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ABSTRACT

The intense turbulence present in the solar convection zone is a major challenge to both theory and simula-
tion as one tries to understand the origins of the striking differential rotation profile with radius and latitude
that has been revealed by helioseismology. The differential rotation must be an essential element in the opera-
tion of the solar magnetic dynamo and its cycles of activity, yet there are many aspects of the interplay
between convection, rotation, and magnetic fields that are still unclear. We have here carried out a series of
three-dimensional numerical simulations of turbulent convection within deep spherical shells using our ane-
lastic spherical harmonic (ASH) code on massively parallel supercomputers. These studies of the global
dynamics of the solar convection zone concentrate on how the differential rotation and meridional circula-
tion are established. We have addressed two issues raised by previous simulations with ASH. First, can solu-
tions be obtained that possess the apparent solar property that the angular velocity � continues to decrease
significantly with latitude as the pole is approached? Prior simulations had most of their rotational slowing
with latitude confined to the interval from the equator to about 45

�
. Second, can a strong latitudinal angular

velocity contrast D� be sustained as the convection becomes increasingly more complex and turbulent? There
was a tendency for D� to diminish in some of the turbulent solutions that also required the emerging energy
flux to be invariant with latitude. In responding to these questions, five cases of increasingly turbulent convec-
tion coupled with rotation have been studied along two paths in parameter space. We have achieved in one
case the slow pole behavior comparable to that deduced from helioseismology and have retained in our more
turbulent simulations a consistently strong D�. We have analyzed the transport of angular momentum in
establishing such differential rotation and clarified the roles played by Reynolds stresses and the meridional
circulation in this process. We have found that the Reynolds stresses are crucial in transporting angular
momentum toward the equator. The effects of baroclinicity (thermal wind) have been found to have a modest
role in the resulting mean zonal flows. The simulations have produced differential rotation profiles within the
bulk of the convection zone that make reasonable contact with ones inferred from helioseismic inversions,
namely, possessing a fast equator, an angular velocity difference of about 30% from equator to pole, and
some constancy along radial lines at midlatitudes. Future studies must address the implications of the tacho-
cline at the base of the convection zone, and the near-surface shear layer, on that differential rotation.

Subject headings: convection — hydrodynamics — methods: numerical — Sun: interior —
Sun: rotation — turbulence

1. INTRODUCTION

The solar turbulent convection zone has striking dynami-
cal properties that continue to challenge basic theory. The
most fundamental issues involve the solar rotation profile
with latitude and depth and the manner in which the 22 yr
cycles of solar magnetic activity are achieved. These two
issues are closely interrelated since the global dynamo
action is likely to be very sensitive to the angular velocity �

profiles realized by convection redistributing angular
momentum within the deep zone. Both dynamical topics
touch on the seeming inconsistency that turbulence can be
both highly intermittent and chaotic on smaller spatial and
temporal scales yet exhibit large-scale ordered behavior
(e.g. Brummell, Cattaneo, & Toomre 1995). The differential
rotation profile established by the turbulent convection,
although strong in contrast, is remarkably smooth; the
global-scale magnetic activity is orderly, involving sunspot
eruptions with very well-defined rules for field parity and
emergence latitudes as the cycle evolves. The wide range of
dynamical scales of turbulence present in the solar convec-
tion zone yield severe challenges to both theory and simula-

tion: the discernible structures range from granules (�103

km or 1 Mm in horizontal size), to supergranules (�30
Mm), to possible patterns of giant cells comparable to the
overall depth of that zone (�200 Mm, or nearly 30% by
radius). Given that the dissipation scales are on the order of
0.1 km or smaller, the solar turbulence encompasses at least
6 orders of magnitude for each of the three physical dimen-
sions. The largest current three-dimensional turbulence sim-
ulations can resolve about 3 orders of magnitude in each
dimension. Yet, despite the vast difference in the range of
scales dynamically active in the Sun and those accessible to
simulations, the latter have begun to reveal basic self-order-
ing dynamical processes yielding coherent structures that
appear to play a crucial role in the global differential rota-
tion andmagnetic dynamo activity realized in the Sun.

It has long been known by tracking surface features that
the surface of the Sun rotates differentially (e.g., Ward 1966;
Schüssler 1987): there is a smooth poleward decline in the
angular velocity �, the rotation period being about 25 days
in equatorial regions and about 33 days near the poles. Heli-
oseismology, which involves the study of the acoustic p-
mode oscillations of the solar interior (e.g., Gough &
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Toomre 1991), has provided a remarkable new window for
studying dynamical processes deep within the Sun. This has
been enabled by nearly continuous helioseismic observa-
tions provided from the Solar and Heliospheric Observatory
with the high-resolution Michelson Doppler Imager (SOI-
MDI; Scherrer et al. 1995) and from the ground-based
Global Oscillation Network Group (GONG) set of six
related instruments (Harvey et al. 1996). The helioseismic
findings about differential rotation deeper within the Sun
have turned out to be revolutionary since they are unlike
any anticipated by convection theory prior to such probing
of the interior of a star. Helioseismology has revealed that
the rotation profiles obtained by inversion of frequency
splittings of the pmodes (e.g., Libbrecht 1989; Thompson et
al. 1996; Schou et al. 1998; Howe et al. 2000b) have the strik-
ing behavior shown in Figure 1. The variation of angular
velocity � observed near the surface, where the rotation is
considerably faster at the equator than near the poles,
extends through much of the convection zone with relatively
little radial dependence. Thus, at midlatitudes � is nearly
constant on radial lines, in sharp contrast to early numerical
simulations of rotating convection in spherical shells (e.g.,
Gilman &Miller 1986; Glatzmaier 1987) that suggested that
� should be nearly constant on cylinders aligned with the
rotation axis and decreasing inward on the equatorial plane.
Another striking feature is the region of strong shear at the
base of the convection zone, now known as the tachocline,
where � adjusts to apparent solid body rotation in the
deeper radiative interior. Whereas the convection zone
exhibits prominent differential rotation, the deeper radiative
interior does not; these two regions are joined by the com-
plex shear of the tachocline. There is further a thin shear
boundary layer near the surface in which � increases with
depth at intermediate and high latitudes.

The tachocline has been one of the most surprising dis-
coveries of helioseismology, especially since its strong rota-
tional shear affords a promising site for the solar global
dynamo. Such a tachocline was not anticipated, and current

theoretical approaches to explain its presence are still only
innovative sketches (Spiegel & Zahn 1992; Gough & McIn-
tyre 1998; Charbonneau, Dikpati, & Gilman 1999). Helio-
seismology has also recently detected prominent variations
in the rotation rate near the base of the convective envelope,
with a period of 1.3 yr evident at low latitudes (Howe et al.
2000a; Toomre et al. 2000). These are the first indications of
dynamical changes close to the presumed site of the global
dynamo as the cycle advances. Such a succession of develop-
ments from helioseismology provides both a challenge and
a stimulus to theoretical work on solar convection zone
dynamics.

Seeking to understand solar differential rotation and
magnetism requires three-dimensional simulations of con-
vection in the correct full spherical geometry. However, the
global nature of such solutions represents a major computa-
tional problem given that the largest scale is pinned, and
only 3 orders of magnitude smaller in scale can be repre-
sented. Much of the small-scale dynamics in the Sun dealing
with supergranulation and granulation are, by necessity,
then largely omitted. The alternative is to reduce the fixed
maximum scale by studying smaller localized domains
within the full shell and utilizing the 3 orders of magnitude
to encompass the dynamical range of turbulent scales.
There are clear trade-offs: the global models operate in the
correct geometry yet struggle to encompass enough of a
dynamical range to admit fully turbulent solutions, whereas
the local models are able to study intensely turbulent con-
vection but only within a particular limited portion of the
full domain. Both approaches are needed, and the efforts
are complementary, as reviewed in detail by Gilman (2000)
and Miesch (2000). Highly turbulent but localized three-
dimensional portions of a convecting spherical shell are
being studied to assess transport properties and topologies
of dynamical structures (e.g., Brandenburg et al. 1996;
Brummell, Hurlburt, & Toomre 1996, 1998; Porter &
Woodward 2000; Robinson & Chan 2001), penetration into
stable domains below (Brummell, Clune, & Toomre 2002)

Fig. 1.— (a) Angular velocity profile �=2� with radius and latitude as deduced from helioseismology using SOI-MDI data, with red tones indicating fast
rotation and blue-green the slowest rotation (adapted from Schou et al. 1998). (b) Time-averaged rotation rates from 5 years of GONGhelioseismic data, plot-
ted against radius at different latitudes. The surface shear layer and the tachocline at the base of the convective zone are indicated as well as the zone
covered by our computational domain (gray area) (adapted fromHowe et al. 2000b).
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effects of realistic near-surface physics on granulation and
supergranulation (e.g., Stein & Nordlund 1998), and
dynamo processes and magnetic transport by the convec-
tion (e.g., Cattaneo 1999; Tobias et al. 2001). Without
recourse to direct simulations, the angular momentum and
energy transport properties of turbulent convection have
also been considered using mean-field approaches to derive
second-order correlations (the Reynolds stresses and aniso-
tropic heat transport) under the assumption of the separa-
bility of scales. Although such procedures involve major
uncertainties, the resulting angular momentum transport,
which is described by mechanisms such as the so-called �

effect, have served to reproduce the solar meridional circula-
tion (e.g., Durney 1999, 2000) and differential rotation (e.g.,
Kichatinov & Rüdiger 1995). Various other states can be
achieved by adjusting parameters.

Initial studies of convection in full spherical shells to
assess effects of rotation with correct accounts of geometry
(e.g., Gilman & Miller 1986; Glatzmaier & Gilman 1982;
Glatzmaier 1985, 1987; Sun & Schubert 1995) have set the
stage for our efforts to study more turbulent flows using new
numerical codes designed for the massively parallel com-
puter architectures that are enabling such major simula-
tions. We here report on our continuing studies with the
anelastic spherical harmonic (ASH) code (Clune et al. 1999)
to examine the � profiles established within the bulk of the
solar convection zone by turbulent convection, building on
the progenitor work byMiesch et al. (2000), Elliott, Miesch,
& Toomre (2000), and Brun & Toomre (2001). We also rec-
ognize the recent modeling of convection in spherical shells
by Takehiro &Hayashi (1999) and Grote & Busse (2001).

The simulations reported in Miesch et al. (2000) and
Elliott et al. (2000) have revealed the richness and complex-
ity of compressible convection achieved in rotating spheri-
cal shells. Most of the resulting angular velocity profiles in
the seven simulations considered have begun to make sub-
stantial contact with the helioseismic deductions within the
bulk of the solar convection zone. These possess fast equa-
torial rotation (prograde), substantial � contrasts with lati-
tude, and reduced tendencies for rotation to be constant on
cylinders. The simulations with ASH have not yet sought to
deal with questions of the near-surface rotational shear
layer nor with the formation of a tachocline near the base of
the convection zone. These studies have revealed that to
achieve fast equators, it is essential that parameter ranges be
considered in which the convection senses strongly the
effects of rotation, which translates into having a convective
Rossby number less than unity for large Taylor numbers.
Such rotationally constrained convection exhibits down-
flowing plumes that are tilted away from the local radial
direction, resulting in velocity correlations and thus Rey-
nolds stresses that are found to have a significant role in the
redistribution of angular momentum. This seems to provide
paths to realize solar-like � profiles. Further, it is desirable
to impose thermal boundary conditions at the top of the
domain that enforce the constancy of emerging flux with lat-
itude in order to be consistent with what appears to be
observed.

We wish to focus on two outstanding issues raised by the
prior simulations with ASH that need particular attention
concerning the differential rotation established within the
bulk of the solar convection zone. As issue 1, the helioseis-
mic inferences in Figure 1 emphasize that � in the Sun
appears to decrease significantly with latitude even at mid-

and high latitudes, a property that has been difficult to
attain in the prior seven simulations. The substantial latitu-
dinal decrease in angular velocity, say D�, in the models is
primarily achieved in going from the equator to about 45�,
with little further decrease in � achieved at higher latitudes
in most of the cases. Whereas the overall latitudinal con-
trasts from equator to pole in the models and the Sun are
roughly of the same order, the angular velocity in the Sun
continues to slow down much more as the pole is
approached. Two models, designated as LAM (in Miesch et
al. 2000) and L3 (in Elliott et al. 2000), do exhibit � that
decrease at high latitudes, but LAM involves an emerging
heat flux that varies too much with latitude because of the
choice of boundary conditions, and L3 has an overall D�
that is only two-thirds of the helioseismic value. Thus, in
confronting issue 1, we will search in parameter space for
solutions that can achieve � profiles in which the decrease
with latitude does not taper off at midlatitudes and for
which the contrast D� is at least comparable to the helioseis-
mic findings.

As issue 2, with the convection becoming more turbulent,
achieved by decreasing either the thermal or viscous diffu-
sivities, there is a tendency for the latitudinal contrast D� in
the solutions to diminish or even decrease very prominently,
thus being at variance with D� deduced from helioseismol-
ogy. This behavior appears to arise from increasing com-
plexity leading to a weakening of nonlinear velocity
correlations that have a crucial role in angular momentum
redistribution. These Reynolds stress terms are strong in the
laminar solutions that involve tilted columnar convection
cells (‘‘ banana cells ’’) aligned with the rotation axis; they
weaken as the flows become more intricate but would be
expected to become again significant once coherent struc-
tures develop at higher levels of turbulence. For example,
the model TUR (in Miesch et al. 2000) exhibits the emer-
gence of downflow networks involving fairly persistent
plumes that possess some of the expected attributes of the
coherent structure seen in localized domains of highly tur-
bulent convection (e.g., Brummell et al. 1998). As a result,
TUR has a fairly interesting angular momentum transport
attributed to the nonlinear correlations that sustain a level
of differential rotation slightly weaker than LAM, but it too
has a considerable variation of heat flux with latitude. The
model T2 (in Elliott et al. 2000) sought to correct the latter
by using modified thermal boundary conditions but appears
to not have attained high enough turbulence levels to realize
strong coherent structures. Absent those features, T2
yielded � profiles with a small D� and even a slightly slower
equatorial rotation rate than that in the midlatitudes. Thus,
in confronting issue 2, we seek turbulent solutions that pos-
sess � profiles with fast equators and strong latitudinal con-
trasts D� and emerging heat fluxes that vary little with
latitude. To achieve this, we have considered two paths in
parameter space that yield more turbulent solutions by
either varying the Prandtl number or keeping it fixed while
maintaining the same rotational constraint as measured by
a convective Rossby number.

We describe briefly in x 2 the ASH code and the set of
parameters used for the simulations studied here. In x 3 we
discuss the properties of rotating turbulent convection and
the resulting differential rotation and meridional circulation
for the five cases A, AB, B, C, and D. In x 4 we analyze the
transport of angular momentum by several processes and
the influence of baroclinic effects in establishing the mean
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flows. In x 5 we reflect on the significance of our findings,
especially in terms of dealing with the two issues raised by
the prior simulations with ASH.

2. FORMULATING THE MODEL

Our numerical models are intended to be a faithful if
highly simplified descriptions of the solar convection zone.
In brief overview, solar values are taken for the heat flux,
rotation rate, mass, and radius, and a perfect gas is assumed
since the upper boundary of the shell lies below the H and
He ionization zones; contact is made with a real solar struc-
ture model for the radial stratification being considered.
The computational domain extends from about 0.72 to 0.96
R�, where R� is solar radius, with such shells having an
overall density contrast in radius of about 25, and as a con-
sequence compressibility effects are substantial. Thus, we
are concerned only with the central portion of the convec-
tion zone, dealing with neither the penetrative convection
below that zone nor the two shear layers present at the top
and bottom of it. Given the computational resources avail-
able, we prefer to concentrate our effort on processes that
establish the primary differential rotation in the bulk of the
convection zone and in future studies will seek to incorpo-
rate the other regions. We have as well softened the effects
of the very steep entropy gradient close to the surface that
would otherwise favor the driving of very small granular
and mesogranular scales of convection, with these requiring
a spatial resolution at least 10 times greater than presently
available.

The ASH code solves the three-dimensional anelastic
equations of motion in a rotating spherical shell geometry
using a pseudospectral semi-implicit approach (Clune et al.
1999). As discussed in detail in Miesch et al. (2000), these
equations are fully nonlinear in velocity variables and line-
arized in thermodynamic variables with respect to a spheri-
cally symmetric mean state having a density ���, pressure �PP,
temperature �TT , specific entropy �SS, and perturbations about
this mean state of �, P, T, and S. The conservation of mass,
momentum, and energy (or entropy) in a rotating reference
frame is thus expressed as
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where cp is the specific heat at constant pressure,
v ¼ ðvr; v�; v�Þ is the local velocity in spherical geometry in
the rotating frame of constant angular velocity X0, g the
gravitational acceleration, �r the radiative diffusivity, andD

the viscous stress tensor, with components
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1
3
ð

D

x vÞ�ij
� �

; ð4Þ

where eij is the strain rate tensor. Here � and � are effective
eddy diffusivities for vorticity and entropy. To close the set
of equations, the linearized relations for the thermodynamic

fluctuations are

�

���
¼

P
�PP
�
T
�TT
¼

P

��PP
�

S

cp
; ð5Þ

assuming the ideal gas law

�PP ¼ R����TT ; ð6Þ

where R is the gas constant. The bracketed term in the sec-
ond line of equation (2),

D

�PP� ���g, vanishes initially because
the mean state begins in hydrostatic balance from a one-
dimensional radial solar model (Brun, Turck-Chièze, &
Zahn 1999), but as the convection becomes established this
term becomes nonzero through effects of turbulent pressure.
It is essential to take into account effects of compressibility
on the convection since the solar convection zone spans
many density scale heights. To accommodate this, we use
the anelastic approximation (Gough 1969) to filter out the
sound waves and therefore permit bigger time steps for the
temporal evolution. The latter is allowed since the Courant,
Friedrichs, & Lewy numerical stability condition now
applies to the smaller convective velocities rather than the
sound speed cs.

Because of the small solar molecular viscosity, direct
numerical simulations of the full scale range of motions
present in stellar convection zones are currently not feasible.
We seek to resolve the largest scales of convective motion
that we believe are the main drivers of the solar differential
rotation, doing so within a large-eddy simulation (LES) for-
mulation where � and � are assumed to be an effective eddy
viscosity and eddy diffusivity, respectively, that represent
unresolved subgrid-scale (SGS) processes, chosen to suit-
ably truncate the nonlinear energy cascade. For simplicity,
both are here taken to be functions of radius alone and are
chosen to scale as the inverse of mean density. Other forms
that may be determined from the properties of the large-
scale flows according to one of many prescriptions (e.g.,
Lesieur 1997; Canuto 1999) will be considered in the future.
We have also introduced an unresolved enthalpy flux pro-
portional to the mean entropy gradient in equation (3) in
order to account for transport by small-scale convective
structures near the top of our domain (Miesch et al. 2000).
We utilize the same radial profile for that mean eddy diffu-
sivity in our five cases in order to minimize the impact of our
SGS treatment on the main properties of our solutions. We
emphasize that currently tractable simulations are still
many decades away in parameter space from the intensely
turbulent conditions encountered in the Sun, and thus these
large-eddy simulations must be viewed as training tools for
developing our dynamical intuition of what might be pro-
ceeding within the solar convection zone.

Within the ASH code, the mass flux is imposed to be
divergence-free by using poloidal W and toroidal Z func-
tions. The thermodynamic variables P and S and W and Z
are expanded in spherical harmonics Ym

‘ ð�; �Þ to resolve
their horizontal structures and in Chebyshev polynomials
Tn(r) to resolve their radial structures. This approach has
the distinct advantage that the spatial resolution is uniform
everywhere on a sphere when a complete set of spherical
harmonics is used in degree ‘ (retaining all azimuthal orders
m). We expand up to degree ‘ ¼ ‘max [depending on the
number of latitudinal mesh points N�, e.g., ‘max ¼
ð2N� � 1Þ=3], utilize as longitudinal mesh points N� ¼ 2N�,
and employ Nr collocation points in projecting on the Che-
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byshev polynomials. In this study the highest resolution
used has ‘max ¼ 340 and Nr ¼ 193. The time evolution is
carried out using an implicit, second-order Crank-Nichol-
son scheme for the linear terms and an explicit, second-
order Adams-Bashforth scheme for the advective and Cori-
olis terms.

Within ASH, all spectral transformations are applied to
data local to each processor, with interprocessor transposes
performed when necessary to arrange for the transforma-
tion dimension to be local. The triangular truncation in
spectral space precludes any simple distribution of the data
and work load among the nodes. For very large problems,
the Legendre transformations dominate the work load, and
as a result, great care has been taken to optimize their per-
formance on cache-based architectures. Arrays and loops
have been structured to operate on blocks that minimize
cache misses. The ASH code is extremely flexible and has
demonstrated excellent scalability on massively parallel
supercomputers such as the Cray T3E, IBM SP-3, and
Origin 2000.

As boundary conditions, we impose impenetrable and
stress-free conditions for the velocity field and constant flux
(i.e., constant entropy gradient) at both the inner and outer
boundaries. We seek solutions with an emerging flux at the
top that is invariant with latitude (issue 2). As initial condi-
tions, we have started some simulations (cases A and B)
from quiescent conditions of uniform rotation and others
(cases AB, C, and D) from evolved solutions in which we
modify certain diffusivities. This leads to changes in the
effective Rayleigh number Ra, the Prandtl number Pr, the
Péclet number Pe, the Reynolds number Re, and the Taylor
number Ta, while keeping constant the convective Rossby
number Roc, all of which are defined in Table 1. We also
summarize there the parameters of the five simulation cases.

3. PROPERTIES OF TURBULENT COMPRESSIBLE

CONVECTION

We have conducted five simulations involving increas-
ingly nonlinear flows that are achieved by reducing the vis-

cous and entropy diffusivities in the manner outlined in
Table 1. We have followed two paths in parameter space in
obtaining more complex convective flows. On path 1 in
going from case A to case C via case B, we incrementally
decreased the eddy viscosity � while keeping the eddy diffu-
sivity � constant, thereby reducing the Prandtl number Pr

by a factor of 8. In particular, the laminar case A has Pr of
unity; reducing the viscosity by a factor of 4 leads to the
mildly turbulent case B with Pr ¼ 0:25, or by reducing it a
factor of 8 leads to the more turbulent case C with
Pr ¼ 0:125. This serves to increase the Reynolds number Re

while only mildly increasing the Péclet number Pe. Path 2
kept the Prandtl number fixed at Pr ¼ 0:25 since the com-
plexity of the flows was increased by reducing both diffusiv-
ities. Starting from case AB, we go to case B by decreasing
both diffusivities � and � by a factor of 2 and then to our
most turbulent case D by further reducing both by a factor
of 2 relative to case B. This path 2 in going from case AB to
case D via case B results in both Re and Pe increasing com-
parably. All our models possess a convective Rossby num-
ber Roc on the order of 2

3
, thus maintaining a strong

rotational constraint on the convection.
As we shall describe in some detail, the resulting vigorous

convection influenced by rotation in all these cases is intri-
cate and richly time-dependent, similar to that found in
Miesch et al. (2000) and Elliott et al. (2000). It is character-
ized by networks of strong downflow at the periphery of the
convection cells and weaker upflows in their middle, both of
which are a consequence of the effects of compressibility
since we consider flows that can span multiple density scale
heights in the vertical. Indeed, we consistently observe that
the downflows are able to extend over the full depth of the
unstable layer, appearing as twisted sheets of downflow near
the top and more distinctive plumes deeper in the layer.
These downflow networks essentially represent coherent
structures amidst the turbulence, and they are found to have
a most significant role in the nonlinear transport of angular
momentum by yielding correlations between different veloc-
ity components that form Reynolds stress terms. We find
that the convection in all cases studied here is able to redis-

TABLE 1

Parameters for the Five Simulations

Case A AB B C D

Nr,Nh,N�....... 64, 128, 256 64, 128, 256 64, 256, 512 192, 256, 512 192, 512, 1024

Ra................... 3.1 � 104 3.4 � 104 1.4 � 105 3.1 � 105 6.5 � 105

Ta................... 7.7 � 104 3.1 � 105 1.2 � 106 5.4 � 106 6.5 � 106

Pr ................... 1 0.25 0.25 0.125 0.25

Roc ................. 0.645 0.662 0.673 0.682 0.633

�..................... 5.5 � 1012 2.8 � 1012 1.4 � 1012 6.8 � 1011 6.0 � 1011

� .................... 5.5 � 1012 1.1 � 1013 5.5 � 1012 5.5 � 1012 2.4 � 1012

~RRe .................. 28 85 170 385 410
~RRo .................. 0.10 0.16 0.15 0.17 0.16
~PPe ................... 28 21 43 48 103

Note.—All simulations have an inner radius rbot ¼ 5:0� 1010 cm, an outer radius
rtop ¼ 6:72� 1010 cm, with L ¼ 1:72� 1010 cm the thickness of the computational domain. The
number of radial, latitudinal and longitudinal mesh points are Nr, Nh, and N�, respectively. Here
evaluated at midlayer depth are the Rayleigh numberRa ¼ ð�@�=@SÞDSgL3=���, the Taylor number
Ta ¼ 4�2L4=�2, the Prandtl number Pr ¼ �=�, the convective Rossby number Roc ¼ Ra=TaPrð Þ1=2,
the rms Reynolds number ~RRe ¼ ~vvL=�, the rms Péclet number ~PPe ¼ ~RRePr ¼ ~vvL=�, and the rms Rossby
number ~RRo ¼ ~!!=2� � ~vv=2�L, where ~vv is a representative rms convective velocity. A Reynolds
number based on the peak velocity at middepth would be about a factor 4 larger. The eddy viscosity �
and eddy conductivity � at middepth are quoted in cm2 s�1.
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tribute angular momentum in such a manner that substan-
tial differential rotation profiles are established, the proper-
ties of which are the major focus of this work.

3.1. Complex Evolution of Convective Patterns

The time dependence in our most turbulent simulation
(case D) is shown in Figure 2, which displays two sequences
of images of the radial velocity on spherical surfaces over
the course of one full rotation. The upper sequence with
views near the top of the layer involves simpler downflow
networks (shown in darker tones) that are easier to inter-
compare from frame to frame, whereas the lower ones with
views in the middle of the convecting layer are more difficult
to track because of increased complexity of the patterns in
the more turbulent flows there. The vantage point is in the
uniformly rotating frame used in our modeling, and some of
the pattern evolution results from the prograde zonal flows
at low latitudes and retrograde ones at high latitudes associ-
ated with the differential rotation relative to this frame.
There is further melding and shearing of particular down-
flow lanes as the convection cells evolve over a broad range
of timescales, some of which are comparable to the rotation
period. This is particularly evident in some of the downflow
structures identified near the equatorial region in the upper
sequence, with features labeled ‘‘ 1 ’’ and ‘‘ 2 ’’ illustrating
the merging of two downflow lanes and feature ‘‘ 3 ’’ the typ-
ical distortion of a lane that also involves both a site of
cyclonic swirl in the northern hemisphere and another that
is appropriately anticyclonic in the southern hemisphere.
The behavior at higher latitudes that involves retrograde
displacement of the downflow networks is somewhat more
intricate, partly because the convection cells are of smaller
scale and exhibit the frequent formation of new downflow
lanes (as in feature 4) that can serve to cleave existing cells.
Figure 2 emphasizes that the overall pattern of these global
cells is sufficiently modified during the course of one rota-
tion period so that it would be difficult to identify particular
structures (relative to our uniformly rotating vantage point)
when viewed in a subsequent rotation. This would suggest
that giant cells possibly present within the solar convection
zone may also loose their identity from one Carrington rota-
tion to the next. This comes about because of both advec-
tion and distortion of the cells by the mean zonal flows
associated with the differential rotation (here at the equator
leading to relative angular displacements in longitude of
about 70� over one rotation period) and fairly rapid evolu-
tion and some propagation in their individual downflow
patterns.

3.2. Downflow Networks and Variation with Depth

The convective structures as delineated by the downflow
networks show distinctive changes as the level of turbulence
is increased in going from case A to case D. Figure 3 pro-
vides an overview of radial velocity snapshots in our five
simulations at three depths (near the top, middle, and bot-
tom) accompanied by the fluctuating temperature fields at
middepth. The upper surface in all our cases involves a con-
nected network of downflows surrounding broad upflows,
but such smoothness can disguise far more turbulent flows
below. The seemingly cellular motions near the surface
result from the expansion of fluid elements rising through
the rapidly decreasing density stratification near the upper
boundary, aided also by our increasing viscous and thermal

diffusivities there. As viewed near the top, the tendency of
the convection in our laminar case A to be organized into
‘‘ banana cells ’’ nearly aligned with the rotation axis at low
latitudes is progressively disrupted by increasing the level of
complexity in going in turn to cases AB, B, C, and D. There
is still some semblance of north-south alignment in the
downflows even in our most turbulent case D, but the latitu-
dinal span of this alignment is confined to a narrow interval
around the equator. Clearly, the downflow lanes become
more wiggly and exhibit more pronounced vortical features
and curvature in this sequence of cases. The downflow net-
works as well involve more frequent branching points and
smaller horizontal scales for the convective patterns, espe-
cially at higher latitudes. Given the three simultaneous
views of the radial velocity, one can clearly identify down-
flow lanes near the top in all our cases that turn into distinc-
tive plumes at greater depths, showing that organized flows
extend over multiple scale heights. Indeed, the strongest
downflows occur at the interstices of the upper network and
are able to pierce through the interior turbulence, thus span-
ning the full depth range of the domain.

The plumes in the more turbulent cases C andD represent
coherent structures that are embedded within less ordered
flows that surround them. They are able to maintain their
identity, although with some distortion and mobility, over
significant intervals of time. Although these downflowing
plumes are primarily directed radially inward, they show
some tilt both toward the rotation axis and out of the meri-
dional plane. This yields correlated velocity components
and thus Reynolds stresses that are a key ingredient in the
redistribution of angular momentum within the shell. Such
tilting away from the local radial direction in coherent
downflows has been seen in high-resolution local f-plane
simulations of rotating compressible convection (Brummell
et al. 1998), and their presence has a dominant role in estab-
lishing the mean zonal and meridional flows. We also refer
to Rieutord & Zahn (1995) and Zahn (2000) for an analyti-
cal study of the transport properties and correlations
present in such strong vortex structures and on their poten-
tial dynamical role in the solar convection zone.

The strong downflows shown in Figure 3 accentuate the
asymmetries that are characteristic of compressible convec-
tion, with typical peak amplitudes in these downflows at
midlayer being as much as twofold greater than that in the
upflows. As might be expected, the overall rms radial veloc-
ities listed in Table 2 increase with complexity in the flow
fields in going from case A to case D. The asymmetries
between upflows and downflows have the consequence that
the kinetic energy flux in such compressible convection is
directed radially inward, in contrast to the enthalpy and
radiative fluxes that are directed outward in transporting
the solar flux (see Fig. 10a).

That enthalpy flux involves correlations between radial
velocities and temperature fluctuations, and these are evi-
dently strong, as seen when inspecting the temperature and
velocity fields shown at midlayer in Figure 3. Buoyancy
driving within our thermal convection involves downflows
that are cooler and thus denser and upflows that are warmer
and lighter than the mean; there are systematic asymmetries
in those temperature fluctuations, much as in the radial
velocities. Further, in comparing the temperature maps with
those of radial velocity in the middle of the layer, some of
the temperature patterns are evidently smoother, which is a
consequence of the greater thermal diffusivities than viscos-
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Fig. 3.—Convective patterns for the five cases A, AB, B, C, and D as increasingly turbulent flows are attained. The radial velocity snapshots are shown at
three different depths (0.95, 0.84, and 0.73 R�). Downflows are represented in dark purple tones and upflows in bright orange tones, with dynamic ranges
indicated. The dotted circle is positioned at radiusR�, and the equator is indicated by the dashed curve. The convective structures becomemore complex in this
progression of cases, with the banana-like convective cells giving way to stronger and more frequent vortex sites. The strongest downflow lanes extend over the
full depth range. The fluctuating temperature fields at middepth are shown on the right, emphasizing that downflows are relatively cool and that the polar
regions are on average warm.



ities for cases with Prandtl numbers less than unity. A strik-
ing property shared by all these temperature fields is that the
polar regions are consistently warmer than the lower lati-
tudes, a feature that we will find to be consistent with a fast
or prograde equatorial rotation.

3.3. Driving Strong Differential Rotation

The differential rotation profiles with radius and latitude
that result from the angular momentum redistribution by
the vigorous convection in our five simulations are pre-
sented in Figure 4. In order to simplify comparison of our
results with deductions drawn from helioseismology (Fig.
1), we have converted our mean longitudinal velocities v̂v�
(with the hat denoting averaging in longitude and time) into
a sidereal angular velocity � with radius and latitude and
note that our reference frame rotation rate �0=2� is 414
nHz (or a period of 28 days). The angular velocity in all our
cases exhibits substantial variations in time, and thus long
time averages must be formed to deduce the time mean pro-
files of � shown in Figure 4. The layout of the five cases in
Figure 4 reflects the two paths we have taken in increasing
the complexity or turbulence level in the solutions: Path 1,
in going from case A to case C via case B while decreasing
the Prandtl number, takes us from upper left to lower right,
and path 2, in going from case AB to case D via case B while
keeping the Prandtl number fixed at Pr ¼

1
4
, takes us from

upper right to lower left. Complexity in the convective flows
increases in going down the page.

All five simulations yield angular velocity � profiles that
involve fast (prograde) equatorial regions and slow (retro-
grade) high-latitude regions. The variation of � with radius
and latitude may be best judged in the color contour plots in
Figure 4, which are scaled independently for each of the
cases; the reference frame rate is also indicated. The immedi-
ate polar regions are omitted in these plots because it is diffi-
cult to obtain stable mean � values at very high latitudes
since the averaging domain there becomes very small,
whereas the temporal fluctuations in the flows remain sub-
stantial. The contour plots reveal that there are some differ-
ences in the � realized in the northern and southern
hemispheres, although such symmetry breaking is modest
and probably will diminish with longer averaging. The con-
vection itself is not symmetric about the equator, and thus
the mean zonal flows that accompany such convection, and
which are manifest as differential rotation, can be expected
to have variations in the two hemispheres. In cases B, C,

and D, there is some alignment of the � contours at the
lower latitudes with the rotation axis, thus showing a ten-
dency for � to be somewhat constant on cylinders. Further,
in these cases almost all the decrease in � with latitude
occurs in going from the equator to about 45

�
or thus is con-

fined to the region outside the tangent cylinder to the inner
boundary (which intersects the outer boundary in our shell
configuration at 42

�
). In contrast, cases A and AB show far

less alignment of � contours with cylinders at the lower lati-
tudes, and at midlatitudes the contours are nearly aligned
with radial lines, more in the spirit of the helioseismic
inferences.

Case AB in Figure 4 is unique in having the monotonic
decrease of � with latitude continue onward to high lati-
tudes, which is also the trend deduced from helioseismic
measurements. Thus, issue 1 concerned with achieving a
consistently decreasing � at high latitudes is resolved with
case AB. This is significant in showing that such behavior
can be realized in our modeling of convection in deep shells,
although it is not a common property in our other cases. It
would be most desirable to understand how such high-
latitude variation in � is achieved in case AB, and we will
address this in x 4.

The accompanying radial cuts of� at six fixed latitudes in
Figure 4 permit us to readily quantify the � contrasts with
latitude achieved in these solutions and to judge the func-
tional variation with radius in each case. We use a common
scaling for all these line plots to make an intercomparison
between the cases most convenient; the radial cuts for �

have been averaged between the northern and southern
hemispheres. Near the top of the convection zone at radius
0.96R. the laminar convection in case A produces a differen-
tial rotation with a contrast in angular velocity, or D�=2�,
of about 50 nHz between the equator and 60� or 12% rela-
tive to the frame rotation rate (also quoted in Table 2). Con-
tinuing on path 1 in parameter space to the more turbulent
cases B and C, we find that the latitudinal contrast in angu-
lar velocity has increased substantially, becoming 115 and
125 nHz in the two cases, respectively. These correspond in
turn to a 28% and a 30% variation of the rotation rate,
respectively. These values are of interest since the helioseis-
mic inferences (Thompson et al. 1996; Schou et al. 1998;
Howe et al. 2000b) have a contrast of about 92 nHz at a sim-
ilar depth between the equator and 60� or a variation of
about 22% in rotation rate, which further increases to about
32% in going to 75�. The pronounced differential rotation in
cases B and C is accompanied by the � profiles becoming

TABLE 2

Representative Velocities, Energies, and Differential Rotation

Midconvective Zone Volume Average

Case ~vvr ~vv� ~vv� ~vv0� ~vv ~vv0 KE DRKE CKE MCKE

D� / �0

(%)

A ....... 46 40 69 44 92 74 2.7 � 106 8.2 � 105(30%) 1.9 � 106 (70%) 1.0 � 104 (0.37%) 12

AB .... 50 47 124 53 142 87 6.5 � 106 4.2 � 106(64%) 2.3 � 106 (36%) 2.1 � 104 (0.32%) 33

B ....... 57 56 115 59 140 99 6.5 � 106 3.4 � 106(52%) 3.1 � 106 (48%) 2.5 � 104 (0.38%) 28

C ....... 68 67 122 70 155 117 7.9 � 106 3.6 � 106(46%) 4.3 � 106 (54%) 3.3 � 104 (0.42%) 30

D ....... 72 67 108 64 146 111 6.5 � 106 2.3 � 106(35%) 4.2 � 106 (65%) 3.0 � 104 (0.46%) 25

Note.—In the five cases, temporal averages at midlayer depth in the convection zone of rms components of velocity ~vvr, ~vv�, ~vv�, of speed ~vv, and of
fluctuating velocities ~vv0� and ~vv

0 (with the temporal and azimuthal means subtracted) are expressed, all in units of m s�1. Also listed are the time aver-
ages over the full domain of the total kinetic energy KE and that associated with the (axisymmetric) differential rotation DRKE, the (axisymmet-
ric) meridional circulation MRKE, and the nonaxisymmetric convection itself CKE, all in units of ergs cm�3. The relative latitudnal contrast of
angular velocityD�=�0 between 0

� and 60� near the top of the domain are stated.
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Fig. 4.—Temporal and longitudinal averages of the angular velocity profiles achieved in cases A, AB, B, C, andD, formed over intervals in turn of 295, 275,
275, 175, and 35 days. The contour plots for�=2� on the left of each panel are independently scaled, whereas the radial cuts at the indicated latitudes share the
same scaling to accentuate the overall behavior of the five cases. The crossed layout of the five cases emphasizes the two different paths followed to reach more
turbulent states, mainly by lowering Pr on path 1 (A ! B ! C) and by lowering diffusivities while keeping Pr constant on path 2 (AB ! B ! D). All cases
exhibit a prograde equatorial rotation and a strong contrastD� from equator to pole. Case AB possesses a high latitude region of particularly slow rotation.



somewhat more aligned with the rotation axis, resulting in
steeper slopes in the radial cuts at low and midlatitudes.
These two turbulent cases achieve their larger D� by both
faster equatorial rotation rates and slower rates at higher
latitudes. Thus, path 1 has been able to resolve issue 2, con-
cerned with retaining a strong contrast D� and a fast equa-
tor, as the solution becomes more complex and turbulent.

Turning to path 2 in parameter space, case AB shows a
contrast of about 135 nHz between the equator and 60

�
, or

a 33% variation of rotation rate, which further increases to
about 160 nHz or 39% in going to 75�. The pivotal case B
has a somewhat reduced contrast D�=2� of 115 nHz or 28%
variation between the equator and 60�, with little further
variation at higher latitudes. The most turbulent case D has
a D�=2� of about 105 nHz or a 25% variation between the
equator and 60�. Thus, path 2 leads to a slight reduction in
D� with increasing complexity, unlike the behavior of path
1. However, even this path yields a turbulent solution case
D whose D� is still close to the helioseismic contrast, thus
largely resolving issue 2. This is reemphasized in Figure 5,
which summarizes the variation of D� with Pr for our five
cases.

Most of our cases possess overall latitudinal contrasts in
� that are in the realm of solar values deduced from inver-
sion of helioseismic data, yet case AB stands out in having
the systematic decrease of � with latitude extending almost
to the poles, which appears to be another distinguishing fea-
ture of the actual solar � profiles. Further, case AB displays
little radial variation in � at intermediate and high latitudes
(from, say, 45� onward) as the angular velocity continues to
decrease poleward. Such behavior is most interesting, and it
is necessary to understand just which convective properties
within case AB allow it to come into reasonable contact with
the helioseismic profiles for � deduced in the bulk of the
solar convection zone.

The � profiles in Figure 4 have been formed from tempo-
ral averages spanning multiple rotation periods as indi-
cated. It is appropriate to consider if these represent truly
‘‘ spun-up ’’ solutions in a statistical sense and further
whether several distinctive � profiles could be achieved for
the same control parameters. Both issues may be inter-

twined since the rate of approach to equilibration can be
influenced by the attraction characteristics of that differen-
tial rotation state and, of course, by the amplitude of the
fluxes available to redistribute angular momentum to
achieve that state (see x 4.1). This overall dynamical system
of turbulent convection is sufficiently complex that we are
uncertain whether there may exist multiple basins of attrac-
tion leading to different classes of differential rotation. For
instance, is the behavior of case AB with noticeably slow
rotation at high latitudes an example of one class of behav-
ior and our other cases that of another family? Could such
families overlap in parameter space, or are there just grad-
ual variations in behavior in � with changes in the parame-
ters? We have so far sought to address some of these
questions by perturbing the evolving solutions to see if they
might flip to another state, but they have not done so. We
plan to examine such issues of solution uniqueness in our
following studies in which we seek to extend the slow-pole
characteristics of case AB to other parameter settings
involving more complex convection.

As to the relative maturity of the spun-up states shown in
Figure 4, these vary from case to case because of the rapidly
increasing computational expense in dealing with the finer
spatial resolution required by the more complex simula-
tions. Cases AB and C were both started from case B, which
had already been run for over 4000 days of elapsed simula-
tion time (or a nominal 143 rotation periods involving about
28 days each). At this point case B appeared to be statisti-
cally stationary in terms of the kinetic energy associated
with the differential rotation, although it, like most of the
other simulations, exhibits small fluctuations in � profiles
determined from single-rotation averages, especially at the
higher latitudes. Case AB was evolved for about 2300 days
(82 rotation periods), and we illustrate in Figure 6a a succes-
sion of � profiles with latitude sampling the last 600 days in
the simulation. The solid curve there is an average formed
over 10 rotations (consistent with the contour plot in Fig.
4), and we see that the individual rotation averages being
sampled form a narrow envelope around it. There is evi-
dently some symmetry breaking between the two hemi-
spheres. We believe that the differential rotation for case AB
is now an effectively stationary state (as is also confirmed in
studying the angular momentum flux balance in Fig. 11).
The more turbulent case C was evolved for about 500 days
(18 rotations) after being initiated from case B, and a set of
its angular velocity profiles are shown sampling the last 300
days in Figure 6b. We are less certain of its stationarity, but
we could not detect any systematic trends in the evolution of
its differential rotation over the last 10 rotations. We saw no
evidence of a slow pole developing, but that may well
require more extended computations than could be pres-
ently arranged. Figure 6 serves to emphasize that the angu-
lar velocity even in the Sun may be expected to vary
somewhat from one rotation to another, with the samplings
here providing a sense of the amplitude of those changes.

3.4. Meridional Circulation Patterns

The time-averaged meridional circulations that accom-
pany the vigorous convection in the five cases are shown in
Figure 7. The typical amplitudes in these large-scale circula-
tions are about 20 m s�1 and are thus comparable to the val-
ues deduced from local domain helioseismic probing of the
uppermost convection zone based on either time-distance

Fig. 5.—Parameter space diagram for relative latitudinal angular
velocity contrast D�=�0 as a function of the Prandtl number Pr for the five
cases. The two paths toward higher levels of turbulence either reduce Pr

(A ! B ! C) or maintain a constantPr (AB ! B ! D).
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methods (e.g., Giles, Duvall, & Scherrer 1998) or ring dia-
gram analyses (Schou & Bogart 1998; Haber et al. 1998).
There is little change in meridional circulation amplitudes
as we increase the level of turbulence in going from case A
to case D. However, multicell structures in these circula-
tions become more intricate with the increased complexity
of the convection. At lower latitudes the circulation in both
hemispheres is poleward near the top of the domain, with
return flows at various depths. All cases display multiple
cells with radius and latitude and never only one big meri-
dional cell, as is often used in mean field models dealing with
differential rotation (e.g., Rekowski & Rüdiger 1998; Dur-
ney 2000) or with Babcock-Leighton dynamos (e.g., Choud-
huri, Schüssler, & Dikpati 1995; Dikpati & Charbonneau
1999). The resulting axisymmetric meridional circulation is
maintained by Coriolis forces acting on the mean zonal
flows that appear as the differential rotation, by buoyancy
forces, by Reynolds stresses, and by pressure gradients.

Given these competing processes, it is not self-
evident what pattern of circulation cells should result nor
how many should be present in depth or latitude. Our five
simulations have shown that there is some variety in the
meridional circulations achieved, all of which involve multi-
celled structures. Since the meridional circulation kinetic
energy (MCKE) is typically about 2 orders of magnitude
smaller than the differential rotation kinetic energy
(DRKE), as we will detail in x 3.5 and Table 2, small varia-
tions in the differential rotation can yield substantial
changes in the circulations. This is likewise true of the time-
varying Reynolds stresses from the evolving convection,
which again has a kinetic energy (CKE) much larger than
that of the meridional circulations. This may explain the
complex time dependence realized by the meridional flows
and the need to use long time averages in defining their
mean properties.

Another rendition of the time-averaged meridional circu-
lations achieved in cases AB and C is shown in Figure 8
using a stream function � based on the zonally averaged
mass flux (as in eq. [7] of Miesch et al. 2000). In case AB
(Fig. 8a) there are two circulation cells positioned above
each other in radius at low latitudes. The stronger upper one
(solid contours representing counterclockwise circulation)
involves poleward flow that extends from the equator to
about 30� latitude near the top of the domain in the north-
ern hemisphere. The southern hemisphere has likewise pole-
ward flow near the top at low latitudes, with ascending
motions again present from the equator to about 20� lati-
tude. At latitudes greater than about 30� the relatively weak
flow near the top is mainly equatorward in both hemi-
spheres but exhibits fluctuations. A quantitative measure of
this for case AB is provided in Figure 9a that displays the
mean velocity component v̂v� with latitude at two depths
near the top of the domain. The poleward flow in both hemi-
spheres peaks at about 20� latitude and then decreases rap-
idly, changing to weak equatorward flow above 30�, which
attains about one-third that peak amplitude. Turning to
case C in Figure 8b, it exhibits three circulation cells posi-
tioned radially at low latitudes, with the outermost again
yielding poleward flow at the top of the domain that extends
to about 35� in latitude. At higher latitudes the mean meri-
dional flow is again equatorward near the top, attaining a
peak amplitude for v̂v� (detailed in Fig. 9b) that is compara-
ble to the poleward one from the low latitudes, unlike in case
AB. Of the three meridional cells at low latitudes in case C,
much as for model TUR in Miesch et al. (2000, their
Fig. 16a), the deepest cell involves a strong counterclock-
wise circulation that extends to high latitudes, yielding a
submerged poleward flow there that lies below the equator-
ward flow at the top of the domain. Such behavior involving
a third deep circulation cell that extends to high latitudes is
also seen in cases B and D. This strong third cell appears to
be of significance in the continuing net poleward transport
of angular momentum by the meridional circulations
(see x 4.1 and Fig. 11) in all these cases at latitudes above
about 30�. This is not realized in case AB and may contrib-
ute to its slow pole behavior.

It is encouraging that we have poleward circulations in
the upper regions of the simulations, which is in accord with
the general sense of the mean flows near the surface being
deduced from local helioseismology, although two-cell
behavior with latitude has been detected recently only in the
northern hemisphere near the peak of solar activity (Haber

Fig. 6.—Succession of time-averaged � profiles with latitude at r ¼ 0:96
R�. (a) For case AB, a numbered sequence of single-rotation averages
spanning an interval of 600 days in the late evolution of the system with the
bold curve 4 denoting an average over the last 275 days in the simulation.
(b) For case C, dealing with samples in a 300 day interval, and the bold
curve 4 representing an average over the final 175 days. The variations are
representative of small changes in the differential rotation that accompany
changes in the convection once a mature statistical state has been achieved.
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et al. 2000). Such symmetry breaking in the two solar hemi-
spheres is an interesting property and one that is also occa-
sionally realized in our simulations as the convection
patterns evolve. The helioseismic probing with ring diagram
methods and explicit inversions is able to sense the meri-
dional circulations only fairly close to the solar surface, typ-
ically extending to depths of about 20 Mm or to a radius of
0.97 R�, whereas our simulations have their upper boun-
dary slightly below this level at 0.96 R�. Thus, we must be
cautious in interpreting similar behavior in the meridional
circulations since our models and the ring diagram analysis

do not explicitly overlap in radius. Helioseismic assessments
based on time-distance methods (Giles 1999; Chou & Dai
2001) and annular rings centered on the poles (Braun & Fan
1998) report detecting effects attributable to meridional cir-
culations with a mainly poleward sense to depths corre-
sponding to 0.90 or even 0.85 R�. Such results are most
interesting, but considerable further work on inversions
would be required to provide detailed profiles of the circula-
tions with depth. As these mappings become available, they
may be able to confirm or refute the multicell radial struc-
ture of meridional circulation (Fig. 7) typically realized in
our simulations.

3.5. Energetics of the Convection and theMean Flows

The overall energetics within these shells of rotating con-
vection have some interesting properties in addition to the
mean zonal and meridional flows that coexist with the com-
plex convective motions. The convection is responsible for
transporting outward the solar flux emerging from the deep
interior. We should recall, as discussed in detail in Miesch et
al. (2000), that the radial flux balance in these convective
shells involves four dominant contributors, namely, the
enthalpy or convective flux Fe, the radiative flux Fr, the
kinetic energy flux Fk, and finally the unresolved eddy flux
Fu, which add up to form the total flux Ft. Figure 10a shows
the flux balance with radius achieved in our most turbulent
case D as averaged over horizontal surfaces and converted
to luminosities. The radiative flux becomes significant deep
in the layer because of the steady increase of radiative con-
ductivity with depth, and indeed by construction it suffices
to carry all the imposed flux through the lower boundary of
our domain, where the radial velocities and thus the convec-
tive flux vanishes. A similar role near the top of the layer is
played by the subgrid-scale turbulence that yields Fu, which
being proportional to a specified eddy diffusivity function �
and the mean radial gradient of entropy, suffices to carry
the total flux through the upper boundary and prevents the

Fig. 7.—Temporal and longitudinal averages of the meridional flows achieved in the cases A, AB, B, C, and D, deduced from sampling in 295, 275, 275,
175, and 35 days, respectively. Shown are random streak lines whose length is proportional to flow speed, with arrowheads indicating flow sense. The typical
speeds in these meridional circulations are about 20 m s�1. For all the cases, strong poleward cells are present near the surface at low latitudes as well as return
flows at middepth.

Fig. 8.—Streamlines of the mean axisymmetric meridional circulation
achieved in (a) case AB averaged over 275 days and in (b) case C averaged
over 175 days. Solid contours denote counterclockwise circulation (and
dashed contours clockwise), equally spaced in value. In case AB, two circu-
lation cells are present with radius at low latitudes and only weak circula-
tions at latitudes above 30�. Case C possesses three cells at low latitudes,
with the deepest extending prominently to high latitudes.
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entropy gradient there from becoming too superadiabatic
compared to the scales of convection that we are prepared
to resolve spatially. Over most of the interior of the shell,
the strong correlations between radial velocities and tem-
perature fluctuations yield the enthalpy flux Fe that trans-
ports upward almost all of the imposed flux, and this peaks
near the middle of the layer. The kinetic energy flux Fk

works against the others by being directed downward, a
result of the fast downflow sheets and plumes achieved by
effects of compressibility (Hurlburt, Toomre, & Massaguer
1986). These general properties are shared by our five cases,
all of which have achieved good overall flux balance with
radius, as can be assessed by examining Ft.

Figure 10b presents the kinetic energy spectra with azimu-
thal wavenumber m at three depths, and averaged in time,
as realized in the case D simulation. The spectra are fairly
broad, with a plateau of power extending up to about
m ¼ 30 corresponding to some of the most vigorously
driven scales and then a rapid decrease involving about 5
orders of magnitude to the highest wavenumber of 340. The

decrease is more rapid for the spectra formed near the top of
the shell. These spectra suggest that the flows are well re-
solved, with a reasonable scale separation between the dom-
inant energy input range and the wide interval over which
dissipation functions. We cannot readily identify a clear
inertial subrange, although for reference we include some
power laws. We also refer to Hathaway et al. (1996, 2000)
for a discussion of recent observational inferences about the
solar kinetic energy spectrum that does not seem to indicate
any clear scaling law.

Table 2 summarizes various rms velocities that character-
ize our five simulations as sampled in the middle of the layer
where the enthalpy flux also peaks. The rms radial velocity
~vvr increases monotonically in going through the sequence of
cases A, AB, B, C, to D. The associated rms Reynolds num-
ber ~RRe in Table 1 increases also (although part of this is due
to changes in the diffusivities), varying by a factor of about
15 from our laminar to most turbulent solutions. The rms
longitudinal velocity ~vv� has the greatest amplitude in all the
cases. However, a removal of the mean zonal flow compo-

Fig. 9.—Mean velocity component v̂v� with latitude at the two depths
r ¼ 0:96 (solid line) and 0.94 R� (dash-dotted line) showing (a) case AB and
(b) case C. Positive values correspond to flow directed from north (positive
latitudes) to south (negative latitudes). At low latitudes the flows are pole-
ward in both hemispheres, but whereas case C exhibits fairly strong
equatorward flow at latitudes above 35�, case AB possesses much weaker
circulations there.

Fig. 10.—(a) Radial transport of energy in case D achieved by the fluxes
Fr, Fe, Fk, and Fu, and their total Ft, all normalized by the solar luminosity.
(b) Time-averaged azimuthal wavenumber spectra of the kinetic energy on
different radial surfaces (solid curve: r=R� ¼ 0:95; dashed curve: 0.84; dotted
curve: 0.73) for case D with lmax ¼ 340. The results have been averaged over
35 days. Superimposed are the power laws k�5=3, k�2, and k�3; no clear
inertial subrange is identifiable.
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nent responsible for the differential rotation yields ~vv0�. Com-
parison of this with the radial and latitudinal rms velocities
reveals that all possess very comparable amplitudes, sug-
gesting fairly isotropic convective motions near the mid-
plane. Table 2 also assesses the volume and time-averaged
total kinetic energy (KE), that associated with the DRKE,
with the MCKE, and with the convection itself (CKE). In
all of our solutions the DRKE and CKE are comparable,
and the MCKE is much smaller. Table 2 reveals a most
interesting contrast in behavior for the two paths. Follow-
ing path 1 (involving cases A, B, and C, with decreasing Pr),
we find that KE in the solutions increases steadily with
increasing flow complexity. This would be expected since
the buoyancy driving has strengthened relative to the dissi-
pative mechanisms as measured by the increasing Rayleigh
number Ra (Table 1). Path 2 (involving cases AB, B, and D,
with Pr kept fixed at 0.25) is quite different as Ra increases:
here the total kinetic energy KE remains nearly constant. A
consequence is that with increasing complexity and increas-
ing CKE along path 2, the DRKE must in turn decrease,
and D� becomes smaller. This striking property of achiev-
ing a nearly constant KE along path 2 (where both Re and
Pe increase comparably) is a remarkable feature of this intri-
cate rotating system that is currently unexplained.

Our solutions typically exhibit small differences in behav-
ior in the two hemispheres, as can be detected in the time-
averaged � contours shown in Figure 4 and in the associ-
ated latitudinal cuts at fixed radius displayed in Figure 6 for
cases AB and C. The meridional circulations likewise show
some symmetry breaking in their response between the
northern and southern hemispheres in Figure 7, which is
further quantified for cases AB and C in showing the meri-
dional streamlines in Figure 8 and in examining the latitudi-
nal variation of the mean velocity component v̂v� in Figure 9.
A sense of these asymmetries can also be assessed by exam-
ining differences in the kinetic energy of differential rotation
in the two hemispheres. For case AB, DRKE in the north-
ern hemisphere is 2:12� 106 and 2:09� 106 ergs cm�3 in the
southern hemisphere, or a 1.6% difference. For case C, the
corresponding values are 1:82� 106 and 1:76� 106 ergs
cm�3, or 3.6%. We expect that such symmetry breaking is
likely to evolve slowly, with neither hemisphere favored. We
plan to study aspects of symmetry breaking further with
more extended simulations in the near future. Such efforts
are inspired by the evolving meridional circulations and
mean zonal flows being detected by helioseismology (Haber
et al. 2000, 2002) and the differing solar rotation rates in the
two hemispheres deduced from tracking sunspots (Howard,
Gilman, &Gilman 1984).

4. INTERPRETING THE DYNAMICS

Our shells of rotating compressible convection are very
complicated dynamical systems in terms of the nonlinear
feedbacks and couplings that operate. It is difficult from first
principles to predict or explain their overall behavior in
terms of the differential rotation andmeridional circulations
that can be achieved and sustained as we sample different
sites in parameter space. The five simulations represent
numerical experiments that seek to probe some of the fami-
lies of responses within a highly simplified version of the
solar convection zone. Although most of our approxima-
tions here seem reasonable and necessary to yield a problem
tractable to computational experiments, we do not fully

know their impact and thus must draw our interpretations
about the operation of the overall dynamics with consider-
able caution. The numerical solutions have the enormous
advantage that we can interrogate them in detail to study
various balances and fluxes, and these help to provide
insights about the dynamical system.

4.1. Redistributing the AngularMomentum

Our choice of stress-free boundaries at the top and bot-
tom of the computational domain has the advantage that no
net torque is applied to our convective shells, resulting in
the conservation of the angular momentum.We seek here to
identify the main physical processes responsible for redis-
tributing the angular momentum within our rotating con-
vective shells, thus yielding the differential rotation seen in
our five cases. We may assess the transport of angular
momentum within these systems by considering the mean
radial (Fr) and latitudinal (Fh) angular momentum fluxes.
As discussed in Elliott et al. (2000), the �-component of the
momentum equation expressed in conservative form and
averaged in time and longitude yields

1

r2
@ðr2FrÞ
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and the mean latitudinal angular momentum flux

F� ¼ �̂�r sin � ��
sin �

r

@

@�

�
v̂v�

sin �

�
þ dv0�v0�v0�v

0
�þ v̂v� v̂v�þ �0r sin �

� �� �
:

ð9Þ

In the above expressions for both fluxes, the first terms in
each bracket are related to the angular momentum flux due
to viscous transport (which we denote as Fr, V and Fh, V),
the second term to the transport due to Reynolds stresses
(Fr, R andFh, R), and the third term to the transport by the
meridional circulation (Fr, M and Fh, M). The Reynolds
stresses above are associated with correlations of the veloc-
ity components such as the dv0rv0�v0rv

0
� correlation, which arise

from organized tilts within the convective structures, espe-
cially in the downflow plumes (see, e.g., Brummell et al.
1998; Miesch et al. 2000).

In Figure 11 we show the components of Fr and Fh for
cases A, AB, B, and C, having integrated along colatitude
and radius, respectively, to deduce the net fluxes through
shells at various radii and through cones at various lati-
tudes, namely, in the manner

IFr
ðrÞ ¼

Z �

0

Frðr; �Þr
2 sin � d� ;

IF�
ð�Þ ¼

Z rtop

rbot

F�ðr; �Þr sin � dr ; ð10Þ

and then identify in turn the contributions from viscous
(V ), Reynolds stresses (R), and meridional circulation (M)
terms. This representation is helpful in considering the sense
and amplitude of the transport of angular momentum
within the convective shells by each component of Fr and
Fh.
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Turning first to the radial fluxes in the leftmost of each
pair of panels in Figure 11, we note that the integrated vis-
cous fluxFr, V is negative (where, for simplicity, we drop I ),
implying a radially inward transport of angular momentum.
This property is in agreement with the positive radial gra-
dient in the angular velocity profiles achieved in our four
cases, as is seen in Figure 4 in the radial cuts for different lat-
itudes of �. Such downward transport of angular momen-
tum is well compensated by the two other terms Fr, R and
Fr, M, having reached a statistical equilibrium of nearly no
net radial flux, as can be seen by noting that the solid curve
Fr is close to zero. Although all of our solutions possess
complicated temporal variations, our sampling in time to
obtain the averaged fluxes suggest that we are sensing the
equilibrated state reasonably well. As the level of turbulence
is increased in going from case A to case C,Fr, V reduces in
amplitude and the transport of angular momentum by the
Reynolds stresses and by the meridional circulation change
accordingly to maintain equilibrium. The meridional circu-
lation asFr, M involves a strong dominantly outward trans-
port of angular momentum. The Reynolds stresses as Fr, R

vacillate in their sense with depth, although they consis-
tently possess outward transport in the upper portions of
the domain. Case AB is distinguished by Fr, R being

directed outward throughout the domain. Detailed exami-
nation with radius and latitude of the Reynolds stress con-
tributions to the angular momentum fluxes in equations
(7)–(9) reveals that the ‘‘ flux stream functions ’’ (not shown)
possess multicelled structures with radius at latitudes above
45� for all cases except case AB. This striking difference in
case AB of having a big positive Fr, R appears to influence
the redistribution of angular momentum at high latitudes.
This may be key in the monotonic decrease of � with lati-
tude of case AB extending into the polar regions and pro-
vides our first clue for how issue 1 is resolved within this
case. In a broader sense in considering all of our cases, we
deduce that in the radial direction the transport of angular
momentum is significantly affected by both the meridional
circulation and the Reynolds stresses.

The latitudinal transport of angular momentum Fh in
the rightmost of the panels in Figure 11 involves more com-
plicated and sharper variations in latitude. This comes
about because of the more intricate latitudinal structure of
the different terms contributing to the transport. Here the
transport of angular momentum by Reynolds stressesFh, R

appears to be the dominant one, being consistently directed
toward the equator (i.e., negative in the southern hemi-
sphere and positive in the northern hemisphere). This is an

Fig. 11.—Time average of the latitudinal line integral of the angular momentum fluxFr (left-hand panels in each pair) and of the radial line integral of the
angular momentum flux Fh (right-hand panels) for cases A (top left), AB (top right), B (bottom left), and C (bottom right). The fluxes have been decomposed
into their viscous (labeled V), Reynolds stress (R), and meridional circulation (M) components. The solid curves represent the total fluxes and serve to indicate
the quality of stationarity achieved. The positive values represent a radial flux that is directed outward and a latitudinal flux directed from north to south. The
fluxes for cases A, AB, B, and C have been averaged over periods of 295, 275, 275, and 175 days, respectively.
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important feature since it implies that the equatorial acceler-
ation observed in our simulations is mainly due to the trans-
port of angular momentum by the Reynolds stresses and
thus is of dynamical origin. As we try to understand issue 2,
concerned with retaining a significant D� as the flow com-
plexity is increased, we find that the variation of angular
momentum fluxes by Reynolds stresses with increasing
complexity along paths 1 and 2 are fairly similar in charac-
ter. Along both these paths the Reynolds stress fluxes
remain prominent, and this appears to sustain the large D�,
thereby resolving issue 2 for solutions with the level of tur-
bulence attained in cases C and D (the latter is not shown in
Figure 11, but its transport properties are comparable to
those of case C). Further, we see that the transport by meri-
dional circulation Fh, M is opposite toFh, R, with the meri-
dional circulation seeking to slow down the equator and
speed up the poles. A distinguishing feature of case AB is
that Fh, M becomes small at latitudes above 30

�
, with the

tendency of the meridional circulation to try to spin up the
high latitudes sharply diminished compared to the other
cases. This appears to result from the strong meridional cir-
culation in case AB being largely confined to the interval
from the equator to 30� in latitude (Fig. 8a), with only a
weak response at higher latitudes. This property of Fh, M,
together with the uniformly positiveFr, R, provides the sec-
ond clue for how issue 1 appears to be resolved by case AB.
As the level of turbulence is increased, we find a reduction in
the amplitudes of all the components of Fh, with Fh, V

always being the smallest and transporting the angular
momentum poleward in the same sense asFh, M. ForFh, R,
this lessening amplitude appears to come about from the
increasing complexity of the flows implying smaller correla-
tions in the Reynolds stress terms, but it is likely that
strengthening coherent turbulent plumes can serve to
rebuild such correlations (Brummell et al. 1998).

Our estimates of the latitudinal transports of angular
momentum yield fairly good equilibration for cases A and
AB, with little net latitudinal flux, but the more turbulent
cases such as C are sufficiently complex that achieving such
latitudinal balance is a slow process in the temporal averag-
ing. We conclude that the Reynolds stresses have the domi-
nant role in achieving the prograde equatorial rotation seen
in our simulations, with its effectiveness limited by the
opposing transport of angular momentum by the meri-
dional circulation. The viscous transports are becoming
more negligible as we achieve more turbulent flows by
reducing the eddy diffusivities.

4.2. Baroclinicity and ThermalWinds

Convection influenced by rotation can lead to latitudinal
heat transport in addition to radial transport, thereby pro-
ducing latitudinal gradients in temperature and entropy
even if none were imposed by the boundary conditions. This
further implies that surfaces of constant mean density and
mean pressure will not coincide, thereby admitting baro-
clinic terms in the vorticity equations (Pedlosky 1987; Zahn
1992). Baroclinicity has been argued to possibly have a piv-
otal role in obtaining differential rotation profiles whose
angular velocity, like the Sun, are not constant on cylinders
(e.g., Kitchatinov & Rüdiger 1995). We shall here analyze
our cases AB and C from that perspective, finding that
although a small latitudinal entropy gradient is realized, the
resulting differential rotation as exhibited in our solutions

by the mean longitudinal velocity v̂v� cannot be accounted
for principally by the baroclinic term. To make such inter-
pretation specific, we should turn as in Elliott et al. (2000) to
the mean (averaged in longitude and time) zonal component
of the curl of the momentum equation (2), expressed as
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where the Einstein summation convention has been
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is the derivative parallel to the rotation axis. This vorticity
equation is helpful in examining the relative importance of
different forces in meridional planes; here terms arising from
Reynolds and viscous stresses are on the left and those from
Coriolis and baroclinic effects on the right. If one were to
simply neglect the Reynolds and viscous stresses, we obtain
the simplest version of a ‘‘ thermal wind balance ’’ in which
departures of zonal winds from being constant on cylinders
aligned with the rotation axis are accounted for by the
baroclinic term involving crossed gradients of density and
pressure, namely,
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where � is the logarithmic derivative of pressure with respect
to density at constant specific entropy, we can rewrite equa-
tion (12) as
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having neglected turbulent pressure. Thus, breaking the
Taylor-Proudman constraint that requires rotation to be
constant on cylinders, with @v̂v�=@z equal to zero, can be
achieved by establishing a latitudinal entropy gradient.
However, Reynolds and viscous stresses can also serve to
break that constraint, and indeed we next show that those
terms are at least as important as the baroclinic term.

We turn in Figure 12 to an analysis of case AB in terms of
how well a simple thermal wind balance is achieved or vio-
lated. Figures 12a and 12b display the temporal mean zonal
velocity v̂v� and its gradient @v̂v�=@z, with the latter having
pronounced variations at midlatitudes near the top of the
spherical shell and others at lower latitudes near the bottom
of the domain. The baroclinic term (as on right-hand side of
eq. [14]) is shown in Figure 12c, possessing the largest ampli-
tudes close to the base of the shell at low latitudes, with a
tongue connecting to midlatitudes in traversing the shell.
The difference between this baroclinic term and the actual
@v̂v�=@z, as shown in Figure 12d, is a measure of the effective-
ness of a thermal wind balance in case AB. It is evident that
baroclinicity yields a fair semblance of a balance over much
of the deeper layer, with the baroclinic term (Fig. 12c) typi-

d
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cally being greater in amplitude than @v̂v�=@z (Fig. 12b)
there. However, the major regions of departure with oppo-
site signs in the two hemispheres show that in the upper
domain, between latitudes of about 15� and 45�, that bal-
ance is quite severely violated: there the Reynolds stress
terms in equation (11) involving vortex tube stretching and
tilting become the main players. This broad site coincides
with regions of strong latitudinal gradient in v̂v� and is cen-
tered in latitude where the relative rotation changes sense
from prograde to retrograde. What we have learned from
this is that whereas the convection does establish a latitudi-
nal gradient of entropy that is needed for baroclinic terms to
achieve aspects of thermal wind balance over the deeper
portions of the domain, the Reynolds stresses have an
equally crucial role in the meridional force balance over por-
tions of the upper domain. The more turbulent case C is
likewise analyzed in Figure 13, and it generally exhibits
comparable behavior. The baroclinic term (Fig. 13c) cap-
tures much of the @v̂v�=@z variation (Fig. 13b) at midlati-
tudes over most of the deep shell, but there are large
departures (Fig. 13d) in thin domains near the top and bot-
tom of the shell, again between 15� and 45� in latitude.
Thus, here too the Reynolds stress terms are significant
players in the overall balance.

The latitudinal entropy and temperature gradients estab-
lished within our simulations should be examined further.
We show in Figure 14 the time- and longitude-averaged spe-
cific entropy fluctuations ŜS and temperature fluctuations T̂T
for cases AB and C, presenting both color contour render-
ings across the shell and their variations with latitude at
three depths. Our model AB, which exhibits the strongest
differential rotation, also possesses the greatest temperature
and entropy contrasts with latitude. We see from the latitu-
dinal cuts of temperature that a D� on the order of 30%
involves a pole-equator temperature variation of about 4–8
K, the pole being warmer. These temperature contrasts are
very small compared to the mean temperature near the top
of our domain of about 105K and of 2� 106 Knear its base.
There is some evidence of a latitudinal variation in the pho-

tospheric temperature of at least a few kelvins with the same
sense obtained from observations of the solar limb (see, e.g.,
Kuhn 1998), although relative variations of such small
amplitude are very difficult to measure. We note that our
temperature fields show some banding with latitude near
the top of the domain, with the equator slightly warm, then
attaining relatively cool values with minima at about lati-
tude 35�, followed by rapid ascent to warm values at high
latitudes. The behavior is monotonic with latitude at greater
depths, as it is consistently so for entropy at all depths.
These differences between temperature and entropy are
accounted for by effects of the pressure field necessary to
drive the meridional circulation.

In summary, although our solutions attain close to a ther-
mal wind balance over large portions of the domain, the
departures elsewhere are most significant. These arise from
the Reynolds stresses that have a crucial role in establishing
the differential rotation profiles realized in our simulations.
The baroclinicity in our solutions, resulting from latitudinal
heat transport that sets up a pole-to-equator temperature
and entropy contrast, contributes to � not being constant
on cylinders, but it is not the dominant player as envisioned
in some discussions of mean-field models of solar differen-
tial rotation (e.g., Kitchatinov & Rüdiger 1995; Rekowski
&Rüdiger 1998; Durney 1999, 2000).

5. CONCLUSIONS

Our five simulations studying the coupling of turbulent
convection and rotation within full spherical shells have
revealed that strong differential rotation contrasts can be
achieved for a range of parameter values. With these new
models, we have focused on two fundamental issues raised
in comparing the solar differential rotation deduced from
helioseismology with the profiles achieved in the prior three-
dimensional simulations of turbulent convection with the
ASH code (Miesch et al. 2000; Elliott et al. 2000). As issue 1,
the Sun appears to possess remarkably slow poles, with �

decreasing steadily with latitude even at mid- and high lati-

Fig. 12.—Temporal and longitudinal average for case AB of (a) the longitudinal velocity v̂v�, (b) its derivative along the z-axis, @v̂v�=@z, (c) the baroclinic term
in the meridional force balance (see eq. [14]), and (d ) the difference between the last two terms [namely, (b) minus (c)]. The results have been averaged over a
period of 275 days. Panel d shows that there are major departures from a simple thermal wind balance, especially near the top of the domain. The same color
scale is used in (b), (c), and (d ).
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tudes (Fig. 1). In contrast, the previous models showed little
variation in � at the higher latitudes, having achieved most
of their latitudinal angular velocity contrast D� in going
from the equator to about 45�. As issue 2, there was a ten-
dency for D� to diminish or even decrease sharply within
the prior simulations as the convection became more turbu-
lent, yielding values of D� that were becoming small com-
pared to the helioseismic deductions. In seeking to resolve
these two issues, we have explored two paths in parameter
space that yield complex and turbulent states of convection.
Path 1 involves decreasing the Prandtl number in the
sequence of cases A, B, and C, while keeping the Péclet num-
ber nearly constant. Path 2 maintains a constant Prandtl
number as both the Reynolds and Péclet number are
increased in the sequence of cases AB, B, and D. On both
paths the convective Rossby number has been chosen to be
less than unity, thereby maintaining a strong rotational
influence on the convection even as the flows become more
intricate.

In dealing with issue 1, our case AB provides the first indi-
cations that it is possible to attain solutions in which the
polar regions rotate significantly slower than the midlati-
tudes (Fig. 4). There is a monotonic decrease from the fast
(prograde) equatorial rate in � to the slow (retrograde) rate
of the polar regions. Further, that case AB has� nearly con-
stant on radial lines at the higher latitudes, again in the spirit
of the helioseismic inferences. We do not fully understand
why in case AB such a strikingly different � profile results
compared to that in our other solutions (and of the progeni-
tor simulations) in which the contrast D� is mainly achieved
in the lower latitudes. Our principal clues come from Figure
11, where we find that only in case AB is the Reynolds stress
component of the net radial angular momentum flux Fr, R

(through shells at various radii) uniformly directed out-
ward. From having examined in detail angular momentum
flux stream functions (not shown) with radius and latitude
consistent with equations (7)–(9), we observed that the Rey-
nolds stress contributions to such transport possessedmulti-
celled structures with radius at high latitudes in all the cases
except case AB. The single-cell behavior there for case AB

appears to enable more effective extraction of angular
momentum by Reynolds stresses from the high to the low
latitudes, thereby yielding a distinctive rotational slowing of
the high latitudes. Further, case AB possesses strong meri-
dional circulations at low latitudes but only feeble ones at
latitudes above 30�, unlike other solutions such as case C
(Figs. 8 and 9). This yields a weak meridional component
Fh, M (seeking to spin up the poles) to the latitudinal angu-
lar momentum flux, thereby allowing the equatorward
transport by the Reynolds stress component Fh, R to suc-
ceed in extracting angular momentum from the higher lati-
tudes. Such polar slowing also leads to case AB possessing
the greatest D� attained in our five simulations (Table 2).

We also considered the possibility that the slow pole
behavior in case AB may have baroclinic origins. This can
result from suitable correlations in velocity and thermal
structures yielding a latitudinal heat flux that may produce
substantial entropy variations at the higher latitudes,
thereby leading to greater baroclinic contributions in equa-
tion (11) that define the variation of mean zonal velocity.
Examination of Figure 12 at high latitudes does not reveal a
prominent baroclinic contribution, and this is consistent
with the bland variation of entropy for case AB (Fig. 14) at
latitudes above about 40�. We conclude that the origin of
the slow rotation rate in polar regions appears to be primar-
ily dynamical, being associated with the Reynolds stress
transports and not with baroclinicity that arises from latitu-
dinal heat transport serving to establish a sufficiently warm
pole. Although case AB provides a solution that resolves
issue 1, it is unique in achieving this among our five simula-
tions. It may be that in parameter space there only exists a
small basin of attraction for such behavior, although we
think it more likely that several solution states may coexist
for the same control parameters, one of which exhibits the
gradual rotational slowing at high latitudes and others hav-
ing most � variations confined to low and midlatitudes. We
plan to examine whether the slow pole characteristics of
case AB can be maintained at nearby sites in parameter
space if started from initial conditions corresponding to case
AB and plan to report on this in the future.

Fig. 13.—As in Fig. 12, but analyzing the role of baroclinicity in the more turbulent case C in maintaining the differential rotation. There are significant
departures from a thermal wind balance in thin regions near the top and bottom of the shell.
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Issue 2 concerns sustaining a strong differential rotation
with latitude as the convection becomes more complex. The
two paths that we have explored in parameter space to
achieve more complex and turbulent states yield relative
angular velocity contrasts D�=�0 in latitude that are com-
parable to values deduced from helioseismology, with both
our models and apparently the Sun possessing a contrast on
the order of 30%. Further, this is accomplished while impos-
ing an upper thermal boundary condition that ensures a uni-
form emerging heat flux with latitude, as suggested in Elliott
et al. (2000). As the solutions become turbulent path 1
involving a decreasing Prandtl number is somewhat more
effective in attaining large D� than path 2, which has the
Prandtl number fixed at 0.25 as both diffusivities are
decreased. This holds out hope that even more turbulent
solutions will act likewise.

We have shown that the strong D� results from the role
of the Reynolds stresses in redistributing the angular

momentum. This transport is established by correlations in
velocity components arising from convective structures that
are tilted toward the rotation axis and depart from the local
radial direction and away from the meridional plane. These
yield both vrv� and v�v� correlations necessary for the Rey-
nolds stress contributions to the radial and latitudinal angu-
lar momentum fluxes analyzed in Figure 11. The fast
downflow plumes have a dominant role in such Reynolds
stresses, much as seen in local studies (Brummell et al.
1998). Our simulations have attained a spatial resolution
adequate to begin to attain coherent structures amidst the
turbulence, which is believed to be a key in sustaining strong
Reynolds stresses at higher turbulence levels. This has the
consequence that all our spherical shells possess fast pro-
grade equatorial rotation relative to the reference frame.
There are some contributions toward maintaining the differ-
ential rotation from the latitudinal heat transport inherent
in our convection that serves to establish a warm pole (with

Fig. 14.—Temporal and longitudinal averages for cases AB and C of the specific entropy (upper panels) and temperature fluctuations (lower panels),
accompanied by latitudinal profiles at the base (dash-dotted line), at the middle (dashed line) and at the top (solid line) of the convective domain. The results
have been averaged over periods in turn of 275 and 175 days. The presence of a latitudinal variation of entropy is consistent with the baroclinic term (shown in
Figs. 12 and 13) and involves an equator to pole temperature contrast of at most 4–8K near the top where the mean temperature is about 105K.
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a contrast of a few kelvins) relative to the equator, with bar-
oclinicity and a partial thermal wind balance helping to
yield equatorial acceleration. The meridional circulations
generally work to oppose such tendencies by redistributing
angular momentum so as to try to spin up the poles. Our
simulations on paths 1 and 2 confirm that strong differential
rotation with fast equators has its primary origin in angular
momentum transport associated with the Reynolds stresses.
Such prominent transports serve to resolve issue 2. Our next
challenge is to satisfy issue 1 simultaneously with issue 2 in
the more turbulent solutions, which may also lead to �

being more nearly constant on radial lines at mid- to high
latitudes.

Although our results for � have made promising contacts
with helioseismic deductions about the state of solar differ-
ential rotation in the bulk of the convection zone, there are
also major issues that we have not yet tackled. We must
evaluate more advanced subgrid-scale terms in representing
the unresolved turbulence within such simulations, espe-
cially in the near-surface regions. Foremost are also ques-
tions of how does the presence of a region of penetration
below the convection zone influence the angular momentum
redistribution in the primary zone above and does the
tachocline of shear that is established near the interface with
the deeper radiative interior modify properties within the
convection zone itself? We are keen to also investigate

aspects of the rotational shear evident close to the solar sur-
face. This is just now becoming computationally feasible
and involves extending our computational domain upward
and beginning to resolve supergranular motions there, as
discussed in DeRosa & Toomre (2001) in preliminary stud-
ies with thin shells. We are still at early stages with our simu-
lations using ASH to study turbulent convection in
spherical shells, yet it is comforting that the mean differen-
tial rotation profiles realized in some of the simulations are
beginning to capture many of the dominant features for �
deduced from the helioseismic probing.
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