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TURBULENCE TRANSPORT EQUATIONS FOR VARIABLE-DENSITY 

TURBULENCE A N D THEIR RELATIONSHIP TO TW^O-FIELD MODELS 

by 

Didier Besnard, Francis H. Harlow, Rick M. Rauenzahn, and Charles Zemach 

ABSTRACT 
This study gives an updated account of our current ability to 

describe multimaterial compressible turbulent flows by means of 
a one-point transport model. Evolution equations are developed 
for a number of second-order correlations of turbulent data, and 
approximations of the gradient type are applied to additional 
correlations to close the system of equations. The principal fields 
of interest are the one-point Reynolds tensor for variable-density 
flow, the turbulent energy dissipation rate, and correlations for 
density-velocity and density-density fluctuations. This single-
fleld description of turbulent flows is compared in some detail 
to two-field flow equations for nonturbulent, highly dispersed flow 
with separate variables for each fleld. This comparison suggests 
means for improved modeling of some correlations not subjected 
to evolution equations. 

1. INTRODUCTION 

Turbulence in complex, high-speed, high-Reynolds number flows has been of wide 

Laboratory interest for many years. Predictive capabilities in the Inertial Confinement 

Fusion (ICF) and certain Strategic Defense Initiative (SDI) programs have relied crucially 

on modeling the effects of material mixing and enhanced momentum and thermal transport 

brought about by turbulence. The Laboratory's ability to model turbulence has improved 

significantly with the advent of high-speed computers and increased theoretical knowledge 

about the proper manner of modeling the ensemble-averaged Navier Stokes equations. Our 

recent goals have focused on understanding the theoretical foundations of variable-density 

turbulence and mixing and the implementations of simple models into existing computer 
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codes, like CAVEAT [1]. This manuscript will outline our current state of expertise in 

modeling variable-density turbulence and propose some simpler models for everyday use 

in laboratory codes. 

We are primarily interested in describing multimaterial compressible turbulent flow; 

the different materials might not be initially mixed, which means that the mixing process 

itself must be modeled as well. The potential applications of such a description range 

from volcanic eruptions, where a plume of hot air containing ash and rocks mixes with 

surrounding cold air, to consideration of laser-driven ICF, where the mixing of the outer 

shell and the inner fuel may lead to decreased neutron yield. In the first case, the 

mixing is predominantly due to highly nonlinear stages of Kelvin-Helmholtz instability at 

the interface between hot and cold fluids; in the second instance, Richtmeyer-Meshkov 

and Rayleigh-Taylor instabilities can play a dominant role. Other temperature and 

pressure regimes can be studied through laboratory experiments, such as the shock-

tube experiments of Sturtevant [2], Houas et al. [3], and Andronov et al. [4]; in these 

experiments, a thin (1 mm or less) membrane initially separating two test gases of different 

densities is shattered by an incident shock wave. The details of membrane destruction 

are poorly characterized, however, but subsequent shocks reflected from the end wall 

interact with the mixing zone established by initial shock passage to greatly increase the 

growth rate of the mixed region. In addition, the AWE in Great Britain has performed 

experiments by accelerating a tank containing two incompressible materials initially in a 

stable configuration downwards at about 40 times the acceleration due to gravity [5]. 

All of these applications are time-unsteady flows involving two or more materials. 

Turbulence models that attempt to analyze and characterize these flows need to pay 

attention to issues of initialization of turbulence field variables, which is a serious challenge 

for most usual turbulence theories. Ideally, the model should mimic the linear phase of 

instability as well as the fully turbulent late-stage mixing. Traditionally, two approaches 

have been taken. One scheme postulates the existence of multiphase flow equations 
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[6,7] while the other uses the more usual Reynolds decomposition of the Navier-Stokes 

equations for a single field with potentially large density variations [8-12]. The different 

approaches are compatible and, as we shall show here, an equivalence between schemes 

can be demonstrated in some interesting cases. 

From our single-field modeling, we produced a report a few years ago that used 

standard ttirbulence closures [12], and the first part of this work will revisit those equations, 

modifying them at some points and looking more closely at the assumptions of closure. In 

that earlier effort, we realized that the Reynolds stress models must consistently include 

evolution equations for all relevant second-order correlations, in order to describe fiows of 

this nature adequately. Since then, the formal parallels between two-field formulations 

and the vmmodeled turbulence equations were exposed by us in an unpublished and 

unfinished working paper, and have more recently been completed by Lance Collins at 

Perm State. We will be reviewing these resvilts near the end of this paper. First, however, 

in Section 3, we derive the turbulence equations in a standard fashion by dividing the 

flow variables into mean and fluctuating parts. The restdting equations are closed by 

postulating, with some (admittedly incomplete) physical justifications, appropriate models 

for imknown higher moments of the fluctuating variables. Because instability-driven 

mixing is of particular interest to laboratory programs, we then specialize the equations in 

Section 4 to the cases of Rayleigh-Taylor and Kelvin-Helmholtz instabilities and compare 

the behavior of our equations to other published work. Finally, in Section 5 we show 

an interesting correspondence between our unmodeled equations and the two-field flow 

equations describing nontiirbulent highly-dispersed flow with separate field variables for 

two-field flow. We believe that new directions in variable-density turbulence modeling will 

arise from considering this correspondence. 
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2. DESCRIPTION OF T U R B U L E N T FLOW OF COMPRESSIBLE 
FLUIDS 

2.1. Formulation 

Turbulent flows develop whenever incipient instabilities, driven by the advection terms 

in the flow dynamics, are not dissipated quickly enough by the action of fluid viscosity. As 

a result, ftdly developed turbulence is often characterized by the interactions of random, 

nonlinear modes of motion, typically swirling, overlapping eddies of fiuid. Despite the 

appearance of complete disorder, turbulent flows often exhibit rather imiversal average 

behavior. Boundary layers, jets, and wakes all have been studied extensively in the past 

and, while the details of each experiment are not repeatable, even by a single researcher, 

the observables in each set of experiments have been well correlated and used to great 

advantage by engineers and scientists worldwide. The basic notion is that while turbulence 

cannot be analyzed in every detail, either by computer or by experiment, enough can be 

extracted from physical or nvimerical experiments to deduce the effects of turbulence on 

what we routinely observe in the typical design of aircraft, mixing vessels, heat exchangers, 

and piping systems. 

The point of departure for nearly all engineering analysis of turbulent flows is the 

set of Navier-Stokes equations for compressible, variable-density flow of a single material. 

As convenience dictates, we denote vectors and tensors in Cartesian coordinate form or 

by bold letters. (The tensor symbols will be Latin capitals or Greek.) The equations for 

density, velocity, and internal energy are: 

^ + V . ( p u ) = 0, (1) 

^ - H V - ( ^ u u ) = V-o r , (2) 

^ -h V • (pul) = o-: Vu + V . ( K V T ) , (3) 
Cft 



where (Tij = —PSij -f- Tij. Generally, the pressure P is a function of species mass fractions 

Ci, as well as p and I. The viscous stress r is taken as 

fdui duj 2^ „ \ ,,, 

The molecular viscosity /x and the thermal conductivity K are taken as constants for this 

analysis. 

For the mass fraction, we apply Pick's law of diffusion with a constant diffusion 

coefficient D: 

2^+V-{pnci) = V-{pDVci). (5) 

Typically, we separate turbulent flow properties into mean parts, such as the turbvilent 

velocity profile in a pipe, which for an incompressible fluid is a radial fvmction only, and 

fluctuating parts that account for eddy motions that are not reproducible or describable in 

detail. The details of these fluctuations are determined in a strict sense by extremely fine-

scale irregularities in the bptmdary and initial conditions of the experiment, but mean-flow 

properties are assumed to be deterministic and reproducible. 

We denote average properties by overbars and fluctuations by primes. The appropriate 

average is taken over many members of an ensemble of experiments that are indistinguish-

able macroscopically, but may differ in microscopic detail in no controllable manner. Thus, 

u = u + u', P = P + P', p = -p + p', etc. 

Two important measures of a turbulent regime are K(x,t), the turbvdent kinetic 

energy per unit mass, and e(x, t), the rate of dissipation of turbulent kinetic energy per 

unit mass (i.e., irreversible conversion into internal energy). These are defined explicitly 

below by ensemble averages. One identifies a turbulent velocity scale K^^"^, a turbulent 

time scale tturb = -^/C) aĴ d a turbulent length scale Lturb = K^^^/e. These may be thought 

to characterize the motion, period, and size of the dominant turbulent eddies. They may 

be compared to scales for the mean flow: ĉ  = sound speed, ^mean ^ \dui/dxj\ , and 

•̂ mean = scale for Variation in physical space of mean-flow properties. 
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In conventional one-point analyses of constant-density flows, the assumption 

Lturh/Lmenn <[ 1 is commonly made, explicitly or implicitly, and facilitates the model-

ing of the pressure-velocity cowelaiion p'du'Jdxj. Realistically, Lturb and iJmean may have 

comparable size, though one expects X-turb/i'mean not to exceed unity; otherwise, the logic 

of separation of variables into mean and fluctuating parts is sacrificed. 

The assumption <turb/*mean <C 1 is also frequently made. It suggests, as noted by 

Lumley [8], tha t the distribution of turbulence modes among different length scales has 

time to achieve approximate spectral equilibrium, and this underlies the logic of one-

point modeling. It is an essential assumption in the argument for closvu-es of otherwise 

undetermined correlations. In the case of constant-density fluids, the paradigm for such 

closures is (with account for symmetry if X' has factors of u ' ) : 

u'-X' = (constant) — «'•«'„ -—X . (6) 

Hereafter, we refer to this as a gradient closure or gradient approximation. Realistically, 

*turb need not be small compared with <mean in regimes of rapid time and space variation, 

such as shock-driven flows or interfacial instability flows. Therefore, it is preferable to 

construct evolution equations for what appear to be the more important second-order 

correlations. We cannot avoid gradient closures for some higher-order correlations entirely. 

By limiting their use to terms of presumed secondary importance, we hope to capture the 

main physical consequences of turbulence in evolution equations. 

A third inequality assumed for the purposes of this paper is that the soimd transit 

time imean/Ca across typical mean-flow length scales be much less than the dominant-eddy 

turnover time, which translates into 

< J < i • 

That is, the turbulent velocity scale is subsonic. Then the fluctuating velocity field may 

be taken as divergenceless; V • u ' = 0. We qualify this by allowing nonzero V • u ' when 

heat conduction or mass diffusion between species is important; see Section 3.4. 



Fourth, we asstune that the tvirbulent Reynolds ntimber of the system, defined by 

(/2e)turb = pK^/{p^)i be large compared to vmity. This condition separates the dissipation 

scale from the dominant-eddy scales, allowing the neglect of viscous diffusion and viscous 

stresses relative to turbulent diffusion and pressure effects, respectively; and, as in the 

constant density case, is a requirement for the viability of a one-point model in which 

the dimensionless parameters of the model are hoped to have constant values valid for a 

general class of phenomena. 

2.2. Mass-Weighted Averages and Mean Flow Equations 

For any fiuid variable X, the separation X = X -|- X ' (Reynolds decomposition) is 

based on the uniformly-weighted ensemble average X. The separation X = X + X" (Favre 

decomposition) is based on the mass-weighted ensemble average X, defined as 

X = Jx/-p. 

Such averages, and especially the mass-averaged fluid velocity, appear naturally in 

conservation relations, as is the case in multispecies flow equations [13]. 

We shall use the following relations among these constructs repeatedly: 

XY = XY+lcnr, 

" ^ = -pXY + pX"Y" , 

x^ = Wr = xY^, 

'x^ = x-x = -yT/p. 

The Hst of important averages begins with "p and the mass-weighted velocity u = "pvL/p. 

Then come the density-velocity correlation A and the associated velocity a: 

A=7iF = 7u^ ; a=A/p = - ^ . (7) 
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Note that A is the net mass flux relative to u, the unweighted average velocity, and that 

ii = u + A//9 = u -f a , (8) 

u" = u' - A/p = u' - a . (9) 

Next are the generalized Reynolds stress tensor R and the turbulent flux of internal energy 

S: 

Rij = pu'^u'j = p u'-u'j - paiUj + p'u'-u'j , (10) 

Si = pV'u'l = -p Fu'i - aip'P + p'Pu'i . (11) 

Ensemble averages of the flow equations (1), (2), (3), and (5) now yield the mean-flow 

equations: 

| + _ L ( ^ „ ) = 0 , (12) 

dpuj _d_ . _d_^ ^ _dP_ dfru ^ 3 ^ 

dt dxn " dxn **' dxi dxn ' 

l̂ ^ + ̂ ( M + al:*" = -^^"- '̂̂ -'' 

+ r „ „ ^ + T ; „ ^ + v . ( « v r ) , (14) 

With V • u' = 0, as assumed above, the P 'V • u' term drops, and 

''"'dXm 2^\dXm dXn J \dXm dXn J ' 



which is observed to be nonnegative. In the more general case, we can write 

n,m ^ 

which is still nonnegative. 

2.3 . E n e r g y and E n e r g y Dis s ipat ion 

The inertial and advection terms of averaged evolution equations are best expressed 

by mass-weighted averages, because physical conservation applies to aggregates of mass, 

momentum, energy, etc. The stresses, lacking factors of p, are probably best described in 

terms of tmweighted averages. 

The Favre technique points to a conception that may usefully guide modeling. The 

Favre velocity u is a mean variable that includes, in addition to u, the part of the 

velocity fluctuation correlated with density fluctuation. Then u" is not the whole of the 

velocity fluctuation, but only the part uncorrelated with density; pu" = 0. How quadratic 

and higher functions of velocity fluctuation, whether in unweighted or in mass averages, 

contribute to density-correlated or uncorrelated effects is not, in general, easy to sort out. 

For the ensemble average of total fluid kinetic energy density, we have 

If we regard \ p(^)^ as the energy density due to the combined mean and density-correlated 

turbulent motion, then \p{n"y = \ trace Rij measures the residual turbulent motion. The 

generalizations of K, the turbulent energy per unit mass, and e, the dissipation rate for 

K,, as originally defined for constant-density one-phase flow, are now chosen to be 

"pK = \ trace Rij , (16) 

pe = Ti^^du'^/dxm . (17) 

The first definition motivates the second, for pe as defined here represents the irreversible 

conversion of turbulent kinetic energy into internal energy in the p / evolution equation 
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and is also (one-half of) the decay term in the trace of the Rij evolution equation, to be 

given in Section 3. 

Also suggestive are the equations 

pu'iU'j = pu'fu'j + "paiaj , 

u"u'j = u'iU'j + QiOj . 

These are relations between nonnegative definite tensors with normegative diagonal 

elements. They indicate that pu\u'j and «"M" carry more of the effect of the density-

correlated turbulent motion than do pu"u'! and u\u'j, respectively. 

2.4. Turbulence Variables of the Present Theory (Summary) 

The fiow equations for the mean variables p, u, I, and Cj introduce second-order 

averages, and equations for the latter introduce further correlations. A judgment must be 

made as to which turbulent variables are to be subjected to evolution equations and which 

are to be regarded as secondary and modeled by constraint equations, relating them to the 

more primary data at a common time. 

In the present paper, we prescribe evolution equations for R, S, a, or equivalently 

A = pa, and also for a density self-correlation 6 defined by 

fe=-p'(i)'. (18) 

Alternatively, because —p'(l/p)' = +(p — p) /p , 

6=p'(iy-i. (19) 

A third alternative, 

& = - / > ' ( ^ - i ) = (^')V(pp)' 

makes clear that 6 is nonnegative and that the approximation b « (p')^/(?)^ would apply 

if p' <C p. We also encounter w = p'Pfp in the evolution equation for S and write an 

evolution equation for w but without modeling it in detail. 
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As a simplified alternative to the R equations, we can set forth K and e equations as 

generalizations of the K-e model for incompressible flow. In these, the anisotropic part of 

R is replaced by its gradient approximation: 

with Pt the turbulent viscosity, given by 

Pt = C^pK /e ; Cfi — constant 

The a equation requires consideration of u\u'j. We shall flnesse this by expressing u\u'j 

in terms of primary data and a triple correlation, then applying a gradient approximation 

to the latter: 

u'•u^ = Uittj -I- Rijip - p'u'-u'j/p , (21) 

p'u'^u'- = -C-Da— (Rin-Q-^ +Rjn-Q-^ J ; Coa = Constant (22) 

Some of the gradient closvires involved in the next section have a rationale based on 

consideration of terms likely to be dominated in evolution equations for the next higher-

order equations as noted in Section 3.2. 

2.5. Realizability 

RealizabiUty, the notion applied by Schumann to constant-density flows, also applies 

to variable-density flows. If Ui , 1 < i < JV, is any sequence of fluid variables, and 

6» 5 1 < i < AT, is any constant vector, then p(ejUj)^ > 0 and hence 

tiCj pviVj > 0 . 

Then pviVj is a nonnegative definite tensor, and all of its principal minors have nonnegative 

determinants. FVom this, we can infer that 

Rn>0, RuR22 - (Ri2f > 0 , det Rij > 0 , 
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and 

-pa, =-^i = {p'IpU^) p^u'i < {{pWpf" ( K X ) ' ^ ' , 

whence, applying the third definition of h in the previous section, 

a\ < bRu/'p . 

Gradient approximations are not always consistent with realizability and should be 

checked in practical applications. 

3. TURBULENCE EQUATIONS 

A summary of the evolution equations to be developed for the primary turbulence 

variables is given in Section 3.9. 

3.1. Preliminaries 

We note that, in view of (1), (12), 

d d dui dui 

and 

Subtracting {p/'p) times Eq. 13 from Eq. 2, and utilizing the above, we get a useful form 

for the u" equation: 

^ / //\ ^ / //N // ^^i P ^ r. 

= -iplp)^z- + 
(23) 

dXn dXn 

A second useful form (set Ui — Ui — u'f in the third term of (23)) is 

5uJ[ .?!fi , II ̂ "» 1 ^Rnx _ 1 dani 1 dani 

dt " dXn ^ dXn P dXn P dx„ p dXn 

As a notational device aimed at conciseness without loss of clarity, we write 

^ (product of tensors) 

12 
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to denote a symmetrizing procedure with respect to the free indices in the indicated product 

of tensors. Specifically, ^ * is the instruction, first, to replace each of the tensors by its 

symmetric part with respect to its free indices, and second, to supplement the result by 

adding to it the minimal nvimber of like terms, with free indices permuted, to make the 
N 

final result symmetric. One could also make the notation more complete by writing ^ " 

to show that there are N permutations in the final result. For example. 

dXn 

and, if â  = 6,- -f c .̂ 

dxn 

1 d 

2dXn 
{BfCnjk + BiCnkj + BjCnki + BjCnik + BkCnij + BkCnji) , 

aiOjOk = bibjbk + ^ J bibjCk + 2 J biCjCk + CiCjCk . 

Note that ^' ^ (BiCnjk) differs from ^ Y,' {BiCnjk) because the latter is to be 

symmetrized over four free indices. 

Now let the definition of the R tensor be generalized to 

Rijk...m^pu';u'lu'l...u':^ 

We observe that 

|('"'<) + ^ ( ' ' " » < ) 

More generally, if X\^ X2, • • • Xm are any fluid variables, then 

Q^RiJ...m + Q^^ {UnRij...m) + Q^^^nij. 

/ ^ -X'aXs.. .Xr = ^ pXiX2...Xr, 

d 
+ -5 pUnXiX2 . . . Xm . 

dXn 

3.2. Equation for the Generalized Reynolds Stress 

To obtain an evolution equation for R, multiply (23) by u", apply J^*, and take the 

ensemble average. Apply pu" = 0 and 

"•' dXn ~ ^ V 5^n ^ dxj- "̂  dXn ^ ' dXn ' 
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and integrate the last term by parts. Then 

=r -(^-al:-«0-^«'.(^.p'-<.) 

The terms requiring modeling are, in order of occurrence in this equation, (1) the triple 

correlations Rnij, (2) stress-velocity correlations occurring in a transport term, (3) a 

correlation of pressure and velocity gradient that is traceless for the assumed case V-u' = 0, 

and (4) the average of {du'Jdxn)T'-^ whose trace represents the dissipation of turbulent 

energy, and whose residual, traceless part may be grouped with the term (3). Insight 

provided by a spectral approach to constant-density flow suggests, by analogy to the 

present case, that the term (4) will be diagonal for large turbulent Reynolds nvimber, 

that is, for large pK'^/(pe); see Section VA of [14]. 

We now exhibit a rationale for a gradient approximation of the Rnij term. Multiply 

(23) by u'ju'k, apply J ]* , and take the ensemble average. The left side of the resulting 

equation is 

Set 

3 

Rnijk = Rnijk + 2^ 'RijRnk/p • 

This is, in the flrst instance, simply a definition of the fourth-order cumulant R*̂ . But 

if p were constant and the velocity fluctuations followed a gaussian random distribution 

law, then R*̂  would vanish. Let us disregard R*̂  in the present case. Then the left side 

simplifies to 

_a 
dt Ri^k + ^ (urxRi^k) + E ' {^^"a i ; (^^^/^^ + ^ - 1 ^ } • 
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Next, we suppose that in the absence of the sovtrce term ^ * Rin-g^ {Rjk/lp)i the turbulent 

stresses on the right-hand side of the Rijk equation would drive Rijk to zero on the 

turbulent time scale <turb, and let this effect be modeled by a decay term proportional 

to {e/K)Rijk. If the inertial terms and any transport terms implicit in the stresses change 

on a time scale of ^mean, and <mean >• ^turb, then we may have an approximate equilibrium 

set up, expressed by 

Rijk = -CDR— 2^ "^'"^ (Rikfp) • 

This takes care of the modeling of -^-Rnij- If there were residual effects correlated with 

density, they might be simulated by terms proportional to JZ* •gj— (oiRnj) and requiring 

an additional dimensionless phenomenological constant; we do not include such terms in 

the present theory. 

Next, we discard the transport terms of the form 

d 

dXn >. 
«;• (*niP' - Kj) + U'j (SniP' - r ; , ) . 

This follows the precedent established for treatment of constant-density one-phase flow, 

though the justification remains obscure. 

Next, we consider the pressure-velocity gradient correlations. Again, we make 

extensive use of ideas of other researchers. For constant-density flows, one usually solves 

a Poisson equation for P', forms the correlations of interest, and notices that there are 

two types of terms involved: those specified by a product of tturbulence variables and those 

with explicit factors of mean velocity gradient. For variable-density flows, even if V- u ' = 0 

is assumed, the analog of the Poisson equation is more complex: 

d fl d \' d d , _ _ , , , - — - , , d d _ 

-dTn ip 5^^j ^d^dTn (^"- + """- - <"-) - "-a^ a^""' 

and more difficult to solve for P'. We adopt a simpler approach and model the pressure-

velocity gradient correlations in complete analogy to the constant-density case. For the 

"slow" part, we set 

(^fl)o = ~^^^J( i^'J " -^^ijRnnj , (25) 
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and for the "rapid" part, we use the straightforward extension of Launder, Reece, and 

Rodi's [15] simpler model to the variable-density case: 

In principle, we should also consider a third contribution arising from the interactions of 

a and the mean pressure gradient. This model would presumably look like 

( . g ) , . = - C 3 H ( a < g + « , f - | * . a . V p ) . (27) 

though we have not explored this possibility in detail in our simulations. 

The fourth and last group of terms to be modeled make up the dissipation tensor. 

Again proceeding from experience with constant-density models, we assmne it to be 

adequately modeled by 

_ V ' | 1 , ; ^ = _ | ^ . « , . + t r a c e r s pa r t . 
OXn O 

In the limit of high Reynolds number, e is expected to be independent of viscosity. The 

traceless part is either zero or is lumped with the pressure-velocity gradient correlations 

[8]. 

3.3. Equation for the Density-Velocity Correlation 

We work with a = A / p as our primary variable, instead of A. Because a = —u", we 

average (24), and then multiply by p. Observe that with V • u' = 0, 

~w 
""5^"^ = ^ITn""' + "-a;;"'- = -""a^ "• + -d^n "'""'̂ ' 

and with 6 = p (1/p) — 1, 

d _ -p d ^ d _ 
<^ni + - ^ CTni = 0-5 CTni + P 

OXn P OXn OXn il) K:"'-" 
Hence 

I (/'"O + ^ iP-r.ai) + pan-£- Ui = p ^ U'X - ^^Rni 

•'^--K^)'(f-^<.)-
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Again, we are prepared to ignore the viscous stress terms when compared to pressure 

effects at high Reynolds number. The contributions from u 'u ' and R from (28) can be 

written as 

d -^-r d (p'^'iK - Rin) dp _ d d 

'^dTn « - a ^ ^ - = =p dTn + ''dTn ("""^^ " d^n ^^'^ ' ^'^^ 

The modeled form of p'it'„it[- was given in (22). Finally, the density-pressure correlation 

in the a equation is split into two parts: that which responds to mean flow gradients and 

that which involves only turbulence. The latter ("slow" part) becomes a decay term 

< = -Cxa-p^B. , (30) 

while the rapid part introduces a mean velocity gradient term that is modeled as 

< = C2ap(a-V)u. (31) 

Also, as in the R equation, terms containing the mean presstire gradient could emerge 

from the pressure-density correlation in a manner something like 

< = -C^abVP , (32) 

but this has not been utilized in the current implementations of the model. This completes 

our specification of the a equation. 

3.4. Equation for the Modified Density Self-Correlation 

From the mass equation, one may deduce an equation for the specific volume, v = 1/p, 

and hence for v: 

- ^ -I- u • Vu = iJV • u - u ' • Vu' -I- u'V • u ' . (33) 

ot 
From this, the equation for 6 = p y — 1 follows: 

dh ,_ „ , , 6 + l „ _ _, 
-^{;y,-V)b-^—V-p2.^- ^ •̂(G)̂ -K9'̂ -"'=' ^^^ 

17 



There are two expressions to be modeled. We apply a gradient closure to the first and 

apply (19): 

The last term provides for decay of b and requires some care. As previously stated in this 

report, we are considering only subsonic turbulence. Therefore, V • u' is nonzero only in 

the presence of heat conduction and/or mass diffusion. For example, when two species 

with different microscopic densities are interdiffusing with a constant diffusion coefficient 

D at an equilibrium pressure and temperature, then p is a function of concentration only 

and 

V - u = - V - ( — V p j . (36) 

Then 

G)'v—Gyv(H 
In the limit of high Peclet number for mass transfer, which is also the limit of small D, 

we model this decay term for b to be independent of £), in the same way that energy 

dissipation e is independent of viscosity in the limit of high Reynolds number. Thus 

We note two circumstances in which this form is not appropriate. First, if D is large 

(small Peclet number), the rate of 6-decay will depend directly on D, and not merely on 

turbulence variables. Second, if Z) is strictly zero, e.g., for a system of two immiscible 

incompressible fluids, then V • u' = 0 and b would not decay. Questions related to b decay 

need further study and are not resolved here. 

3.5. Equation for the Turbulent Heat Flux 

From the internal energy equation, the fluctuating momentum equation for u", and 

the mass equation, it is straightforward to derive an equation, in the limit of incompressible 

turbulence, for the turbulent flux of internal energy pu" /" = S: 

dSi , 5 . . o N . r, di ^ dui , d — „ „r„ 9ani . / _ , , \ ^ n 
+ (,„50 + Rir.g- + Sn^^ + ^ puyn" = - ^ + («.-n. " « ; < . ) 

dt ' dXn' ""''"'" dXn ' ""dXn ^X^ '̂  " ' dXn \ ' ""^ ' """/ 5x„ 

18 



. ^<ip _ - 1.^ - — ( — \ - '.— ( — \ 

dXn ' *dXm "*" 'dXn \ dXnJ * dXn \ dxnj ' 

where w = p'P/'p = —/". We will not attempt to propose closures here for all these 

unknown terms, because we have not had much experience with this equation. We merely 

point out that pressure-internal energy correlations and presstire-density correlations, such 

as those foimd in the a equation, should behave in analogous fashions, thereby introducing 

a decay term and some modified production terms. Furthermore, the triple correlation 

pu"u"I" could also be modeled by the approach used for pu"u"u". 

As a simpler alternative for S, one could use the standard analogy to the gradient 

approximation, appealing to the concept of an effective turbulent thermal conductivity: 

K 
pu"J" = pu'J" = - C D / — ( R • V)J . (39) 

e 

For completeness, an equation for w can be derived to give 

dpw d _ dl , . dp I 

dt + I^n ^̂ """"̂  ^ ^'''d^r. + ̂ "̂ ~ '̂""̂ ^ 'dtl" ~ ^a^^^""^^ + ^n '̂"" '̂ 

(40) 

6 V - ( K V r ) - p ( ' - ' ) V - ( K V T ' ) 

The last two terms on the right-hand side could be modeled as decay of w. Once again, 

we would model the triple correlation by a gradient approximation leading to a diffusion 

term. 

3.6. Equation for the Rate of Turbulent Energy Dissipation 

An exact e equation could, in principle, be derived from the Navier-Stokes equations, 

much as an equation for [du'Jdxn){du'Jdxn) was originally derived by Daly and Harlow 
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[16]. More concisely, however, most researchers have merely formed the equation for K by 

taking the trace of the Rij equation: 

5 , _ , d ,_ , , , , „ dum dP d / dK\ _ 

where the anisotropic part of R is given by the gradient approximation stated earlier 

(Eq. 20). Then, we form a dimensionally correct equation for e from the K equation. 

Supplying constants to all production terms, we get 

-d^^-di: ^^""'^ + ^''K^^'^-d^ = ^ ^ ^ : ^ " " a ^ + ^""'^n KT-d^n) ~ ^''Ic • 

(42) 

This is the natural generalization of the most frequently used form of the constant-density 

e equation. We shall, however, modify it slightly, adding another production term on the 

right hand side (—C4epeV • ii) to give the correct length scale behavior during compression 

and expansion [17]. 

3.7. The Concentration Equation 

The ensemble-averaged mass conservation equation for a species i interdiffusing in a 

mixture was given in (15). Once again, we identify the last term on the left side as a 

turbulent diffusion of species mass fraction, and model it as 

~P[^ = - ^ = -CDA{R • V)c,- . (43) 

To complete this set of equations, the equation of state needs to be specified. 

3.8. Mixture Equation of State Considerations 

Generally, the pressure can be expressed as a function of all but one of the mass 

concentrations, the system density and internal energy: 

P = f{p,I,Ci,C2,...,Cn-l). (44) 

Hence 

P = / (p , / ,Ci ,C2, . . . ,c„_i) (45) 

20 



which is not necessarily the same as / (p , / , ci, . . . ) , but this last approximation is accurate 

up to inclusion of second order correlations. What we can say is that, because of the 

assumptions of nearly incompressible turbulence outlined in the introduction, the pressvire 

is constant among a group of eddies encompassing a region small compared to the mean flow 

gradient length. This constancy implies relationships among the fluctuations in density, 

internal energy and concentrations, such that 

P = fCp + p',I + I",c,+c'l,...) = P (46) 

everywhere. For a single material gamma-law gas with constant specific heat, P = P 

implies pi = pi; hence p(I + I") =^I = (p — p')I. Then 

P_ 

P 

I" 
(47) 

but no specific relationship can be inferred about p'/"p. The assumption of eddy pressure 

equilibrium breaks down in a shock but holds after a shock has left the mixing zone 

between two materials. A self-consistent description of the interactions of the shock and 

the fiuctuations is not possible with this postulate. Nonetheless, we expect that the jumps 

of mean and turbulent quantities can be sufficiently well described by this model. 

3.9. Summary of Turbulence Model Equations 

We now svimmarize our model equations, which should be most relevant in the hmit 

of fully developed turbulence: 

dR. 

dt 

^ \ \dxj dxn J ^^dxm [ e "*5a;„ V p )\j 

- C,RJ^ [Rij - -8ijRnr^^ - C2R {^in^ + Rjn-^ " -^SijRmr.-^ 

(48) 

- -^^ijP^ , 
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^ai d . . ^ dui 
+ - 5 — (pUnai) + pan-;:— = 0 

dt dxn dXn 

fdP dfni 

\dXi dXn 

Rin dp 

p dx„ 

+ CoaP 
dx. 

-r: I Rin-^ 1- Rn 
ep \ dxn 

dai\ 

dXnJ 

— d . . ^ _ e / - , _ du 
+ P -Q—(a„ai) - Ciap—ai + C2apan-Q— (49) 

db _ db fe-l-l a ,_ , _^ d (K^ d fl + b 

Ul UXn p OXn OXn \ ' P ^^^m \ P 
Cn^b (50) 

dpe d e dum ^ e dP 

(51) 

+ -^ («nOi) + Rin-^ + Sn-:: = W 
dt dxn dXn dXn 

9''+^)+aJp^ 
dxi dxn 

jdUn _ aUn»\ 
Q Tmn Q I 

aa;„ ax„ / 

+ Cos 
dXn 

K 

e 
I i^nm 

dx. (f) dx 

d /5„ n 

d ( dT\ -pe dui 
- paie - ai-^— j K—— | - CiarpjSi -f 02 ,0 , 

* dXn \ dXn K dx„ ' 
(52) 

&pw 

dt 
+ A . (-U ^) +-an— + — - ^ --—(anW) = b ( P ^ -Tmn—) 

dXn ^ "" ^ " dXn p dXn dXn " V ^^n "*" dXm) 
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K ^ dw 
— peb 

ep ox, 

, d / dT\ ^ -pe ^ _ dl 

^dTn ["d^nj ~ ^ '̂"^" " ^'-"^^dTn ' ^̂ ^̂  

dpc 

~di 
i d , , d f_.^dci\ ^ d (K^ dci\ 

The equations for S and w could be omitted if (39) is adopted as a simpler model for the 

turbulence heat flux. 

4. SPECIALIZATION OF EQUATIONS TO INSTABILITY-DRIVEN 
TURBULENCE 

One of the major goals of our work is to utilize these model equations to describe 

instability-driven turbulence accurately. The different types of instabilities encompassed 

by the equations are pressure-gradient driven, as in Rayleigh-Taylor instability or its 

shock-driven counterpart, Richtmeyer-Meshkov instability, and shear instability, commonly 

known as Kelvin-Helmholtz instability. To show that our model can reproduce the 

statistical effects of these instabilities, we flrst specify that the flow is nearly incompressible, 

but variable-density, and we define a coordinate system for the general case of variable-

density turbulence in a combined pressure gradient and shear fiow. Let us dictate that 

the initial flow velocity (u) is aligned with the x-axis, while the pressure gradient acts in 

the y-direction, which is the same direction in which the x-velocity varies. Furthermore, 

we are interested in the ability of the model to predict how mean flow variations affect 

these instabilities, and so we ignore the secondary effects of turbulence on itself. Triple 

correlations, decay terms, and the "slow" parts of the pressure-containing correlations 

will be dropped. This amounts to rapid distortion theory applied to instability-driven 

turbulence. Further, in source terms, gradients of turbulence variables are dropped and u 
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is replaced by u. The turbulence equations for the Reynolds stresses and the tvirbulence 

mass flux vector components are, in this special case (with D/Dt = d/dt -f- u • V), 

DRyy _ dP 2 du 

~Dr-^^''"a^~3^'^^^''a?' ^̂^̂  

DRxv /. ^ ^T. du dP ,_„. 

- ^ = - ( l - C 2 . ) i ? , , ^ + a . - , (56) 

^^- = (-2 + lc2n]R.y^., (57) 
Dt V 3 J "dy 

Day _ b dP Ryy dp 

'DT ~ "pl^ ~ fd^ ' 

Dttx _ Rxy dp 

(58) 

(59) 

The rapid parts of the pressure-velocity are included here because they affect the qualitative 

conclusions about forms of instability growth rates. We are now in a position to examine 

the description of instabilities by these simplified equations. 

For pure shear flow in a constant density medium, the pressure and density gradient 

terms disappear, ff the mean flow gradient is taken to be approximately constant over the 

time scale of interest, then differentiation of Eq. 55 gives 

D^Ryy ^ 2 DR^ydu 

2 2 (60) 

= -^C2Ril-C2n)Ryy[yJ ^ g^- ( T ; j 

if C2R is near 0.5. The resulting expression for the growth rate of the instability is 

u = —=kuAu , (61) 

v6 

where fc„ = (L„)~^, which nearly corresponds to the growth rate of Kelvin-Helmholtz 

instability [18] at a wavenumber characteristic of the mixing layer width. 

24 



On the other hand, for pressure-gradient driven circumstances, with no initial flow in 

the x-direction, all equations with time-derivatives of x-direction variables disappear. By 

differentiating Eq. 55 in much the same manner as above for Kelvin-Helmholtz instability, 

we get 

D^Ryy ^ o£^^ = o (121 _ ̂ ?P\ ?E /fioA 

D<2 Dt dy \pdy f dy) dy ' ^ ^ 

The first term on the right side of this equation describes the effect of a pressure gradient 

(acceleration or shock) interacting with the turbulent density fiuctuations, as measured by 

b. This always leads to increase of turbulent energy but is not present in purely Rayleigh-

Taylor instability. 

The second term on the right, proportional to mean-density gradient, gives the effect 

of Rayleigh-Taylor unstable conditions on turbulence, as these are characterized by the 

interaction of density gradient and acceleration. This term gives exponential growth to 

Ryy at a rate determined by 

where gr = — 4 ^ wherever g-^ > 0. If we interpret 4 | ^ to be a density difference between 

two superposed flmds divided by their sum times the reciprocal of a gradient scale length 

(^p), we recover the form of the expression for the growth rate for large wavenumber 

distiurbances (k >• /3p) in gradient-stabilized Rayleigh-Taylor instability: 

u « y/2 g At Pp , (64) 

in which At is the Atwood number. Turning now to shock-driven growth, we use the other 

term in Eq. 62. The weak shock is approximated [19] by a velocity jump V induced by an 

impulsive pressure gradient (l/'p)dpS(t)/dy . Then V = (dp/dy)/'p and 

ay==bV, (65) 

and 
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Ryy = b-pV' , (66) 

which agrees with Saffman and Meiron's result for initial turbulence kinetic energy after 

a weak shock contacts a density discontinuity, here modeled by a finite value of b. 

When considering a combined Kelvin-Helmholtz-Rayleigh-Taylor instability, the 

equations become somewhat more complicated [20]. From Eq. 62 and the time differential 

of Eq. 56, a fourth-order equation for Ryy emerges: 

^ = {ZU^IT + lc2Ril - C2R) ( 0 ) ' ) ^ - 2u.1,rRyy , (67) 

where OJRT is given by Eq. 63. We will restrict the discussion to cases in which the density 

and pressure gradients have the same sign, the classically stable Rayleigh-Taylor case. 

Then tu^j. < 0 and the combined growth rate is given by 

2 1 /"o 2 2 ^ ,, ^ . /du\ 
'̂ TOTAL = 2 I ^ R T + 3 ^ 2 i i ( l - C2R) 1 ^ 1 

(68) 

4 
\ 

M ^ + | C 2 R { 1 - C 2 « ) ( ^ ) j -8a, 4 
RT ' 

which will have a real portion if 3|a;^2.| < |C2ft(l — C2R) ( f ^ j • ^ the density and 

velocity gradients have the same characteristic wavenumber k^, then we expect growth 

for cases where, for g and Ap taken as positive, 

"̂'̂ "'̂  > S T ' ^ J t l ^ • («^) 

5. COMPARISON TO TWO-FIELD MODELS 

Two-field descriptions of instability-driven turbulence and mixing hold some advan-

tages over the approach taken thus far in this paper, e.g., the ability to describe interpen-

etration naturally by keeping two separate velocity fields, and the marking of the mixture 
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fraction at any point, among others. Further, the two means of analyzing mixtures are 

equivalent in some simple, yet interesting cases. The two-field continumn fiow equations 

can take on many forms, depending on the amoimt of detail that the researcher wishes to 

capture. Here, for present purposes, one of the simplest forms of these equations, written 

for two microscopically incompressible fields, will suffice. 

The model equations of Section 3 should include the capability of describing the 

interpenetration processes of two-field flow. To define the concepts of mean and fiuctuating 

part in the two-field context, we consider the system composed of particles or droplets 

dispersed within a continuous surrounding flviid. 

Two-field flow theory would allow for fluctuations from particle to particle and from 

point to point within the fluid. The dynamics of the system is described by field variables 

at several levels of specificity. 

First, there are subscripted variables pertaining to the individual fields. The field 

densities pt, fc = 1, 2, are constants. The characteristic function 0k{^,t) satisfies ^k = 1 

for regions of x-space occupied by the k'** field and /3k = 0 elsewhere, so that ^Zt ^t ~ 1-

The velocity ujt(x, t) of the k'^ field is defined where l3k = 1 and ^ki^,t)vk(x,t) is defined 

for all x (within the physical region occupied by any field). 

Second, one computes averages of these field data, either ensemble averages, or space 

averages over control volumes small compared to significant macroscopic length scales, but 

large compared to droplet size and separation scales. The volume fractions a* are defined 

by 

ak(x,t) =j;j7J), 0<ak{x,t)<l (70) 

and obey ^ ^ ak = 1. Then an averaged velocity Uk(x, t) is defined for each field and all x 

by 

akix,t) Ukix.t) = I3k{x,t)vk{x,t) . (71) 

Other averaged individual field data, such as internal energy Ik are defined similarly. 
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Next, "mixture" variables that characterize the system of fields as a single fluid are 

defined by sums over k, weighted by the characteristic functions ^k (unaveraged mixture 

variables) or by the volume fractions ak (averaged mixture variables). In this way, we 

arrive at analogs of the turbulence averages, denoted with overbars or tildes, and the 

turbulence fluctuations, denoted by primed variables: 

P = Y^hpk, 'p = ^akpk, p' = p-'p, (72) 
k k 

u = J ^ Pk^k , u = X ] ̂ *̂ "*= ' u'fc = "it - u , (73) 
k k 

and 

^^ZkakPkUk ^ / = £ i ^ i ^ , e t c . (74) 
22k ^kpk 22k ^kPk 

The evolution equations for the interacting averaged field variables are developed in 

detail by Ishii [6], starting from the statements of conservation of mass, momentimi, and 

total energy for each field. We have 

dokpk 

dt 

dakPk^k 

dt 

-\- V • (akPkUk) = 0 , (75) 

-I- V • (aitpitujfcujt) = -akVP + Kop (ufc' - u^) , (76) 

dakpkh 
+ V • (akPkUkh) = -P (-^ + V • akUkj 

dt V »r« « «/ y^ y ^^^^ 

-h Rr'pCym (Tk' -Tk)-\- Ko'pink' - u^) • (u - u^) . 

These equations represent averages over realizations of flows at high Reynolds ntimber, 

and viscous stress terms are ignored. P is the spatially averaged pressure of the surrounding 

field. Cvm is an effective specific heat of the mixture. RT is a heat-exchange ftmction and 

KD is a momentum-exchange function (inverse drag time scale); they result from modeling 

of the interactions at field interfaces. For present purposes, we need not specify how their 
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time and space variations are determined. Tk is the temperati^e of the k*̂  field and 

subscript k' refers to the field other than the k*** field. We wish to demonstrate a close 

relationship between these equations and the turbulent transport equations of Section 3.9. 

The correlation fiuictions studied in the first part of this paper can be expressed, in 

the two-field system, in terms of sums weighted by the volume fractions: 

-̂ •J = Yl ^^P^ ("'̂  ~ ")' ("*̂  ~ ")i ' (̂ )̂ 
k 

a = - ^ a f c ( u f c - i i ) = u - u , (80) 
k 

S = Y,<^kPk{nk-xi){lk-l) , (81) 

ft = -5]afc(pfc-p) ( — - ( - ) I = - l + Xl7^ J]"nP„, 
k V'' ^P^J kP'n 

E «fc (Pk - p) (Ik - T) 

(82) 

w _ = -Y,oik[lk-l)=i-I. (83) 

In general, to form any correlation (which, previously, we had associated with turbulence), 

one averages the departures from the mean, either mass-weighted or uniformly weighted, 

over the number of materials. Another example of a correlation of fiuctuations is 

u ' u ' = ^ Ofc (Ujt - U) (Ufc - u ) . 

k 

These relationships hold for any number of fields, but we are most interested in a two-field 

description because of the additional relationships that apply. Thus, for two fields, we 

have: 

p = cvipi-|-Q:2P2 , (84) 
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a = Q'iQ'2(/>i - / > 2 ) ( U l - U 2 ) .gg . 

b=-p(sl^^).^= 
\P1 P2) 

a\a2{p\ - P2y 

P\P2 
(86) 

W = ^ l M / > l - P 2 ) ( / l - / 2 ) ^ (g^^ 

_ QiQ2PiP2(ui - U2)t(ui - U2)j _ ajajP 

p b 
(88) 

a n d 

c Q'iQ2^ip2(ui - U2)(-^i - ^2) au; _ 

S = z = — p . (89) 

In this model, evolution equations for R and S are not needed and only the a, ft, and w 

equations need to be examined. 

From the two-fleld equations and the two-fleld definitions outlined above, an equation 

for a follows: 

dpa. / 1 1 \ 
- J ^ -h V • pau + p(a • V)u -h u 'u ' • Vp -h V . paa f 1 - - -h ^ j = 

feVF - A'^ap , 

where B = Efc«i«2(pi - />2)V^^ = 'p^/'p'^ = bp\p2/'p^ and K}) = A D P V ( « I « 2 / > I / ? 2 ) • 

By comparing this equation to (28), the turbulence equation for a, and to (29) we can 

infer a new modeling for the correlation p'u'u': 

p'u'iU'j=-paiaj(^l-^ + ̂ ^ . (91) 

This gives a wave-like flux term in the a equation, as opposed to the diffusive flux term 

that most modelers would use, following (22). For the model of Section 3, taken in the 

limiting case of two-field interpenetration, p'u'-u'j should reduce to the right side of (91), 

which the gradient closure (diffusive fiux) would not. 
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If a gradient approximation for a is derived from the balance in Eq. 49 for a between 

the decay term (—Ciapea/fc) and the density gradient production term (i?,„/p) (5p/5a:„), 

then 

«i = -CL^Rinp- . (92) 
ep^ dxn 

We expect that (92) will best approximate a, as a constraint equation relating data at a 

common time, in the fully developed turbulence limit when production and dissipation are 

in balance. Furthermore, one may show, from the two-field description expressed in terms 

of single-field variables with pi and p2 as constants, that (expressing a i , 02 in terms of p, 

pi, p2, and here A in terms of p, pi, p2, and ui — U2) 

B bj dp 

Then, substituting into Eqs. 91-92, symmetrizing the expression and approximating 

dA/dxn by {dA/dp)(dp/dxn), the approximation to p'u 'u ' emerges as 

TKiP; = -Cr>A {R>.^^A, + i?>ng|̂ -4,) , (93) 

which is different, and perhaps better, than the form in (22). Also, the decay term in the 

newly-derived a equation could be modeled as 

Ko^P ~ C7,„ ^^^^^ - C,„ ^3/2 . (94) 

By extending the analysis for other turbulence quantities, we get, for the evolution of b, 

| ^ + ( u . V ) 6 - h ^ V - p a - h p V - u ' f i ^ = 0 . (95) 
Ot p \pj 

if V • u' = 0. This leads to a revised model for the term we were calling diffusion-like, 

which is 
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Now we write an equation for B = p''^/p^. The turbulence equation for this is, again 

assuming incompressible turbulence, 

dp'^B 

dt 
+ S7 • (ufB) -^-fBV •u + 2pa-Vp + V • p'^u' = 0 . (97) 

From the two-field description, written in terms of single-field variables, B evolves 

according to 

^ ^ + V • (u p25) -h p^BV • u + 2pa- Vp 

(98) 

which implies that the triple correlation in Eq. 97 should be modeled as 

7 ^ = p 5 a ( ^ l - l - h | ^ . (99) 

A similar treatment of the w equation gives 

1 1 
p'u 'J ' = p « ; a f l - - - h - l , (100) 

which also reduces properly in the fully-developed turbulence limit. The potential decay 

terms (cf. Eqs. 53 and 77) in the two-field version of this equation can be written as 

OilOi2ipi - p2)(Ti - T 2 ) 
*—/ 

vm' 
—RTPC, 

*_ OC2P2 - OiiPi " I ^ K P I - P2) (ui - U2) • (ui - U2) 
+ ^*P r ^ -2 

OilOi2{pi - P2) P 

where R^ = RTP^/ {oi\Oi2PiP2)- These two expressions can be transformed into single-field 

variables, to become 

—R'r'pw 

and 
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These can be identified with two terms in the original w equation, namely 

-'©•' (/cVT') « -Ciuip-^w 
A 

and 

respectively, though the second correspondence is less clear. 

For the mass concentration equations, a similar formal parallel holds. Applying Eq. 15 

for the mass-averaged concentration of material 1 at high Peclet numbers for mass transfer, 

(D -> 0), 

dpci 
^ - fV-pc iu + V-pc; 'u" = 0 . (101) 

From the two-field description as a point of departure, the mass fraction for field 1, in 

the region occupied by field fc is cifc = ^ijt- The associated single-field variables, unaveraged 

and mass averaged, respectively, are ci = ^k PkC\k — fi\ and 

ci = ^/SkpkCik/p = a i p i / p . (102) 
k 

Observe that ci -i- C2 = 1 and c'/̂  = cifc — ci is the negative of Cj^. Rewriting the unknown 

correlation in (101) in terms of two-field variables, we get 

aiQ!2piP2 
pc'i'u" = pciu" = a ip i (ui - u) = - ! - ± f i ^ ( u i - U2) . (103) 

P 

Thus, the material fluxes can be re-expressed in terms of single-field variables as 

'C1C2 . 
pciu" = -pc2u" = paW—r- sign(pi - P2). (104) 

If a is again taken in its fully developed turbulence limit (oj = —0*^ (A/ep^) Rin {dp/dxn)) 

as in Eq. 92, then, after re-expressing ai, a2-, and hence C1C2, in terms of p, pi, p2, 

pai^— sign(pi - p2) = - C i „ - i 2 , „ ^ p - ^ = - C i „ - ^ i l , „ ^ . (105) 
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which agrees with (43), to within an adjustable constant. Thus, we have demonstrated 

the relationship of the unmodeled ttirbulence equations to the two-field equations and, as 

a result, suggested some new closures for variable-density turbulence models that capture 

both the ordered and fully turbulent limits. 

6. SIMPLER MODELS 

Implementation of such models in multidimensional hydrodynamics codes can become 

extremely tedious and the resulting nan times can become lonreasonable. (Therefore, it is of 

significant interest to develop and program simpler models in order to gain experience with 

them and, if they can be demonstrated to be deficient in crucial areas, then improved at a 

later time.) One of the simplifications we have used with some success in the CAVEAT code 

[1] retains a transport equation for the trace of the Reynolds stress tensor (^^Rnn = "pK) 

and makes use of the Boussinesq (gradient) approximation for specifying the components 

of the Reynolds stress tensor in terms of A and e. Then 

dpK d ,_„ ,,, ^ dum dP d f dK\ _ „ ^ , , 

Pt = c;p^ . (108) 

Furthermore, keeping only the most important production terms, the decay term and 

a simpler turbulent diffusion term from the a equation (cf. Eq. 49), results in a more 

manageable model expression: 

dpai 

dt 

i d ,_^ , _ dui ^(dP d _ \ 
- + ^ (pUnai) + pan-^^ =\-d;^r a ^ - - j 

Rin dp ^^ d (PK^dai\ -pe 

p dXn OXn \ e OXn J A 

(109) 
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The proposed e equation is the same as derived previously (cf. Eq. 51), as is the 

concentration equation (cf. Eq. 54): 

^ e d .^ ^ „ e ^ dum ^ e dP ^ d / P A ^ de 

-dT-^d^ (^^"') + ^^^ A ^ - " a ; ; = ^''K''--d^n "̂  ^""'dx 

_ (PK^ de \ 

„ \ e dxn) 

- C2M - Cu-P^^ , (110) 
A OXn 

^ ' + 4r (^"^0 = 4r i-po4-c\ + Cn.^ I ^ H „ „ ^ I . (Ill) 
Ot OXn OXn \ OXn J OX 

Further, 6 can be computed from its own transport equation or, if we assume that there is 

no interspecies diffusion, so that the b equation has no decay term, the two-field expression 

for b should be accurate: 

^^cy^a2{p.-P2? (^^2) 
P\P2 

In practice, in a computational cell, a i , 0:2, pi, and p2 would be determined from the two 

criteria of (1) pressure equilibrium between components, and (2) either adiabatic work 

exchange or temperature equilibriiom between materials. Finally, the ttirbulent heat fiux, 

in accordance with this simplified approach, is given by diffusion of the internal energy, as 

K df 
Si - -Coi-Rin-^ . (113) 

e dxn 

This model can be considered a natural extension of AT — e models and the modeling 

methodology to variable-density flows. 

Another type of model would use the two-field (or multifield) flow equations (75-

77) for the stable part of the flow, together with the turbulent transport equations of 

Section 3 to represent the multifield instabilities. In this context, the stable part of the 

flow has been referred to as "ordered," while the unstable part may be called "disordered." 

Closures should then be modeled so that they vanish in the pure multifield limit, rather 

than approaching their multifield limits as given in this section. The type of turbulence 
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model to be used to augment the description of ordered motion could also provide the drag 

length scale [6] for the phenomenological momentum exchange coefficient: 

^ 3 / 2 

LT = (114) 

The Reynolds stress and turbulence dissipation equations in the disordered portion of 

the model are taken from standard turbulence models (e.g., that of Launder, Reece, and 

Rodi [16]), but we suppose that the energy lost from the ordered motion (—2A"*'*'°^^ = 

—2K*R°^-^) acts as a source to disordered energy, not heat: 

OK*P^^ 2 A D — r -

CDR 
d 

dx. 

A" ^ ^ a d Rmj 

- ClR (^R^j - l^ijRin) - C2R ( $ 0 - ^-^O^nn) 

/ 2 A | , p \ / 1 \ 2 

- Wfi I — ^ — I [o.iaj - -dijanOnj - -Oijpe , 

^ ' M ^ (- \ ^ r ^ T^d dum ^ d (PK'' de\ 

-dt^-dTn (^""'̂  + ̂ ''K^-^-d^ = ^""'d^n yTdTn) — 2 

C 2 e ^ - C4.pe(V • u) , 

(115) 

(116) 

The ^^(T^ superscript refers to only the disordered part of the turbulence and Kp can be 

modeled as in Eq. 94. Then the total Reynolds stress that enters the mean flow momentvim 

equation is (cf. Eq. 13) 

p^tota] ^^d_^ p^ord = R' ' + ^ akpkink - u){uk - u) , (118) 
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and equations for a, 6, and Cj are not needed. An equation for the disordered part of the 

heat flux could be derived in an analogous fashion, with a source term 

C = (Kh-\-R*T)S-\-KhjK^ (119) 

arising from the decay of the ordered part of S: 

dsf d , ,. , di , dui _ 

-dT + dTn (""^ ' ) + ^"^ a ^ + ^-dTn -

d 
Cos 

dx. f(^^"ai;(^)+^-"a^(f)) (120) 

- Crs^Sf -h C2sS'np- + {1- Css)^i 
i t OXn 

Then 

gtotaj = S'' + Y1 cckpk (Ufc - a) (ik - i) . (121) 
k 

is the quantity needed for the mean internal energy equation. 

7. S U M M A R Y 

Starting from the Navier-Stokes equations written for a single field, we have derived 

and closed a set of transport equations appropriate for variable-density turbulence when 

the fluctuating velocities are far subsonic. This condition implies local pressure equilibrium 

among the different eddies and species over a distance small compared to mean-flow 

gradients. We have also taken a rather simple two-field model from the literature and 

demonstrated that our unclosed equations are formally equivalent to this model if the 

densities of the two fluids are constant. From this equivalence, new closures for turbulence 

quantities, such as triple correlations, emerge naturally. These new closure ideas have the 

ability to describe not only fully developed turbulence but also encompass the limit of 

purely ordered interpenetration of two incompressible materials. Therefore, these closures 
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may be superior to those commonly proposed for variable-density turbulence and their 

application to real problems should be explored. 

We are indebted to Charles CranfiU for discussions and insights on the topics of this 

paper. 
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