.
120, 367–375.

Kim, J. & Moin, P. 1986 The structure of the vorticity field in turbulent channel flow. Part 2. Study
of ensemble-averaged fields. J. Fluid Mech. 162, 339–363.

Leonard, A. 1974 Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys.
18A, 237–248.

Liu, J. T. C. 1988 Contributions to the understanding of large-scale coherent structures in developing
free turbulent shear flows. Adv. Appl. Mech. 26, 183–309.

Liu, Z., Adrian, R. J. & Hanratty, T. J. 2001 Large-scale modes of turbulent channel flow:
transport and structure. J. Fluid Mech. 448, 53–80.

Lu, S. S. & Willmarth, W. W. 1973 Measurements of the structure of Reynolds stress in a turbulent
boundary layer. J. Fluid Mech. 60, 481–571.

Lumley, J. L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and
Radio Wave Propagation (ed. A. M. Yaglom & V. I. Tatarsky), p. 166. Nauka.

McKeon, B. J. & Sreenivasen, K. R. 2007 Introduction: scaling and structure in high Reynolds
number wall-bounded flows. Phil. Trans. R. Soc. A 365, 635–646.

Michalke, A. 1964 On the inviscid instability of the hyperbolic-tangent velocity profile. J. Fluid
Mech. 19, 543–556.

Michalke, A. 1965 On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23,
521–544.

Moin, P. & Kim, J. 1985 The structure of the vorticity field in a turbulent channel flow. part 1.
analysis of the instantaneous fields and statistical correlations. J. Fluid Mech. 155, 441–464.

Moin, P. & Moser, R. D. 1989 Characteristic-eddy decomposition of turbulence in a channel.
J. Fluid Mech. 200, 471–509.



Turbulence structure above a vegetation canopy 423
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