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Turbulent boundary layers over permeable walls:

scaling and near-wall structure
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This paper presents an experimental study devoted to investigating the effects of
permeability on wall turbulence. Velocity measurements were performed by means
of laser Doppler anemometry in open channel flows over walls characterized by a
wide range of permeability. Previous studies proposed that the von Kármán coefficient
associated with mean velocity profiles over permeable walls is significantly lower than
the standard values reported for flows over smooth and rough walls. Furthermore, it
was observed that turbulent flows over permeable walls do not fully respect the widely
accepted paradigm of outer-layer similarity. Our data suggest that both anomalies
can be explained as an effect of poor inner–outer scale separation if the depth
of shear penetration within the permeable wall is considered as the representative
length scale of the inner layer. We observed that with increasing permeability, the
near-wall structure progressively evolves towards a more organized state until it
reaches the condition of a perturbed mixing layer where the shear instability of
the inflectional mean velocity profile dictates the scale of the dominant eddies. In our
experiments such shear instability eddies were detected only over the wall with the
highest permeability. In contrast attached eddies were present over all the other wall
conditions. On the basis of these findings, we argue that the near-wall structure of
turbulent flows over permeable walls is regulated by a competing mechanism between
attached and shear instability eddies. We also argue that the ratio between the shear
penetration depth and the boundary layer thickness quantifies the ratio between such
eddy scales and, therefore, can be used as a diagnostic parameter to assess which
eddy structure dominates the near-wall region for different wall permeability and flow
conditions.

Key words: geophysical and geological flows, shear layer turbulence, turbulent boundary

layers

1. Introduction

The study of turbulent flows over permeable walls is of practical and theoretical
interest. The practical interest is associated with the need to predict scalar transport
processes in many geophysical and industrial flows which are often characterized by
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permeable walls (gravel bed rivers, atmospheric flows over vegetation, heat-exchangers,

coastal protection structures, etc.). From a theoretical point of view, turbulent flows

over permeable walls represent an attractive opportunity to investigate how the

relaxation of the wall blocking condition, promoted by wall permeability, influences

the dynamics of wall turbulence. The incentive to study this problem comes from

the widespread idea that the wall blocking condition plays an important role in the

dynamics of coherent structures typically observed in turbulent boundary layers over

smooth or rough walls (Krogstad, Antonia & Browne 1992; Hunt & Morrison 2000).

Investigating the effects of wall permeability on turbulent flows is not an easy

task. The difficulty lies in the nature of the walls, which are inherently permeable

and rough; therefore, in numerical or physical experiments it becomes difficult to

differentiate between the effects of permeability and roughness. In the literature, this

problem has been overcome by following two approaches. The first, particularly used

in the study of flows over granular beds, involves a comparative analysis between flow

statistics measured over rough impermeable and rough permeable walls characterized

by the same surface roughness texture (Zagni & Smith 1976; Manes et al. 2009).

For example Manes et al. (2009) present a comparison between statistics of velocities

measured in open channel flows over an impermeable wall made of one layer of beads

and a permeable wall made of five of such layers. The rationale behind this approach

lies in the concept that (i) a wall is considered as permeable (impermeable) if its

thickness is significantly larger (comparable or smaller) than the characteristic size of

its constitutive components; (ii) the comparison between flow statistics measured over

the two beds highlights the effects of wall permeability since the surface roughness

is kept the same. Results from the studies that applied this approach indicate that

wall permeability significantly influences flow resistance. It was observed that for a

given relative roughness (i.e. ratio between flow thickness and equivalent grain size)

friction factors increase with increasing Reynolds number (Re) without reaching a

hydraulically rough plateau, which is typical of impermeable rough walls at similar

Re. Manes et al. (2011) argue that the increase in friction factors is associated with

a progressive shear penetration within the permeable wall and/or with a persistent

viscous drag exerted by sheltered grains.

The second approach has been proposed by Hahn, Je & Choi (2002) and then

refined by Breugem, Boersma & Uittenbogaard (2006). Breugem et al. (2006) suggest

that a permeable wall is characterized by three length scales, namely the square root of

permeability
√

K, the wall thickness H, and the characteristic size of the ‘roughness’

elements dp composing the solid matrix of the wall. The effect of permeability on

the flow is isolated if (i) the wall thickness is larger than the turbulence penetration

depth; (ii) the roughness Reynolds number Red = dpu∗/ν is sufficiently small (e.g.

Red ≪ 70) and (iii) the permeability Reynolds number ReK =
√

Ku∗/ν is sufficiently

high, i.e. ReK > 1 (in the above formulas u∗ is the friction velocity and ν is the

kinematic viscosity of the fluid). In line with this argument, Breugem et al. (2006)

performed direct numerical simulations (DNS) of channel flows over permeable walls

characterized by small cubical elements packed in a very open cubic pattern. The

results showed that permeability alters significantly the structure and dynamics of

wall turbulence. The more permeable the wall is, the less evident the high- and

low-speed streaks associated with quasi-streamwise vortices typical of impermeable

smooth walls become. This result was explained partly by the reduction in shear due

to the relaxation of the no-slip condition and partly by the enhanced turbulent transport

of fluid across the wall surface, which in turn is associated with the weakening
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of the wall blocking effect. The structure of turbulence in the proximity of the
permeable wall was observed to be dominated by large vortical structures associated
with Kelvin–Helmoltz (KH) instabilities induced by the inflection of the mean velocity
profile at the wall surface.

In the simulations performed by Breugem et al. (2006) the log law of the wall
could be fitted to the mean velocity profiles over the permeable walls. The resulting
von Kármán coefficients κ were significantly smaller than the standard values reported
for smooth or rough walls. Similar results were also obtained by Suga et al. (2010).
Breugem et al. (2006) argue that this anomaly is either due to the alteration of
the flow structure induced by wall permeability or is an effect of the low Reynolds
numbers at which simulations were carried out. Therefore, they recommended carrying
out further studies at higher Reynolds numbers. These authors also noticed that
Townsend’s hypothesis of outer similarity (Townsend 1976) was respected for some
statistical quantities and not for others. In particular the root mean square (r.m.s.) of
the vertical velocity fluctuations did not exhibit similarity. As for the von Kármán
coefficient, they argued that such a deviation could be either another shortcoming of
the low Reynolds numbers of the simulations, or an effect induced by the weakening
of the wall blocking condition. According to the latter hypothesis, when the wall
blocking condition is relaxed, strong sweeps and/or ejections can be transported across
the entire boundary layer depth and hence allow significant communication between
the inner and the outer layer. Therefore, the inner flow, which is governed by the wall
characteristics, directly influences the outer layer, thus preventing similarity.

Besides the work of Breugem et al. (2006), the wealth of numerical and
experimental studies dedicated to turbulent flows over vegetation canopies provide
interesting results that can be exploited for the study of turbulent flows over permeable
walls in a more general sense. However, the results from the canopy flow literature
have to be taken with care, because most of the numerical or physical experiments
in this research area were not designed to investigate the effects of permeability
on wall turbulence exclusively and the conditions listed by Breugem et al. (2006)
to do so, were not fully met. In particular, the penetration depth of turbulence is
usually comparable with the canopy height (Finnigan 2000), which therefore remains
a relevant scale for the flow. Despite these limitations, the literature on canopy flows
remains an important reference and it is briefly summarized in the following.

It is now widely accepted that, if the canopy is dense enough, the near-wall flow
behaves as a perturbed mixing layer (Raupach, Finnigan & Brunet 1996; Ghisalberti
& Nepf 2002; Poggi et al. 2004). The inflection of the mean velocity profile at the
canopy top is dynamically active and represents the primary cause of the formation
of coherent structures, characterized by energetic sweeps and less energetic ejections
(Finnigan 2000; Finnigan, Shaw & Patton 2009). Finnigan et al. (2009) present a
model for the dynamics of such coherent structures where the hydrodynamic instability
at the canopy top, associated with the inflection in mean shear, is responsible for a
strong scale selection which makes the flow at the canopy top more coherent than
over other rough surfaces. The dominance of sweeps over ejections is justified by the
permeable nature of the canopy which allows the generation of significant downward
deflections. By means of conditional sampling techniques, Finnigan et al. (2009)
observed that sweeps and ejections are associated with head-down and head-up hairpin
vortices respectively. It was also observed that, in analogy with other rough surfaces,
at a certain distance from the canopy top, ejections start to dominate over sweeps.
This crossover is explained as a result of two counteracting processes: away from the
wall (i.e. at heights much bigger than the canopy height) downwards motions of scales
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comparable to the vertical height z are blocked by the wall (Hunt & Morrison 2000)
so the probability of upward deflections of hairpin vortices, and therefore of ejections,
exceeds that of sweeps (i.e. downward deflections). In contrast, near the wall, the
porous canopy allows downwards deflections as much as for upward deflections, but
the former are also strained and amplified more than the latter due to the presence
of mean shear. This guarantees that sweeps dominate near the canopy top. Finnigan
et al. (2009) suggest that the crossover between sweep- and ejection-dominated regions
could be a function of the canopy structure and, in particular, of the vorticity thickness
associated with the inflectional mean velocity profile at the canopy top.

In the present study we investigate the effects of permeability on the dynamics
of wall turbulence. We follow the approach suggested by Breugem et al. (2006)
as it allows us to investigate the effects of permeability exclusively without the
need of comparative analysis between flows over walls sharing the same roughness
texture. To this end, we carried out a series of experiments where velocity fluctuations
were measured by means of a laser Doppler anemometer (LDA) in open channel
flows over three permeable beds covering a range of wall permeability spanning
two orders of magnitude. As will be shown in detail, the paper reports how the
scaling and the structure of turbulent flows over permeable walls evolve when wall
permeability varies between two limiting conditions: (i) an impermeable smooth wall;
(ii) a very permeable wall resembling a canopy which imposes a well-defined mixing
layer in the near-wall region. The first represents the natural limiting condition of
a wall with zero permeability whereas the second was chosen as it includes flow
processes that are very relevant for geophysical applications. The transition between
the two limiting conditions will be assessed in terms of scaling of the mean velocity
profile, the magnitude of turbulence intensities (i.e. r.m.s. of velocity fluctuations), and
characterization of the near-wall structure, which will be investigated by means of
quadrant and spectral analysis. Some of the experiments were carried out with the
highest Reynolds numbers ever attained for flows over permeable walls. This allowed
us to test the results of Breugem et al. (2006) on the von Kármán coefficient and
the outer-layer similarity. Furthermore, we investigate what are the dominant eddies
responsible for turbulent kinetic energy (TKE) production in the near-wall region of
turbulent flows over permeable walls and, in particular, what are the flow and wall
conditions that allow the near-wall structure to reach the limiting case of a perturbed
mixing layer.

The paper is organized as following. In the following section we describe the
experimental equipment and procedure. Section 3 is devoted to the presentation of the
results, where we discuss the validity of the log law of the wall, the validity of the
outer-layer similarity hypothesis and the turbulence structure above permeable walls.
Finally, in § 4 we present a summary and a discussion of the main results.

2. Experimental methodology

2.1. Materials

The experiments involve turbulence measurements in open channel flows over three
permeable walls and a smooth wall. The smooth wall was composed of stainless
steel and represents the first limiting condition of a perfectly impermeable wall.
The permeable walls were composed of three types of open-cell polyurethane foam
each of them characterized by a different permeability (see figure 1). As will be
discussed in the results section, the wall with the highest permeability represents the
second limiting condition since it allows the development of a flow resembling a
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FIGURE 1. Foam samples: (a) 60 pores per inch (ppi); (b) 30 ppi; (c) 10 ppi; (d) sample of
the digitized X-ray tomography used to obtain the foam characteristics reported in table 1.

perturbed mixing layer. The permeability and the relevant geometrical properties of
each foam type are the same as in Clifton et al. (2008) and are reported in table 1.
The permeability of each wall was obtained by means of a standard ‘Darcy-type’
experiment. This was performed by placing a sample of porous media within a
closed duct where an air flow rate was imposed and the associated pressure drop
was measured (Clifton et al. 2008). With respect to Clifton et al. (2008) we also report
the mean thickness of the filaments composing the foam structure since we argue that
this length scale is associated with the ‘roughness’ dimension dp of each permeable
wall. The specific surface area (SSA), the mean pore size and the filament thickness
of the foam reported in table 1 were estimated from X-ray tomography (see figure 1d)
of foam samples following the procedure outlined in Schneebeli & Sokratov (2004).
The spatial resolution of the tomography was 10 µm, 20 µm and 36 µm for foam type
60 ppi, 30 ppi and 10 ppi respectively. The SSA was computed as the total surface
of the filaments divided by the total solid volume, and the mean pore size (lpore) was
estimated as the mean diameter of each hexagonal cell composing the foam solid
pattern. The thickness of the filaments (i.e. dp) was computed as the mean diameter
of each filament composing the solid fraction (for more details on the computational
methods used to estimate dp from the X-ray tomography see Hildebrand & Ruegsegger
1997; Schneebeli & Sokratov 2004).

The foam used in these experiments represents an ideal material for the purposes of
this paper: the thin filaments and the open structure of the foam allow us to investigate
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Plan

Flow

Side

FIGURE 2. (Colour online available at journals.cambridge.org/flm) The open channel flow
facility used for the experiments.

Foam type K ×10−9 (m2) φ (%) dp (mm) SSA (mm−1) lpore (mm)

60 ppi 6 98.0 0.03 1.70 0.5
30 ppi 39 97.0 0.11 0.82 1.5
10 ppi 160 96.4 0.27 0.37 3.9

TABLE 1. Properties of the polyurethane foam; the first column identifies the name of
the foam as well as its number of pores per inch (ppi); K = permeability; φ = porosity;
dp = filament thickness; SSA = specific surface area, defined as the surface area per unit
volume of the solid fraction; lpore = mean pore size.

flows with relatively small Red and large ReK . Furthermore, the X-ray tomography
revealed that polyurethane foam has a homogeneous and isotropic structure, which
implies that describing wall permeability by means of a scalar rather than a tensor is a
correct assumption.

2.2. Experimental procedure

Experiments were carried out in a non-tilting, recirculating, hydraulic flume at the
‘G. Bidone’ Laboratory of Hydraulics, DITIC, of the Politecnico di Torino (figure 2).
The flume is characterized by a straight, glass-sided, rectangular section, which is
18.0 m long, 0.9 m wide and 1.0 m deep. The flow depth at the downstream end of
the flume is controlled by means of an adjustable rectangular weir. Beyond this control
the water spills freely into a drainage system and is then pumped to a large holding
tank placed 8 m above. Here water is conveyed to the header tank of the flume by
means of a pipe where an electromagnetic flow meter is mounted to measure the water
discharge. At the upstream end of the flume a series of wire screens were deployed to
damp any residual turbulence coming from the header tank.

In order to perform near-wall measurements with the LDA, the bottom of the flume
needed to be raised. This was accomplished by covering the entire length of the

http://journals.cambridge.org/flm
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Experiment K ×10−9

(m2)
Reb Reτ ReK Red B/δ H (m) (dH/dx)

× 10−3
Symbol

Smooth 0 53 400 2160 0 0 15 0.100 −2.53 ∗
60 ppiL 6 47 700 2349 1.9 0.790 9.4 0.096 −0.927 ♦
60 ppiH 6 62 200 3234 2.2 0.912 8.2 0.113 −0.983 �
30 ppiL 39 30 500 1856 3.2 1.76 7.80 0.116 −0.963 ◦
30 ppiH 39 91 400 5840 7.9 4.40 6.16 0.146 −1.990 •
10 ppiL 160 25 700 2142 8.40 4.0 8.82 0.102 −3.30 �
10 ppiH 160 38 500 3848 17.2 8.2 10.06 0.090 −5.26 �

TABLE 2. Hydrodynamic conditions; Reb = δUb/ν, where Ub is the mean velocity averaged

across the boundary layer thickness δ; Reτ = δu∗/ν; ReK =
√

Ku∗/ν; Red = dpu∗/ν; B/δ
is the ratio between flume width and boundary layer thickness; dH/dx is the longitudinal
gradient of the flow depth. The minus sign indicates that the flow depth decreases along
the mean flow direction.

flume with a layer of 20 cm thick concrete blocks. The smooth wall was obtained by
covering the blocks, with five stainless steel panels each of length 2 m and thickness
2 mm. Once the smooth experiments were finished, the steel panels were used as the
bottom of the flume where the permeable walls made of polyurethane foam mattresses
could be deployed. Each permeable wall was composed of five panels of 2 m length,
and 0.1 m thickness. For each wall condition (smooth or permeable), at the upstream
end of the flume, a ramp was mounted to connect smoothly the flume bottom with
the top of the wall, in order to avoid abrupt flow transitions. For each experiment, the
depth of the flow was measured by means of a vernier caliper along all the length of
the flume. This allowed estimation of the longitudinal gradient of the hydraulic head,
which is reported for each flow condition in table 2.

The test section for turbulence measurements was located 8 m downstream of
the ramp. Here, streamwise (u) and vertical (w) velocities were measured with a
two-component LDA in forward scattering mode (see figure 3). This system is
characterized by two pairs of laser beams which, after alignment, are associated
with the measurement of u and w respectively (for details about this system see
Poggi, Porporato & Ridolfi 2002). Data collection was performed in burst mode using
coincidence filtering. The LDA system was mounted on a three-axis manual traverse
which allowed control of the positioning of the LDA apparatus with a precision of
±0.025 mm. For each experiment, velocities were measured at about 30 points along
a single vertical placed 30 cm from the sidewalls. For each point, velocities were
measured for 600 s with a sampling frequency which varied between 150 and 500 Hz.
With such long time series the 95 % confidence intervals associated with the velocity
statistics discussed in this paper are very small, i.e. always smaller than 0.6 %, 2 % and
5 % for mean velocity, variance and shear Reynolds stress, respectively (confidence
intervals were calculated as in DeGraaff & Eaton 2001). The confidence interval for
shear Reynolds stress is the largest because, in LDA applications, the number of
simultaneous measurements of u and w is lower than the number of measurements
within a single-component time series, typically just a quarter of it.

Near-wall measurements were performed in line with the methodology developed by
Poggi et al. (2002). This consists of creating a slot in the wall (as narrow as possible)
to allow the passage of the lower vertical laser beam (figure 3). For each wall, the
slot width was roughly 2 mm wide. The measurement point was slightly shifted by a
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FIGURE 3. Experimental set-up for LDA measurements over permeable walls.

distance s beyond the end of the slot towards the centre of the flume (top left panel of
figure 3). This minimized any residual effect of the slot on the flow. Despite this shift,
measurements could be performed very close to the wall, i.e. down to 0.4 mm from
the wall surface.

This experimental set-up was validated by Poggi et al. (2002) for the case of smooth
walls but not for permeable walls and therefore a permeable wall test was arranged.
For one flow and wall condition, streamwise velocity measurements were performed
before and after cutting the slot in the foam panels and then velocity statistics were
compared. The results (not shown here) showed that the streamwise velocity statistics
compared very well between the two cases. This encouraged us to infer that the
influence of the slot on the flow was negligible.

Table 2 presents a summary of all the flow conditions used in the experiments. Since
the experiments were carried out in a non-tilting flume, uniform flow conditions could
not be achieved. Table 2 reports the longitudinal gradient of the flow depths measured
for each experiment. Such a non-uniformity may impose a negative mean vertical
velocity which can influence the velocity statistics as it occurs in ‘suction’ turbulent
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FIGURE 4. Standard deviation of the vertical velocity fluctuations within the foam mattress
for experiment 10 ppiH.

boundary layers. However, LDA measurements have shown that despite such a non-
uniformity, mean vertical velocities were very close to zero, being within the range
(1–3)×10−3 m s−1 at any wall distance. Mean vertical velocities of this magnitude
would be expected even in uniform flow conditions due to the effects of secondary
currents. We therefore conclude that the influence of non-uniformity on velocity
statistics can be neglected. For each permeable wall, two Reynolds numbers were
investigated. These were chosen using the following three criteria: (i) the roughness
Reynolds numbers are similar to those investigated by Breugem et al. (2006) to allow
comparisons; (ii) the ratio between flume width and flow depth could not be lower
than 5 to ensure that the mean flow was always two-dimensional (Kironoto & Graf
1994); (iii) the thickness of the foam panels should be larger than the turbulence
penetration depth. The latter condition was tested as follows. First it was assumed that
the deepest penetration depth would occur for the most permeable wall at the largest
Reynolds number investigated (i.e. experiment 10 ppiH). Then an opening in the
permeable wall was created by moving two neighbouring panels a distance of 4 mm
apart. This opening created enough optical access for the vertical laser beams and the
receiver of the LDA system. Fluctuations of the vertical velocity component were then
measured at various heights within this gap. Figure 4 shows that the r.m.s. of the
vertical velocity fluctuations (i.e. σw) are close to zero at 0.06 m below the panel tops.
This guarantees that the foam mattresses were thicker than the turbulence penetration
depth for all the wall and flow conditions used in the experiments presented herein.

The material properties and hydrodynamic conditions chosen for the experiments
allowed the effects of permeability on wall turbulence to be fairly well isolated.
However, for the sake of a correct interpretation of the results we make the following
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points. (i) The effects of roughness are negligible when comparing results on velocity
statistics between permeable walls, but the comparison with the smooth wall is not as
straightforward. In fact, although the filament diameter of the permeable walls is small,
over the range of bulk Reynolds numbers used in this study, it is sufficiently large
to impose a flow resistance, which differs substantially from that for the smooth wall.
Therefore a portion of the difference between the smooth wall and the permeable walls

could be due to roughness. (ii) Consistently with previous studies,
√

K is here chosen
as the characteristic length scale quantifying the ‘penetrability’ of the permeable walls.
Although this is a commonly used assumption, here we add a word of caution for it.
In fact, permeability is a length scale that is associated with laminar flows in porous
media, yet it is used as a characteristic length scale of permeable walls under turbulent
flows. In general, it is plausible that other parameters directly related to the geometry
of the permeable walls (e.g. the specific surface area or the mean pore dimension)
may represent a more physically meaningful alternative. However, for the sake of the
interpretation of the results presented in this paper, this does not represent a problem

because
√

K is linearly related to all the other parameters reported in table 1 and
therefore the choice of one or the other parameter does not influence the interpretation
of the results.

2.3. Estimation of the friction velocity and the boundary layer thickness

The friction velocity u∗ is defined as u∗ =
√

τ0/ρ, where τ0 is the shear stress
acting at the wall surface and ρ is the fluid density. All the experiments were
performed in a flat hydraulic flume which therefore does not allow uniform flow
conditions. This makes it difficult to estimate accurately the friction velocity because
the shear stress acting at the wall surface cannot be assessed from the bulk momentum
balance as in pipe, channel or uniform open channel flows. The only alternative is
to estimate τ0 from direct measurements of the Reynolds shear stress u′w′, where an
overbar indicates time averaging and u′, w′ are the zero-mean streamwise and vertical
velocity fluctuations respectively. In this study, the wall shear stress τ0 was chosen
as τ0 = −ρu′w′

M, where −u′w′
M is the maximum value of the shear Reynolds stress

profile. For the smooth wall case this value was found to be 6 % smaller than the
one obtained from the fitting of the log law of the wall to the mean velocity profile
by assuming κ = 0.38. This disagreement provides an indication of the uncertainty
characterizing the estimation of the friction velocity in these experiments.

In all the permeable-wall experiments, the boundary layer thickness was assumed to
be equal to the flow depth measured from the wall to the free surface. This is justified
by the fact that the mean velocity profile was observed to be always monotonically
increasing for the whole flow depth and the Reynolds shear stress u′w′

M was always
non-zero and negative at all the measured points. In contrast, for the smooth wall, the
boundary layer thickness and flow depth were not coincident. Indeed it was observed
that the shear Reynolds stress crossed the zero-value at a level which was well below
the water free surface and this was taken as the top of the boundary layer.

3. Results

3.1. Mean velocity profiles and flow resistance

In the previous literature, considerable effort has been dedicated to investigating
whether the log law of the wall is applicable to describe the mean velocity profile
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of turbulent flows over permeable walls. The log law of the wall may be expressed as:

U

u∗
=

1

κ
log

z + d

z0

, (3.1)

where z is the vertical coordinate whose origin is here taken coincident with the top
of the foam mattresses or the solid surface in the case of the smooth-wall experiment,
U is the time-averaged velocity, z0 is the aerodynamic roughness length, d is the zero
plane position and κ is the von Kármán coefficient, usually considered to be between
0.38 and 0.41. The zero plane position can be physically interpreted as either the level
where momentum is extracted (Jackson 1981) or, alternatively, the level of an effective
plane at which attached eddies are found, so that their vertical size scales with (z + d)

(Poggi et al. 2004).
The log law of the wall is valid within the so-called overlap layer, which is a flow

region where the vertical coordinate z is the only relevant length scale influencing
the flow. This layer appears only at high Reynolds numbers and if there is enough
scale separation between outer and inner length scales. Within the overlap layer TKE
production and dissipation are commonly assumed to be in equilibrium (Townsend
1976). In our experiments we make use of this property to test whether a genuine
overlap layer occurs or not. However, since a direct and accurate estimation of
the dissipation rate requires sampling frequencies of velocities much higher than
those provided by our experimental set-up, the balance between these two terms is
checked using an indirect method that is described as following. We have calculated
the skewness of the vertical velocity component (SkW) that, although limited to the
contribution of the vertical velocity component, is a measure of the vertical turbulent
transport term in the TKE budget. Assuming that the convective transport due to
flow non-uniformity is negligible, TKE production and dissipation are likely to be in
equilibrium in flow regions where SkW is nearly constant, i.e. in flow regions where
there is no net gain or loss of TKE due to turbulent transport (Nikora & Goring
2000). Figure 5 shows that a clear plateau of SkW occurs at 0.03 < z/δ < 0.15 for
all the experiments except for those related to the wall with the highest permeability
(empty and filled squares). This suggests that, for these experiments, there is not
enough scale separation between inner and outer length scales to allow a genuine
logarithmic layer to develop. Interestingly, the outer limit of the plateau in SkW for the
other wall conditions is z/δ = 0.15 which is commonly considered as the outer limit
of the overlap layer in wall bounded flows. This result is encouraging as it provides
confidence that the method based on the vertical profile of SkW is effective in testing
the presence of an overlap logarithmic layer.

The log law of the wall was fitted to the mean velocity profiles to estimate,
d, z0 and κ within the range identified by the plateau in the vertical profiles of
SkW. For completeness, the fitting procedure was also applied within the region
0.03 < z/δ < 0.15 to the experiments with highest wall permeability, although a clear
overlap layer does not seem to exist.

The fitting procedure was analogous to the one presented in Breugem et al.

(2006) and Suga et al. (2010). First, the zero plane position was estimated as the
value of d that provided the best fit between the experimental data and a general
logarithmic profile. In other words, we assumed that mean velocities are distributed
as U = ax + b, where x = ln(z + d), a = u∗/κ and b = −(u∗/κ) ln z0. The chosen
value for d is the one which minimizes the residuals between experimental data and
ax + b. Once d was estimated, the Von Kármán coefficient and the aerodynamic
roughness length were computed as κ = u∗/a and z0 = exp(−bκ/u∗) respectively.
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FIGURE 5. Skewness of vertical velocity fluctuations. For the meaning of the symbols the
legend is given in table 2.

Experiment κ d (mm) z0 (mm)

smooth 0.35 −0.1 0.005
60 ppiL 0.31 0.3 0.070
60 ppiH 0.32 0.3 0.090
30 ppiL 0.33 0.9 0.200
30 ppiH 0.32 2.0 0.400
10 ppiL 0.33 3.5 1.100
10 ppiH 0.31 5.2 2.000

TABLE 3. Results for from the fitting of the log law of the wall to the mean velocity
profiles: κ is the von Kármán coefficient; d is the zero plane position, and negative and
positive values of d indicate that the zero plane position is above and below the wall
surface respectively; z0 is the roughness length.

The procedure adopted by Breugem et al. (2006) and Suga et al. (2010) is slightly
different because they evaluated the zero plane position as the value of d that forced
the profile of (z + d)(∂U(z)/∂z) to be constant. However, this is equivalent to forcing
the linearity of the mean velocity profile in semi-logarithmic coordinates. The results
from the fitting procedure are reported in table 3.

We acknowledge that our procedure may suffer from over-fitting because three
parameters are obtained from a linear profile. However, we have adopted it for two
reasons: (i) it is consistent with the procedure adopted by Breugem et al. (2006)
and Suga et al. (2010) and hence allows comparisons; (ii) the results are similar to
those that would be obtained from a two-parameters fitting procedure, i.e. assuming a
fixed value of κ . Indeed, since the values of κ obtained with our procedure are fairly
constant, the trends of d and z0 do not deviate significantly from those that would
be obtained assuming a constant κ . Therefore, we conclude that over-fitting is not a
problem concerning the interpretation of our data.

Mean velocity profiles in inner scaling are reported in figure 6. Inner scaling
involves normalization of the vertical coordinate with the viscous length scale
(figure 6a) and with wall permeability (figure 6b). Furthermore, the vertical coordinate
origin is corrected with the zero plane position which forces all the mean velocity
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FIGURE 6. (a) Mean velocity profiles with the vertical coordinate scaled in viscous units
where the superscript ‘plus’ indicates normalization with ν/u∗ for lengths and u∗ for
velocities; (b) Mean velocity profiles with the vertical coordinate scaled with the wall
permeability. The permeability Reynolds number increases in the direction of the arrows.
Legend as in table 2.

profiles to follow a logarithmic behaviour at heights corresponding to 0.03 < z/δ <

0.15. Figure 6 shows that neither of the two scalings makes all the mean velocity
profiles collapse into a single curve. However figure 6(b) also shows that collapsing
of data can be achieved for profiles measured at similar ReK . This suggests that
flow resistance (i.e. z0) is a function of ReK . The zero plane position, the von
Kármán coefficient and the roughness length obtained from the fitting of the mean
velocity profiles are all plotted in figure 7 together with the data from Breugem et al.

(2006) and Suga et al. (2010). Suga et al. (2010) suggest that in turbulent flows
over permeable walls, κ , d and z0 are a function of ReK and proposed the following
empirical relationships:

κ = 0.365Re−0.19
K , (3.2)

d+ = 15.1ReK − 13.5, (3.3)

z+
0 = 6.28ReK − 9.82, (3.4)

where the plus indicates normalization with the viscous length scale (i.e. ν/u∗).
Equations (3.3) and (3.4) fit our data reasonably well. However, it should be noted
that they do not recover the behaviour of d and z0 at the limiting case of K → 0.
At this limiting condition d and z0 should tend to values belonging to the turbulent
smooth-wall regime. In particular, for K → 0, then z0 → e−κA where A is commonly
taken as 5. The behaviour of the zero plane position for smooth walls is more
controversial. In most studies it is assumed to be zero but some authors, on the basis
of mathematical arguments, have challenged this hypothesis (George & Castillo 1997;
Wosnik, Castillo & George 2000; George 2007). In particular, Wosnik et al. (2000)
argue that, in smooth-wall turbulent flows the zero plane position scales as d+ = −8,
where the minus indicates that the origin is shifted above the wall. On the basis of
these considerations we propose the following relationships:

d+ = αReK + β, (3.5)

z+
0 = γReK + e−κA, (3.6)
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FIGURE 7. (a) Values of the von Kármán constant versus ReK ; (b) zero plane position
in viscous units versus ReK , dashed and solid lines indicate equations (3.3) and (3.5)
respectively; (c) roughness length in viscous units versus ReK , dashed and solid lines indicate
equations (3.4) and (3.6) respectively; (d) values of the Von Kármán constant for different
d/δ ratios. For all panels ‘plus’ and ‘cross’ signs indicate data from Suga et al. (2010) and
Breugem et al. (2006) respectively. The legend for the other symbols is reported in table 2.

where β can be either 0 or −8. The best fit of our data is obtained with α = 8.9,
β = −8 and γ = 1.6 (see figure 7b,c). These coefficients were estimated neglecting the
data pertaining to the 10 ppi experiments as they did not display a clear logarithmic
layer. Equations (3.5)–(3.6) provide a predictive tool to estimate d and z0 in turbulent
flows over permeable walls with knowledge of wall permeability and the viscous
length scale.

Figure 7(a) shows that the von Kármán coefficients derived from our data vary
between 0.31 and 0.33. These values are lower than those commonly reported for
smooth or rough walls but are significantly higher than those reported by Breugem
et al. (2006) and Suga et al. (2010) for flows over permeable walls at similar ReK .
This means that the behaviour κ is not fully captured by ReK and therefore is not
a direct consequence of the relaxation of the wall blocking effect. We suggest that
such anomalous values of κ are, rather, associated with a poor separation between
inner and outer length scales. We argue that, in turbulent flows over permeable walls,
the depth of shear penetration and the boundary layer thickness should be taken as
the characteristic inner and outer length scales respectively (see also Manes et al.

2011). Building on the work of Jackson (1981), Clifton et al. (2008) argued that
in turbulent flows over permeable walls the zero plane position d is a length scale
associated with the depth of shear penetration. This implies that, to some extent, d/δ
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FIGURE 8. Mean velocities in outer scaling. Um is the mean velocity measured at the top of
the boundary layer. Legend as in table 2.

quantifies the ratio between inner and outer length scales. Figure 7(d) supports our
argument. In fact, when κ is plotted versus d/δ it displays a more consistent trend
than in figure 7(a). In particular, κ decreases with increasing d/δ. Further support
for the hypothesis that κ depends on the inner–outer scale separation comes from the
literature pertaining to rough-wall (impermeable) turbulent boundary layers. Leonardi
& Castro (2010) performed direct numerical simulations of turbulent channel flows
over cubical elements with different arrangements. Consistently with our results, they
report values of κ that consistently decrease with increasing the ratio between an
effective roughness (i.e. z0 or d) and the channel height.

We acknowledge that the zero plane position d is a parameter that is just related
to the depth of shear penetration and its estimation can be subjected to errors when
a logarithmic layer is not fully developed. Therefore, for further experimental studies
on this topic, we recommend performing direct estimation of the shear penetration
depth although this requires carrying out detailed measurements of turbulent velocity
fluctuations within a porous medium, which is a difficult task.

3.2. On the outer-layer similarity hypothesis

Outer-layer similarity was tested on first- and second-order velocity statistics.
Figures 8 and 9 show that, for z/δ > 0.4, mean velocity and Reynolds stress profiles
collapse fairly well under the classic outer scaling with normalization by u∗ and δ.

In contrast with Breugem et al. (2006), our results support the validity of the
outer-layer similarity hypothesis for permeable walls. This suggests that departures
from similarity in their simulations may be attributed to a low Reynolds number effect.
More precisely we argue that, as for the values of the von Kármán coefficients, the
results of Breugem et al. (2006) were probably due to a poor separation between
inner and outer length scales. An analogous argument was first used by Jimenez (2004)
to warn about the validity of Townsend’s hypothesis in shallow flows over rough
walls. Jimenez (2004) pointed out that outer-layer similarity fails if the ratio between
boundary layer thickness and roughness size is too small. We argue that the same
principle applies to permeable walls, with the difference that for permeable walls,
the effective roughness size is not related to the geometrical size of the roughness
elements but to the depth of shear penetration. As discussed in the previous section,
in our experiments the ratio between shear penetration depth and boundary layer
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FIGURE 9. (a) Normalized r.m.s. of the streamwise velocity fluctuations; (b) normalized
r.m.s. of the vertical velocity fluctuations; (c) normalized Reynolds shear stress. Legend as in
table 2.

thickness is significantly higher than in the simulations of Breugem et al. (2006)
(figure 7d). This provides a plausible reason to explain why our data follow outer-layer
similarity and those of Breugem et al. (2006) do not.

3.3. Turbulence intensities and quadrant analysis

In figure 10 the standard deviation of the streamwise (σu) and vertical (σw) velocity
components are plotted in both inner and outer scaling. σu/u∗ over the permeable walls
is significantly smaller than σu/u∗ over the smooth wall whereas σw/u∗ is significantly
larger. The low values of σu/u∗ over the permeable walls are probably associated
with the absence of the near-wall streaks that instead populate the buffer region of
turbulent flows over smooth walls and that are known to contribute significantly to
the streamwise turbulence intensity. The high values of σw/u∗ are instead due to
wall permeability, which allows the flow to penetrate within the wall and hence to
develop large vertical velocity fluctuations. Conversely, over the smooth wall, the wall
blocking condition forces the fluid to move parallel to the wall and hence contributes
to damping vertical motions.

For each wall condition, turbulence intensities show a limited dependence on
Reynolds number Re. Instead σu/u∗ and σw/u∗ seem to vary significantly with wall
permeability. In the near-wall region σu/u∗ decreases with increasing K. In contrast,
σw/u∗ does not show a similar monotonic behaviour. This is better depicted by
figure 11, which reports values of σu,w/u∗ averaged within a small portion of the

near-wall region (i.e. at 0 < (z + d)/
√

K < 20) for all wall and flow conditions. This
figure confirms that, on average, the higher wall permeability is the lower σu/u∗ is,
whereas σw/u∗ displays an apparent maximum at K = 39 × 10−9. This is somewhat
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FIGURE 10. Turbulence intensities in inner and outer scaling. Legend as in table 2.

counterintuitive because, as mentioned above, with increasing K, the wall blocking
condition weakens and one would expect to observe a damping of σu/u∗ and a
consistent increase of σw/u∗. In other words, as was observed by Suga et al. (2010)
and Breugem et al. (2006), one would expect to observe a redistribution of TKE from
the streamwise to the vertical velocity component. Our data follow this behaviour only
for the walls with low and intermediate permeability whereas for the wall with the
highest permeability, σw/u∗ drops. It should be noted that such a drop in σw/u∗ is not
associated with a drop in −u′w′/u∗ and therefore the flows over the high-permeability
wall are characterized by the highest correlation coefficient between u′ and w′ (see
figure 12). This suggests that such flows are characterized by the highest degree of
coherence and are the most efficient at transporting momentum.

We now make use of quadrant analysis to further investigate how the structure
of near-wall turbulence changes with varying wall permeability and to explain the
behaviour of turbulence intensities. The quadrant analysis technique identifies flow
events associated with the distribution of velocity fluctuations in the four quadrants
of the Cartesian plane defined by u′ (abscissa) and w′ (ordinate). As such, quadrant 1
(u′ > 0 and w′ > 0), quadrant 2 (u′ < 0 and w′ > 0), quadrant 3 (u′ < 0 and w′ < 0)
and quadrant 4 (u′ > 0 and w′ < 0) are associated with flow events defined as inward

interactions, ejections, outward interactions and sweeps, respectively. For the sake of
clarity we point out that, although the duration of one event can be several sampling
velocity time intervals, in our analysis one event is defined by each sample point in the
velocity record. The vertical profiles of the ratio of contributions to the Reynolds stress
from ejections (Q2) and sweeps (Q4) is reported in figure 13 in both inner and outer
scaling.
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inner (a) and outer scaling (b). Permeability increases in the direction of the arrows. Legend
as in table 2.

Figure 13 shows that for the smooth-wall case, ejections dominate momentum
transfer throughout the boundary layer thickness, whereas permeable walls behave
similarly to rough walls since they are characterized by a near-wall region where
sweeps dominate and an outer region where ejections dominate (Raupach 1981; Katul
et al. 2006). Figure 13(b) shows that the crossover between the two regions occurs
roughly at z/δ = 0.1 for all flow conditions. Furthermore, in the near-wall region, the
magnitude of Q2/Q4 does not show any obvious dependence on wall permeability.

A more complete picture of quadrant analysis can be obtained not just by looking
at the relative magnitude of flow events but also at their relative number. We define
N24/NTot as the number of ejections and sweeps (i.e. N24) normalized with the total
number of events contained within all quadrants (i.e. NTot). Figure 14 shows that,
contrary to Q2/Q4, N24/NTot does depend on wall permeability within the near-wall
region, being higher for higher K. This suggests that with increasing K inward
and outward interactions are progressively filtered out so that turbulence becomes
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more coherent and dominated by a succession of ejections and sweeps. Figure 15
is a visualization of this behaviour directly into quadrant maps and provides further
insights. Figure 15 basically compares the joint probability density function (p.d.f.)

of (u′/u∗, w′/u∗) measured at (z + d)/
√

K = 20 between experiments corresponding to
low, intermediate and high wall permeability, respectively. The colour scale indicates
the percentage of points contained within each bin of the joint p.d.f. This figure
shows that, as wall permeability increases the cloud of points in the quadrant map
tilts and shrinks. The shrinking is particularly evident for the high-permeability wall.
The tilting of the cloud is associated with an increase of σw/u∗ and a decrease of
σu/u∗ because the magnitude of vertical velocity fluctuations increases whereas the
magnitude of the streamwise velocity fluctuations decreases. In contrast, shrinking
is associated with the damping of both components σw/u∗ and σu/u∗. This means
that with increasing wall permeability σu/u∗ always decreases whereas for σw/u∗
there are two counteracting mechanisms that determines its final value. On the one
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hand, by increasing K, vertical velocity fluctuations increase because the flow can
penetrate better into the wall (tilting). On the other hand an increase in K induces
an increase in flow coherency which contributes to damp σw/u∗ (shrinking). This
suggests that, when switching from the intermediate to the highest wall permeability,
the second mechanism overcomes the first and therefore σw/u∗ drops (figure 11). The
drop of σw/u∗ contributes to increasing the correlation coefficient R, which for the
high-permeability wall is similar to those reported for canopy flows where the mixing
layer analogy holds (see e.g. Finnigan 2000). It is therefore plausible that between the
intermediate- and the high permeability wall, the flow switches to - mixing layer type
of behaviour. In the next section we further substantiate this hypothesis and provide
more insights into the scales of turbulence populating the near-wall region at each flow
condition investigated.

3.4. Spectral analysis

Ghisalberti & Nepf (2002) point out that in turbulent flows over a fairly dense canopy,
the inflection of the mean velocity profile is susceptible to Kelvin Helmoltz (KH)
instabilities, which determines shear instability eddies with a characteristic frequency

fKH that scales as fKH = 0.032U/θ , where θ =
∫∞

−∞((1/4) + ((U − U)/1U)
2
) dz is the

momentum thickness; 1U = Um − U1; U = (Um + U1)/2; Um is the mean streamwise
velocity at the top of the boundary layer; U1 is the undisturbed velocity within
the porous medium, which results from the balance between drag forces and the
bulk hydraulic gradient (i.e. dH/dx). Assuming that the drag is mainly due to
viscous forces implies the validity of Darcy’s law and hence U1 = (dH/dx)gK/ν,
where g is the gravitational acceleration. The computation of θ requires knowledge
of the mean velocity profile within and above the wall; however, White & Nepf
(2007) point out that, provided that the outer scale of the flow is much larger
than the depth of penetration of shear within the wall (this seems to be a valid
assumption for the flow and wall conditions considered herein, see figure 7d) θ can
be estimated reasonably well just from the mean velocity profile above the wall, i.e.

θ =
∫ δ

0
((1/4) + ((U − U)/1U)

2
) dz.

If the mixing layer analogy holds, then pre-multiplied power spectra of velocities
should display a peak at frequencies fu,w that scale as fu,wθ/U = 0.032. Figure 16
reports peak frequencies of spectra normalized with the momentum thickness
and U for all flow conditions and velocity components. In the near-wall region,
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of the streamwise (a) and vertical (b) velocity components. Legend as in table 2.

the normalized peak frequency of the streamwise spectra (i.e. fu), approach values
that are similar to those predicted by the mixing layer analogy only for the wall
with the highest permeability. The other wall conditions are characterized by spectral
maxima at much higher frequencies. This result substantiates the hypothesis that the
flows over the wall with the highest permeability satisfy the mixing layer analogy,
whereas the flows over the low and intermediate permeability walls do not. It also
suggests that, for these two wall conditions, the inflection point of the mean velocity
profile (naturally present at the interface between a free fluid and a permeable wall)
is not dynamically active. However, this contrasts with the linear stability analysis of
White & Nepf (2007), who suggest that in flows where the permeable wall is the
major sink of momentum (as in the case of the experiments presented herein), the
instability of the inflected mean velocity profile requires only the condition of wall
penetrability to be initiated, i.e. shear instability eddies, similar those reported for
mixing layers, should occur even at very low wall permeability. We suggest that, as
White & Nepf (2007) suspected, this result may not be fully general and may need to
be refined since it could be dependent on the characteristics of the permeable walls.
More discussion on this issue is provided in § 4.

It should be noted that the peak frequencies of the vertical velocity (i.e. fw)
component do not match the values predicted by the mixing layer analogy for any
wall condition, including the one with the highest permeability. This is in contrast
with the results obtained for the streamwise velocity component and the results
of Ghisalberti & Nepf (2002) and White & Nepf (2007) who found a consistent
behaviour for both velocity components. However, Finnigan et al. (2009) point out
that in Ghisalberti & Nepf (2002) and White & Nepf (2007), the mixing layer at the
canopy top was effectively two-dimensional due to the tight constraints imposed by
the flume walls along the direction of vorticity dictated by the KH instabilities. In the
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case of more three-dimensional mixing layers that are free from these constraints (such

as in the case of atmospheric flows over vegetation) Finnigan et al. (2009) observed

that, consistently with our results, the imprint of KH instabilities is best visible in the

spectra of the streamwise velocity component. Another interesting feature of figure 16

is that for z/δ > 0.1, normalized frequencies for all the wall conditions are in line with

those predicted by the mixing layer analogy. While we do not have a full argument

to explain this phenomenon, we point out that an analysis of the flow structure based

on velocity measurements performed at z/δ > 0.1 could be misleading for determining

whether a mixing layer analogy holds or not and, to this end, near-wall measurements

are strictly necessary since eddies generated from KH instabilities are bounded to the

near-wall region.

A further attempt to characterize the scales of turbulence populating flows over

permeable walls is provided by figures 17 and 18. These figures report the spectral

peak frequencies of the streamwise and the vertical velocity components respectively.

Peak frequencies fu,w were transformed to wavenumbers Ku,w by invoking the

Taylor hypothesis so that Ku,w(z) = 2π(fu,w/U(z)). For each figure, panels (a) report

wavenumbers normalized with inner variables such as wall permeability and the zero

plane position. In panels (b), wavenumbers are scaled with (z+d) and in panels (c) we

report the classical outer-layer scaling using δ as the characteristic length scale.
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Interestingly, figure 17(a) shows that Ku

√
K collapses fairly well in the near-wall

region for all permeable-wall conditions. This result should be taken with care because
at these locations the Taylor hypothesis is not strictly applicable (see e.g. De Alamo
& Jimenez 2009); however it suggests that wall permeability may provide a universal
scaling for the longitudinal dimension of near-wall structures over permeable walls,
regardless of whether the mixing layer analogy holds or not. The same scaling does
not provide an equally good collapse for Kw (figure 18a) because the values pertaining
to the experiments with the highest wall permeability are significantly higher than all

the others, which instead are well grouped at roughly Kw

√
K = 0.02. Moreover, for the

highest wall permeability, the peak wavenumbers of the vertical velocity component
are significantly higher than those of the streamwise component, whereas for the other
permeable walls they are very similar. This is a further confirmation that the wall with
the highest permeability behaves as a canopy with an active mixing layer since in
numerical and experimental studies on canopy flows, it is commonly observed that the
streamwise velocities are characterized by spectra that peak at wavenumbers that are
between a quarter and a half of those of the vertical velocity component (Finnigan
et al. 2009).

Concerning the logarithmic layer (i.e. 0.05 < z/δ < 0.15), figure 17 shows that
for the streamwise velocity component the best collapse of data is provided by the
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outer scaling (figure 17c). Instead, the best collapse of data for the vertical velocity
component is obtained when wavenumbers are scaled with the distance from the wall
(z + d) (figure 18). These results indicate that, in analogy with turbulent boundary
layers over smooth and rough walls, within the log layer, the streamwise velocity
component feels the presence of large scales of motion whose size scales with
the boundary layer thickness. On the other hand, the vertical velocity component
scales with the distance from the wall consistently with the attached eddy model first
introduced by Townsend (1976) and then refined by many subsequent works (see e.g.
Kunkel & Marusic 2006; Nickels et al. 2007). This suggests that attached eddies
populate the near-wall region of all the flows investigated herein. However, while this
is plausible for the smooth wall and the permeable walls with low and intermediate
permeability, it is less likely to be true for the wall with the highest permeability.
Indeed, it should be noted that the scaling in figure 18(b) requires a reliable estimation
of d, which for this wall condition cannot be obtained due to the lack of a genuine
logarithmic layer. Furthermore the lack of such a layer is consistent with the absence
of attached eddies (Nikora 2010). Therefore we conclude that the dominant eddy
structure for this wall condition is better depicted by figure 16 and hence that shear
instability rather than attached eddies dominate the near-wall turbulence structure.

Concerning the outer layer (i.e. 0.4 < z/δ < 1), the spectral peaks for both the
streamwise and vertical velocity components scale well with the boundary layer
thickness (figures 17c and 18c) as also occurs for smooth- and rough-wall boundary
layers.

Figure 17(c) shows that within the logarithmic layer, the spectral peaks for the
smooth wall occur at much lower wavenumbers than for permeable walls. Peaks for
the smooth wall occur at Kwδ ≈ 1, which corresponds to eddies with a wavelength of
about 7δ. In turbulent shear flows, such spectral peaks are usually associated with the
occurrence of the so-called very large scale motions (VLSM) (Kim & Adrian 1999;
Guala, Hommema & Adrian 2006; Monty et al. 2009). The VLSM spectral peak has
been observed in the logarithmic layer of smooth and rough canonical shear flows at
high Reynolds numbers (Monty et al. 2007; Allen et al. 2007; Monty et al. 2009;
Guala, Metzger & McKeon 2011) and the dynamics of such scales has attracted a lot
of attention in the past 15 years because they retain much of the TKE energy of the
flow at all positions above the wall and because they are responsible for the failure
of classical inner scaling in collapsing turbulence intensities at different Reynolds
numbers. To the authors’ best knowledge the effect of wall permeability on VLSMs
has never been discussed in the literature. In the following we attempt to provide some
insights. Figure 19 shows a sample of spectra computed for the streamwise velocity
component at z/δ = 0.05 (i.e. within the logarithmic layer, when it exists) and plotted
in pre-multiplied form. This figure confirms that the smooth wall is characterized by
a pronounced peak at Kuδ ≈ 1 whereas the spectral peak for the permeable walls is
shifted at higher wavenumbers, i.e. within the range Kuδ = 2–4. As already discussed
for the von Kármán coefficients and the outer-layer similarity hypothesis, this result
may be a shortcoming of a poor separation between inner and outer length scales,
which seems to be a fundamental prerequisite to detect VLSMs by means of spectral
analysis. Indeed in smooth-wall flows the spectral peak of VLSM is not clearly
visible unless Reτ = δu∗/ν > 1700 (Hutchins & Marusic 2007). For smooth walls,
Reτ is the parameter quantifying the separation between inner (ν/u∗) and outer (δ)
scales. Our experiments well exceed the critical value for Reτ ; however, for permeable
walls this parameter does not truly quantify the separation between inner and outer
scales because the viscous length scale ν/u∗ is not representative for the inner layer.
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FIGURE 19. Pre-multiplied spectra calculated at z/δ = 0.05. Kx is the wavenumber
calculated using the Taylor’s hypothesis, i.e Kx = 2πf /U, where f is the frequency and U
is the time-averaged velocity measured at z/δ = 0.05 for each experiment.

As it was argued in § 3.1, in turbulent flows over permeable walls inner–outer scale
separation is, rather, quantified by d/δ. Unfortunately, since no VLSMs were observed
in the spectra of any of our experiments, we are not able to estimate the critical value
for d/δ at which VLSM are observable by means of spectral analysis.

Figure 19 shows another interesting feature. As wall permeability increases, the
spectra peak at a progressively narrower wavenumber band and hence ‘shrink’. From
a physical point of view, the more the spectra shrink, the more the flow is dominated
by a single scale of motion. Conversely, the flatter the spectrum is the higher the
scale heterogeneity of the flow is. A good measure of spectral shrinking and scale
heterogeneity is provided by the Shannon entropy of the spectral components (Wesson,
Katul & Siqueira 2003). The spectral Shannon entropy is calculated as

SH =

(

−
M
∑

i

Si ln Si

)

/

ln(M) (3.7)

where Si are the spectral density components normalized so that
∑

iSi = 1 and M is
the number of spectral estimates. The normalization with ln(M) ensures that SH is
bounded between 0 and 1 and that any difference in SH due to different sampling
frequencies is minimized (Wesson et al. 2003). The more the spectral energy is
concentrated at one peak the lower is SH; conversely, the flatter is the spectrum
the more SH tends to 1, which is the representative value for white noise spectra.
Figures 20(a) and 20(b) show the Shannon entropy calculated for the spectra of the
streamwise and vertical velocity component respectively. Interestingly, at z/δ < 0.1,
SH seems to be a function of ReK , being lower for higher ReK . In particular, SH for
the smooth wall and the wall with the highest permeability are significantly different
from all the other wall conditions that, overall, are characterized by similar values.
Furthermore, for the wall with the highest permeability, SH approaches the value of
0.6 reported for atmospheric flows over tall vegetation where the mixing layer analogy
holds (Wesson et al. 2003).

Going from the smooth to the most permeable wall, there is a transition between
a condition where there is a wide spectrum of turbulent eddies to one where the
near-wall structure is, rather, influenced by just one scale that, according to the mixing
layer analogy, is set by the instability of the mean velocity profile. Interestingly, the
Shannon entropy of the smooth wall is significantly larger than those of the permeable
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FIGURE 20. Shannon entropy evaluated from spectra of the streamwise (a) and vertical
(b) velocity component. ReK increases in the direction of the arrows. Legend as in table 2.

walls throughout the boundary layer thickness and for both velocity components. This
could be explained as an effect of VLSMs. Indeed, VLSMs are known to hold a
significant fraction of TKE throughout the boundary layer thickness (Marusic et al.

2010) and therefore they can set the largest scales of motion at any height above the
wall. Therefore, VLSMs favour the formation of a wide spectrum of scales and hence
large values of SH at all positions above the wall.

4. Discussion and conclusions

This paper discusses how wall permeability influences the near-wall structure and
the scaling of turbulent boundary layers. We have investigated the evolution of
the turbulence structure between two limiting conditions represented by a smooth
impermeable wall and a very permeable wall which allows the development of a
perturbed mixing layer commonly encountered in canopy flows. It was observed that
the flow resistance and the depth of shear penetration increase with increasing ReK .
We have argued that the depth of shear penetration defines the characteristic inner
length scale of turbulent flows over permeable walls and is related to the zero plane
position, which can be estimated from the mean velocity profiles above the wall.
We have shown that the anomalous values of the von Kármán coefficient κ reported
in the previous literature for turbulent flows over permeable walls seem to be an
effect of a poor separation between inner and outer length scales (i.e. d/δ) and not
simply a consequence of the relaxation of the wall blocking due to permeability,
as was cautiously argued by Breugem et al. (2006). In line with the arguments
developed for rough-wall boundary layers by Jimenez (2004), we have pointed out that
a poor separation between inner and outer scales could be also responsible for the
deviations from the outer-layer similarity hypothesis observed in the previous literature
on turbulent flows over permeable walls.

The structure of flows over permeable walls is characterized by a near-wall
flow region where sweeps dominate and a region, away from the wall, dominated
by ejections. With increasing wall permeability, outward and inward interactions
are progressively filtered out and the near-wall flow becomes more coherent and
dominated by a succession of sweeps and ejections. As a result of this the r.m.s. of
streamwise velocity fluctuations progressively decreases with increasing permeability
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whereas the r.m.s. of vertical velocity fluctuations follows a non-monotonic behaviour,
which is a result of two counteracting mechanisms. On the one hand vertical velocity
fluctuations increase with increasing wall permeability because the flow can penetrate
better within the wall. On the other hand the increase in wall permeability implies an
increase in coherency and hence in the momentum transport efficiency, which implies
that to generate the same Reynolds shear stress u′w′, smaller velocity fluctuations are
required.

We have observed that the wall with the highest permeability allows the
development of eddies whose frequency is very close to the most unstable mode
of turbulent mixing layers where the inflection of the mean velocity profile triggers
KH shear instabilities. Such shear-instability eddies were not detected in the flows
over the walls with low and intermediate permeability. We have pointed out that
this result is in contrast with the linear stability analysis performed by White
& Nepf (2007) who argued that wall penetrability is the necessary and sufficient
condition for the development of such eddies. A possible explanation to reconcile
two apparently contradictory results goes as follows: the analysis of the spectral peak
frequencies revealed that, except for the wall with the highest permeability, attached
eddies populate the near-wall region of all the flows investigated herein (figures 18
and 16). This means that there may be a competing mechanism between shear
instability and attached eddies and the former become detectable only if the two
eddy types are comparable in size. With increasing wall permeability and consequently
shear penetration, shear instability eddies become progressively larger and hence it is
plausible that they become significant only for the wall with the highest permeability.
This is consistent with the fact that for this wall condition, a genuine logarithmic layer,
which occurs when momentum transfer is fully dominated by attached eddies, does
not form and the reason can be attributed to the strong influence of shear instability
eddies.

On the basis of the results presented in this paper the structure of turbulent flows
over permeable walls and its dependence on wall permeability can be summarized
as follows. Turbulent flows over smooth impermeable walls (at sufficiently high Re)
are characterized by a well-developed logarithmic layer where momentum transfer
is dominated by attached eddies. Below the logarithmic layer the high level of
shear of the flow promotes the formation of longitudinal streaks. With increasing
permeability, the no-slip condition at the surface is relaxed and hence turbulence can
penetrate within the wall. This promotes the disappearance of longitudinal streaks,
the development of shear instability eddies and the penetration of attached eddies
within the wall. At these conditions the turbulence structure of the near-wall region
is dictated by a competing mechanism between shear instability eddies and attached
eddies. Attached eddies are known to populate the flow region below the top of the
logarithmic layer which is about 0.15δ deep. Therefore their size must be proportional
to δ. The size of shear instability eddies is proportional to the shear penetration
depth, which is associated with the zero plane position. When the shear penetration
depth is large with respect to the boundary layer thickness, shear instability eddies
will dominate the near-wall structure. This may occur for shallow flows over highly
permeable walls. In contrast, attached eddies become the dominant mechanism when
the boundary layer thickness is much larger than the depth of shear penetration. This
can occur for very deep flows over weakly permeable walls.

As a final remark, we point out that the geometry of the permeable media used in
this paper is characterized by a very high porosity and small filament thickness and is
ideal for investigating the effects of permeability alone on wall turbulence. This makes
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the results of the present study directly comparable with the literature pertaining to

aquatic and atmospheric canopy flows (Ghisalberti & Nepf 2002; Poggi et al. 2004;

Finnigan et al. 2009), and also with the DNS of Breugem et al. (2006), but to a

lesser extent with flows over permeable granular walls (Manes et al. 2009; Sarkar

& Dey 2010; Detert, Nikora & Jirka 2010). The reason is that the latter class of

porous media is characterized by large roughness elements, which makes the effects of

roughness and permeability both significant. Such effects and their interactions should

be addressed in further studies.
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