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Céline Guervilly∗,1, Philippe Cardin2, and Nathanaël Schaeffer2
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Convection is a fundamental physical process in the fluid cores of planets be-

cause it is the primary transport mechanism for heat and chemical species and the

primary energy source for planetary magnetic fields. Key properties of convection,

such as the characteristic flow velocity and lengthscale, are poorly quantified in

planetary cores due to their strong dependence on planetary rotation, buoyancy

driving and magnetic fields, which are all difficult to model under realistic con-

ditions. In the absence of strong magnetic fields, the core convective flows are

expected to be in a regime of rapidly-rotating turbulence,1 which remains largely

unexplored to date. Here we use a combination of non-magnetic numerical models

designed to explore this regime to show that the turbulent convective lengthscale

becomes independent of the viscosity and is entirely determined by the flow veloc-

ity and planetary rotation. The velocity decreases very rapidly at smaller scales, so

this turbulent scale is essentially a lower limit for the energy-carrying lengthscales

in the flow. For the first time, we are able to model realistically the dynamics of

small non-magnetic cores such as the Moon. Although larger planetary core condi-

tions remain presently out of reach, the independence of the results on the viscosity

allows a reliable extrapolation to these objects. For Earth’s core conditions, we find

that the turbulent scale in the absence of magnetic fields would be approximately

30 km, which is orders of magnitude larger than the 10-m viscous lengthscale. The

necessity to resolve the numerically inaccessible viscous scale could therefore be

relaxed in future geodynamo simulations pushing towards realistic conditions, at

least in weakly-magnetised regions.

The very low fluid viscosity in liquid cores implies that the convective flows are turbulent,
but this turbulence differs from both 3D turbulence due to the anisotropy imposed by the rapid
planetary rotation and 2D turbulence due to the presence of Rossby waves.2 Conditions in
planetary cores correspond to small Ekman numbers (Ek = ν/ΩR2 with viscosity ν, rotation
rate Ω and core radius R), large Reynolds numbers (Re = UR/ν with flow speed U), and
small Rossby numbers (Ro = U/ΩR = ReEk), with, for instance, Ek ≈ 10−15, Re ≈ 109 and
Ro ≈ 10−6 in the Earth’s core.3 Numerical models must employ a fluid viscosity that is orders
of magnitude larger than realistic values to keep the range of time and length scales involved
in the dynamics manageable, with typically Ek ≥ 10−7 and Re ≤ 104.4 Unfortunately this has
the undesirable effect that convection properties are still controlled by the viscosity.5,6 In
the viscous regime, convection takes the form of tall and narrow columns aligned with the
rotation axis with an azimuthal lengthscale, Lν , that depends on the viscosity as Ek1/3,7 and
so Lν ≈10 m for Earth-like parameter values. When nonlinear effects become important in the
rapidly-rotating turbulent regime of large Re and low Ro, the convective lengthscale is expected
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Figure 1: Flow in the 3D model. Meridional and equatorial cross-sections of a snapshot of
the axial vorticity in the 3D model for Ek = 10−8, Ra = 2× 1010, and Pr = 10−2. Streamlines
have been superimposed in the equatorial plane. In the colorbar, values of the axial vorticity
are normalised by the planetary vorticity 2Ω. The kinetic energy of the velocity projected on a
quasi-geostrophic state (〈us〉 , 〈uφ〉 , zβ 〈us〉) (where the angle brackets denote an axial average)
is within 0.2% of the total kinetic energy.

to grow above the viscous lengthscale, up to a scale Lt controlled by the flow velocity.8–10 The
actual value of this turbulent convective lengthscale is currently unknown for planetary cores.
The objective of this work is to provide an estimate of Lt in core conditions using an extensive
numerical exploration of the low viscosity regime. We use a combination of a state-of-the-art
3D model11 down to Ek = 10−8 supplemented by a simplified model of quasi-geostrophic (QG)
rotating convection12,13 down to Ek = 10−11. The simplified QG model takes advantage of
the Proudman-Taylor constraint14 by assuming that the axial vorticity is invariant along the
rotation axis. The QG approximation is well supported by the results of the 3D model shown in
Figure 1. The numerical codes solve the governing equations of nonlinear Boussinesq convection
driven by homogeneous internal heating in a full sphere geometry (see Methods). Magnetic fields
are not included.

For the low Ekman numbers studied here, convection is always in a turbulent state, even
near the nonlinear onset,11,15 and Re ≥ 103. The convection takes the form of vortical plumes
that are radially elongated on scales much shorter than the outer radius (Figure 2). At large
radius, the steepening of the boundary slope inhibits vortical plume convection.3 The dynam-
ics there mainly consists of Rossby waves, which appear as elongated vortices with a prograde
tilt16,17 (Figure 2e). Their radial velocities are relatively small so conduction dominates the
heat transport in the outer part of the equatorial plane.18 Hereafter we solely consider the dy-
namics of the inner convective region, which grows wider with increasing Rayleigh number (Ra,
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Figure 2: Effect of the Rossby number on the flow structure. Snapshots of the radial
velocity in a quarter of the equatorial plane during the statistically-steady phase for a) Ek =
10−8, Ra = 2.5 × 1010 (Ro = 6 × 10−5), b) Ek = 10−9, Ra = 2.7 × 1011 (Ro = 2 × 10−5), c)
Ek = 10−10, Ra = 6.3 × 1012 (Ro = 4 × 10−6) and d) Ek = 10−11, Ra = 5.25 × 1013 (Ro =
3× 10−7). Case a was performed with the 3D model and cases b-d with the QG model. Close-
ups are shown in e-g for the same parameters as in d; e shows the outer conduction-dominated
region where the dynamics is dominated by Rossby waves, and f-g the inner convective region.
Pr = 10−2 in all cases. In the colorbars, values of the radial velocity are normalised by the
viscous velocity scale.

3



100 101 102 103

m + 1

10−22

10−20

10−18

10−16

10−14

10−12

10−10

10−8

k
in

e
ti
c

e
n
e
rg

y

m−5

QG Ek = 10−8 Ra = 1.275 × 1010

QG Ek = 10−9 Ra = 2.70 × 1011

QG Ek = 10−9.5 Ra = 1.35 × 1012

QG Ek = 10−10 Ra = 6.30 × 1012

QG Ek = 10−10 Ra = 4.20 × 1012

QG Ek = 10−10.5 Ra = 2.25 × 1013

QG Ek = 10−11 Ra = 5.25 × 1013

3D Ek = 10−8 Ra = 2.5 × 1010

Figure 3: Distribution of the kinetic energy at different lengthscales. Power spectra
of the total kinetic energy (thin line) and radial kinetic energy (thick line) as a function of
the azimuthal wavenumber m at s = 0.5 for simulations with different Ekman and Rayleigh
numbers for Pr = 10−2 performed with the 3D and QG models. The kinetic energy is averaged
in time and normalised by ρ(ΩR)2/2. The lengthscale is inversely proportional to m.

which controls the buoyancy driving). The lengthscale of the convective flows decreases notably
with increasing radius (Figures 2f-g). We find that the convective lengthscale is controlled by
the Rossby number, rather than by any viscous effect. The flows shown in Figures 1 and 2
are snapshots taken once the system has reached a statistically steady state, and are entirely
unlike the linear viscous mode at the convection onset, which consists of drifting columns with
a narrow azimuthal lengthscale Lν .

7,19 The convective lengthscale increases with the buoyancy
driving as seen on the power spectra of the total and radial kinetic energies in Figure 3. The
peak of the radial kinetic energy moves to smaller azimuthal wavenumber m for increasing Ra,
as can be observed for the two different Rayleigh numbers shown at Ek = 10−10, and is located
at significantly smaller wavenumber (m = 133 and 106 for the smaller and larger Ra) than the
wavenumber of the marginal linear viscous mode at onset (m = 258). Remarkably, the spectra
at different Ek and Ra superpose well at wavenumbers larger than the peak, and follow a steep
slope m−5.20 There is therefore a well-defined characteristic convective lengthscale that carries
most of the radial kinetic energy, and below this scale, the velocity amplitude drops very rapidly.
This characteristic lengthscale is thus a limit below which only weak convective motions occur,
thereby drastically restricting viscous control and dissipation in the bulk. At wavenumbers
smaller than the peak, the velocity becomes anisotropic with a dominant azimuthal compo-
nent. The kinetic energy is transferred to larger scales, where the dynamics is dominated by
propagating Rossby waves, and viscous dissipation occurs in the boundary layers.

In the rapidly-rotating turbulent regime, the increase of the convective lengthscale with the
buoyancy driving is expected from scaling arguments,8–10 which assume that the production of
axial vorticity is governed by a triple inviscid balance between vortex stretching, advection and
buoyancy (the so-called Coriolis-Inertia-Archimedes balance). The scaling gives a convective

lengthscale that depends on the flow velocity as Lt ∼ (Ro/|β|)1/2, where β is a geometrical fac-
tor related to the boundary slope (see Methods). This lengthscale is consistent with the −5 slope
observed on the power spectra of the kinetic energy. Assuming that the transport in the fluid
bulk controls the heat transfer,21 the scaling uses a balance between the nonlinear advection of
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Figure 4: Scaling of the velocity and lengthscale. a) Rossby number Ro as a function of
the buoyancy parameter Bu and b) convective lengthscale L as a function of Ro in 3D (green
points), QG (blue), and hybrid (red) simulations. Marker colours correspond to Ek (values
given in the legend) and shapes to Pr (circles: Pr = 10−2; squares: Pr = 10−1). In b, L is
radially averaged between s ∈ [0.1, 0.6]; the vertical bars give the standard deviation in this
interval. The horizontal lines give the linear viscous lengthscale Lν at s = 0.5 for a given Ek

and Pr = 10−2. The insets show the data compensated by the theoretical scaling as a function
of a) Bu and b) Ro.

temperature and the transport of the mean temperature background to obtain Re ∼ RaEk/Pr ,
or simply Ro ∼ Bu with the viscosity-free buoyancy parameter Bu = RaEk2/Pr . The Prandtl
number, Pr , is the ratio of viscosity to thermal diffusivity and is expected to be 0.01 − 0.1 in
liquid metal cores. The theoretical scaling law is tested in Figure 4 against results obtained
with the 3D and QG models and published results obtained with a hybrid model that uses the
QG approximation coupled to the 3D temperature.18 The characteristic convective lengthscale
L corresponds to the peak of the radial kinetic energy spectra. Points obtained at different
Ek collapse onto a single curve, especially for Ek < 10−9, showing that the dependence of the
results on the viscosity becomes negligible when core conditions are approached. Importantly,
the good agreement obtained between the different numerical models supports the use of the
QG approximation for modelling rapidly-rotating convection. The data of the velocity and
lengthscale compensated by their respective theoretical scaling laws align on a plateau at small
Ek , and thus indicate that the agreement between the simulations and the theoretical scaling
improves progressively as Ek decreases. The lengthscales show little dependence on Pr ; for the
velocity scaling, the slope is unaffected by Pr but cases with larger Pr tend to have slightly
smaller prefactor. To avoid the “shingling” effect that occurs when using diffusion-free param-
eters,22 the scaling of the Reynolds number is shown in Extended Data Figure 1 and confirms
the overlap of the data for Ek ≤ 10−9 and the good agreement with the exponent predicted by
the theoretical scaling. While the lengthscale L corresponds to an azimuthal size in Figure 4,
we confirm that the radial lengthscale obtained from radial correlations is in good agreement
with this azimuthal scale in Extended Data Figure 2. The radial dependence of the lengthscale
observed in Figure 2 is also in agreement with the theoretical dependence on |β|−1/2 as shown
in the Extended Data Figure 3. Additional QG simulations performed with differential heating
in the presence of an inner core (see Methods) show that the scaling law L(Ro) of Figure 4 is
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valid for other heating modes (Extended Data Figure 4).
The smallest Ekman number computed with our simplified QG numerical model, Ek =

10−11, is approximately the value for the core of the Moon.23 Non-magnetic convection in
the lunar core is bracketed between the extinction of the dynamo, which occurs at Re ≈ 107

corresponding to a critical magnetic Reynolds number of 1024 and the cessation of nonlinear
convection, which occurs at Re ≈ 103.11,15 Between these two events, our results predict that
the turbulent lengthscale decreases as Ro1/2 ∼ Ra1/2 from 0.1R ≈ 10km to 0.001R ≈ 0.1km,
implying a large reduction of the heat transport efficiency (see Methods).

Whilst being non-magnetic, our study has interesting implications for the Earth’s core
dynamics and geodynamo modelling. Characteristic flow speeds at the core-mantle bound-
ary inferred from the geomagnetic secular variation have Ro ≈ 10−6,25 which corresponds to
Lt ≈ 0.01R ≈ 30km. This value is close to the magnetostrophic cross-over scale,26 a theoretical
scale below which magnetic forces become dynamically important and estimated to be 1-100km
in the Earth’s core. The geomagnetic field therefore likely affects core convection. In the pres-
ence of magnetic fields, the convective lengthscale is expected to increase,27,28 so the 30-km scale
will likely remain a lower limit for the energy-carrying lengthscales. In the most recent geody-
namo simulations,28–30 the magnetic field is heterogeneous with a strong dynamical influence in
some regions, but not in others. The convection is thus multi-scale, and the dynamics exhibits
a viscous dependence (Lν ∼ Ek1/3) in the weakly-magnetised regions. For more realistic turbu-
lent conditions, we propose that these regions would be in Coriolis-Inertia-Archimedes balance
instead of viscous balance. This dynamical shift opens a promising new route for more realistic
planetary core simulations because the large increase in the characteristic flow lengthscale from
Lν to Lt and the steepness of the kinetic energy spectra beyond Lt permit a relaxation of the
numerical resolution constraint in the bulk.
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Methods

We model Boussinesq convection driven by homogeneous internal heating in a full sphere geom-
etry. This problem is relevant for planetary cores without a solid inner core, and thus, for most
of the Earth’s history.31 The model does not include magnetic fields. The sphere rotates at the
rate Ω around the axis directed along ez. The acceleration due to gravity is radial and increases
linearly, g = −g0rer. The governing equations are written in dimensionless form, obtained by
scaling lengths with the outer radius R, times with R2/ν where ν is the fluid kinematic viscosity,
and temperature with νSR2/(6ρCpκ

2), where S is the internal volumetric heating, κ the thermal
diffusivity, ρ the density, and Cp the heat capacity at constant pressure. The dimensionless num-
bers are: the Ekman number, Ek = ν/(ΩR2), the Rayleigh number, Ra = αg0SR

6/(6ρCpνκ
2),

where α is the thermal expansion coefficient, and the Prandtl number, Pr = ν/κ. This study
focuses on Prandtl numbers smaller that unity, which are relevant for thermal convection of
liquid metal cores.32 The system of dimensionless equations is:

∂u

∂t
+ (u ·∇)u+

2

Ek
ez × u = −∇p+∇

2u+ RaΘr, (1)

∇ · u = 0, (2)

∂Θ

∂t
+ u · ∇Θ− 2

Pr
rur =

1

Pr
∇2Θ, (3)

where u is the velocity field, p the pressure, and Θ the temperature perturbation relative to the
static temperature Ts = (1−r2)/Pr . We use no-slip boundary conditions and fixed temperature
at the outer boundary.

3D numerical model

For the 3D simulations, we use the code XSHELLS,11 which solves Equations (1)-(3) using finite
differences in the radial direction and spherical harmonic expansion.33 The input parameters
and numerical resolutions used for the 3D simulations are given in Supplementary Information.
In the 3D simulations, the Prandtl number is fixed to Pr = 10−2 and the Ekman number is
varied between 10−6 and 10−8. The most computationally demanding simulations performed at
Ek = 10−8 were run with a numerical resolution of 2016 radial grid points and truncation degree
L = 351 and order M = 319 for the spherical harmonics. Hyperviscosity was used in all the 3D
simulations, with viscosity depending on spherical harmonic degree ℓ, but only for ℓ > 0.9L.11

We use ν(ℓ) = ν0 for ℓ < ℓc = 0.9L and ν(ℓ) = ν0q
ℓ−ℓc for ℓ ≥ ℓc. We set q = (νmax/ν0)

1/(L−ℓc)

and νmax ≤ 100.

Quasi-geostrophic numerical model

For simulations at smaller Ekman numbers, we assume that the rotational constraint is such that
the variations of the velocity along the axial direction are small compared with the variations
along the orthogonal directions. We use a quasi-geostrophic (QG) approximation for rapidly-
rotating spherical convection developed from the Busse34 annulus model1235 and widely used in
the context of planetary core convection.36–40 The dynamics are assumed to be dominated by
the geostrophic balance, i.e. the Coriolis force balances the pressure gradient at leading order.
The leading-order velocity u⊥ is invariant along z and u⊥ = (us, uφ, 0) in cylindrical polar
coordinates. Quasi-geostrophic convection is driven by the cylindrical component of gravity,
−g0s. By taking the axial average of the z-component of the curl of the Navier-Stokes equation,
we obtain the equation for the leading-order axial vorticity, ζ,

∂ζ

∂t
+ (u⊥ ·∇⊥) ζ −

(

2

Ek
+ ζ

)〈

∂uz
∂z

〉

= ∇2
⊥
ζ − Ra

〈

∂Θ

∂φ

〉

, (4)
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where ∇⊥f ≡ (∂sf, ∂φf/s, 0), ∇2
⊥
f ≡ ∂2sf + s−1∂sf + s−2∂2φf , and the angle brackets denote

an axial average between ±H with H =
√
1− s2 the height of the spherical boundary from the

equatorial plane.
The velocity is described by a streamfunction ψ that models the non-axisymmetric (i.e.

φ-dependent) components with the addition of an axisymmetric azimuthal flow, uφ, where the
overbar denotes an azimuthal average,

u⊥ =
1

H
∇× (Hψez) + uφeφ. (5)

This choice of the streamfunction accounts for mass conservation at the outer boundary.41 We
assume that the axial velocity uz is linear in z and has two contributions: the main contribution
comes from mass conservation at the outer boundary and is proportional to β = H ′/H; the
second contribution is due to Ekman pumping, which is produced by the viscous boundary
layer and scales as Ek1/2. The Ekman pumping is parametrised by the formula obtained by
asymptotic methods in the limit of small Ek for a linear Ekman layer.42

The streamfunction ψ only describes the non-axisymmetric motions, so the axisymmetric az-
imuthal velocity, uφ, is obtained by taking the azimuthal and axial averages of the φ-component
of the Navier-Stokes equation to give

∂uφ
∂t

+ us
∂uφ
∂s

+
usuφ
s

= ∇2uφ − uφ
s2

− 1

Ek1/2H3/2
uφ, (6)

where the last term on the right-hand side corresponds to the Coriolis term simplified using
mass conservation.36

The equation for the temperature perturbation Θ in the quasi-geostrophic model is obtained
by taking the axial average of the temperature equation and assuming that Θ is invariant along
z to obtain

∂Θ

∂t
+ u ·∇⊥Θ− 4

3Pr
sus =

1

Pr
∇2

⊥
Θ. (7)

Note that here we use the gradient of the z-averaged static temperature profile, 〈Ts〉′ = −4s/(3Pr),
rather than the gradient of the z-invariant static temperature profile, (T 2d

s )′ = −3s/Pr , to allow
for a direct comparison of the Rayleigh numbers used in the different models. The assumption
that Θ is invariant along z is not rigorously justified and is used for numerical convenience
because it permits us to treat the numerical problem in two dimensions, thereby considerably
reducing the computational load. The evolution equation for the streamfunction, axisymmetric
velocity and temperature are solved on a 2D grid in the equatorial plane. The QG code uses
a pseudo-spectral code with a Fourier decomposition in the azimuthal direction and a second-
order finite-difference scheme in radius with irregular spacing. The input parameters and the
numerical resolutions used for the QG simulations are given in Supplementary Information.
The Prandtl number is varied between 10−1 and 10−2 and the Ekman number is varied between
10−6 and 10−11, allowing an overlap with the 3D simulations over 2 decades in Ek . The most
computationally demanding simulations performed at Ek = 10−11 were run with a numerical
resolution of 4000 radial grid points and 2048 Fourier modes in azimuth.

The influence of the assumption of z-invariance of Θ on the QG results is tested by com-
paring the QG results with published results obtained with a hybrid QG-3D model18 at Ek ∈
[10−8, 10−7]. In the hybrid model, the temperature is solved in 3D and coupled to the QG
implementation for the velocity. Figure 4 shows good agreement obtained between the QG and
hybrid results for overlapping parameters, demonstrating that, while this assumption is not
mathematically justified, it does not significantly influence QG convection.

Quasi-geostrophic model with differential heating

To test the dependence of our results on the heating mode and the presence of an inner core, we
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performed additional QG simulations using differential heating with fixed temperature boundary
conditions and an inner core of radius Ri = 0.35. The temperature is scaled with Pr∆T . The
equation for the temperature perturbation is solved in 2D with a static temperature gradient
(T 2d

s )′ = γ/(Pr ln(Ri)s), where the constant γ = 0.445 is used to re-scale the z-invariant
temperature profile so that it closely corresponds to the z-averaged static temperature profile.39

This re-scaling allows to compare directly the Rayleigh numbers used in QG simulations with
the ones used in 3D models. The Prandtl number is varied between 1 and 10−2 and the Ekman
number is varied between 10−8 and 10−10. The input parameters and the numerical resolutions
used for the QG simulations with differential heating are given in Supplementary Information.
Extended Data Figure 4 shows that the azimuthal convective lengthscale as a function of the
Rossby number for these additional simulations closely follows the scaling law derived for the
QG simulations with internal heating and without inner core.

Definition of the output parameters

The simulations are started from either a small temperature perturbation or the snapshot of a
previous simulation performed at a different Rayleigh number in order to minimise the transient
phase before saturation. All simulations are run to saturation as shown in Extended Data
Figure 5, where we plot the time series of the kinetic energy density for one representative QG
case at Ek = 10−11 and one representative 3D case at Ek = 10−8. For consistency, the kinetic
energy density is defined in both cases as

K =
1

2V

∫

(

u2s + u2φ
)

dV, (8)

where V is the volume of the sphere, and the kinetic energy density of the axisymmetric velocity
as

K =
1

2V

∫

uφ
2dV. (9)

A number of output parameters are given in Supplementary Information. The characteristic
velocity U used to calculate the Rossby and Reynolds numbers is based on the r.m.s. radial
velocity averaged in volume and time over at least 10 convective turnover timescales.

The convective lengthscale is calculated as L(s) = πs/mp(s), where mp is the wavenumber
at the peak of the radial kinetic energy spectrum. The peak is determined by smoothing the
time-averaged radial kinetic energy spectra with a polynomial of degree 14.

The radial lengthscale of the convective flow Lr(s) is calculated using the auto-correlation
function f of the radial component of the velocity field. For a given radius s, we calculate

f(ds) = us(s, φ, t)us(s+ ds, φ, t), (10)

where the overbar denotes an azimuthal average. Snapshots covering at least 2 dynamical
timescales are used to compute the temporal average. Lr(s) is the full width at half maximum
of f .

Inviscid scaling theory

The theoretical scaling of the velocity and lengthscale3,4, 8–10 assumes a three-term balance in
the axial vorticity equation between the vorticity advection, vortex stretching and vorticity
generation by buoyancy:

Re2

L2
t

∼ |β|Re
Ek

∼ RaT
Lt

, (11)

where T denotes a typical temperature perturbation and we assumed that the typical axial
vorticity is Re/Lt. The turbulent lengthscale then scales as Lt ∼ (Ro/|β|)1/2. Assuming that,
in rapidly-rotating convection, the heat transfer is controlled by the transport in the bulk of
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the fluid rather than the thermal boundary layers,21 gives a balance between the nonlinear
advection of heat and the transport of the mean temperature background in the temperature
equation:3

ReT
Lt

∼ sRe

Pr
. (12)

Combining (11) and (12) leads to Re ∼ RaEk/Pr , where we neglected the geometric term s/|β|.
The efficiency of the heat transport can be measured by the ratio q/qs with the convective heat
flux q = PrT Re and the static heat flux qs ∼ 1/Pr in dimensionless form. The theoretical
scalings of the velocity and temperature perturbation imply that q/qs ∼ L3

t (Pr/Ek).
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Data availability

Source data for figures 3 and 4 are provided with the paper. The synthetic data generated
during this study are included in the Supplementary Information file. Any additional data that
support the findings of this study are available from the corresponding author on reasonable
request.
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Code availability

The 3D numerical code XSHELLS is freely available at https://bitbucket.org/nschaeff/

xshells and distributed under the open source CeCILL License. The QG numerical code is
available from the corresponding author on request.
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Extended Data Figure 1: Scaling of the Reynolds number

Figure 1: Reynolds number as a function of RaEk/Pr in simulations performed with the 3D
model (green points) for Ek ∈ [10−8, 10−6], the QG model (blue) for Ek ∈ [10−11, 10−6], and
the hybrid model (red) for Ek ∈ [10−8, 10−7]. Marker colours correspond to Ekman numbers
(values given in the legend) and marker shapes to Prandtl numbers (circles: Pr = 10−2 and
squares: Pr = 10−1). The inset shows the data compensated by the theoretical scaling as a
function of RaEk/Pr .
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Extended Data Figure 2: Comparison of the radial lengthscale

with the azimuthal lengthscale

Figure 2: Radial scale of the convective flows Lr(s) as a function of the azimuthal lengthscale
L(s) obtained with the QG model at different radii. Marker colours correspond to Ekman
numbers (with Pr = 10−2) and marker shapes to different radii. The radial scale is calculated
from auto-correlation functions of the radial velocity. The convective lengthscale corresponds
to an azimuthal scale calculated from the peak of the power spectra of the radial kinetic energy
at the radius s.
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Extended Data Figure 3: Variation of the convective lengthscale

with radius

Figure 3: Convective lengthscale L(s) as a function of Ro(s)/|β| obtained with the QG model
at different radii. Marker colours correspond to Ekman numbers (with Pr = 10−1 or 10−2) and
marker shapes to different radii. The inset shows the lengthscale compensated by the theoretical
scaling as function of Ro(s)/|β|. The convective lengthscale corresponds to an azimuthal scale
calculated from the peak of the power spectra of the radial kinetic energy at the radius s.
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Extended Data Figure 4: Effect of the heating mode on the con-

vective lengthscale

Figure 4: Convective lengthscale L as a function of Ro obtained with the QG model for internal
heating (IH, same points as in Figure 4) and differential heating (DH) with an inner core of
radius 0.35. The Ekman and Prandtl numbers are given in the legend. The convective scale is
averaged in radius between s = 0.1 and 0.6 and the vertical bars give the standard deviation in
this interval. The insets show the data compensated by the theoretical scaling as a function of
Ro.
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Extended Data Figure 5: Time series of the kinetic energy den-

sity for two representative simulations

Figure 5: Time series of the kinetic energy density K and the kinetic energy density of the
axisymmetric flow K for a) Ek = 10−11, Pr = 0.01 and Ra = 3.75 × 1013 (QG model) and b)
Ek = 10−8, Pr = 0.01 and Ra = 2 × 1010 (3D model). The time is given in units of a viscous
timescale.
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Supplementary Information

Ek Pr Ra Re L Lr(s = 0.5) (Ns,M)

10−6 10−2 6.000× 107 1352± 171 0.213± 0.019 0.226± 0.102 (600, 96)
10−6 10−2 7.500× 107 1778± 186 0.215± 0.025 0.235± 0.076 (600, 96)
10−6 10−2 1.050× 108 2407± 215 0.230± 0.025 0.219± 0.084 (600, 96)
10−6 10−2 1.650× 108 3239± 276 0.240± 0.029 0.244± 0.101 (600, 128)
10−6 10−2 2.850× 108 4406± 334 0.254± 0.032 0.231± 0.082 (600, 128)

10−7 10−2 8.100× 108 2588± 363 0.0852± 0.0213 0.121± 0.039 (1000, 128)
10−7 10−2 9.000× 108 3015± 208 0.0875± 0.0231 0.125± 0.035 (1000, 128)
10−7 10−2 1.050× 109 3569± 260 0.0915± 0.0259 0.126± 0.037 (1000, 128)
10−7 10−2 1.170× 109 4204± 244 0.111± 0.015 0.127± 0.040 (1000, 128)
10−7 10−2 1.440× 109 4989± 361 0.118± 0.013 0.133± 0.049 (1000, 256)
10−7 10−2 2.070× 109 6588± 274 0.127± 0.015 0.150± 0.086 (1200, 384)
10−7 10−2 2.490× 109 7411± 424 0.132± 0.012 0.168± 0.082 (1200, 384)
10−7 10−2 3.000× 109 8659± 559 0.145± 0.013 0.188± 0.087 (1200, 384)
10−7 10−2 3.600× 109 9214± 456 0.147± 0.018 0.195± 0.073 (1200, 384)

10−8 10−2 1.050× 1010 4678± 223 0.0457± 0.0043 0.0499± 0.0083 (1600, 150)
10−8 10−2 1.275× 1010 6359± 321 0.0498± 0.0051 0.0557± 0.0100 (1600, 150)
10−8 10−2 1.500× 1010 7826± 390 0.0524± 0.0055 0.0600± 0.0097 (1600, 256)
10−8 10−2 1.950× 1010 11030± 454 0.0592± 0.0091 0.0649± 0.0070 (1600, 384)
10−8 10−2 2.250× 1010 12561± 352 0.0634± 0.0117 0.0664± 0.0083 (1600, 384)

10−8 10−1 7.500× 1010 2279± 53 0.0307± 0.0048 (2000, 400)
10−8 10−1 1.200× 1011 3709± 68 0.0375± 0.0050 (2000, 400)
10−8 10−1 3.000× 1011 8485± 187 0.0551± 0.0081 (2000, 500)
10−8 10−1 4.500× 1011 12953± 287 0.0684± 0.0134 (2000, 700)
10−8 10−1 7.500× 1011 21623± 421 0.0838± 0.0253 (2000, 1024)

10−9 10−2 1.500× 1011 7458± 271 0.0235± 0.0039 0.0210± 0.0031 (2000, 384)
10−9 10−2 1.875× 1011 10026± 238 0.0262± 0.0042 0.0234± 0.0031 (2000, 384)
10−9 10−2 2.250× 1011 12346± 511 0.0281± 0.0039 0.0253± 0.0046 (2000, 384)
10−9 10−2 2.700× 1011 15300± 428 0.0306± 0.0043 0.0278± 0.0031 (2000, 384)
10−9 10−2 4.500× 1011 32274± 487 0.0401± 0.0066 0.0381± 0.0044 (2000, 500)
10−9 10−2 9.000× 1011 56251± 610 0.0499± 0.0123 0.0451± 0.0045 (2000, 500)
10−9 10−2 1.200× 1012 74423± 2222 0.0567± 0.0110 0.0501± 0.0065 (2000, 512)

Table 1: List of the input and output parameters for the simulations performed with the QG
model. The azimuthal lengthscale L is averaged in radius between s = 0.1 and 0.6. The radial
lengthscale Lr is given at radius s = 0.5. The last column gives the numerical resolution with
Ns the number of grid points in radius andM the truncation order of the Fourier decomposition
in azimuth.
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Ek Pr Ra Re L Lr(s = 0.5) (Ns,M)

10−9.5 10−2 4.575× 1011 6716± 165 0.0147± 0.0024 0.0116± 0.0011 (2000, 512)
10−9.5 10−2 4.725× 1011 7259± 205 0.0149± 0.0025 0.0122± 0.0012 (2000, 512)
10−9.5 10−2 4.950× 1011 7949± 204 0.0153± 0.0026 0.0130± 0.0011 (2000, 512)
10−9.5 10−2 5.445× 1011 9220± 205 0.0161± 0.0029 0.0139± 0.0013 (2000, 512)
10−9.5 10−2 6.000× 1011 10379± 221 0.0168± 0.0030 0.0146± 0.0017 (2000, 512)
10−9.5 10−2 6.600× 1011 11621± 265 0.0177± 0.0033 0.0150± 0.0013 (2000, 600)
10−9.5 10−2 7.350× 1011 13016± 235 0.0187± 0.0036 0.0159± 0.0016 (2000, 600)
10−9.5 10−2 8.100× 1011 14528± 288 0.0195± 0.0037 0.0166± 0.0015 (2000, 600)
10−9.5 10−2 9.000× 1011 16382± 285 0.0204± 0.0036 0.0173± 0.0020 (2000, 650)
10−9.5 10−2 9.900× 1011 18144± 341 0.0217± 0.0045 0.0178± 0.0015 (2000, 650)
10−9.5 10−2 1.350× 1012 26383± 745 0.0248± 0.0044 0.0207± 0.0028 (2000, 650)

10−10 10−2 1.725× 1012 8481± 129 0.00992± 0.0018 0.00771± 0.00062 (1600, 512)
10−10 10−2 1.800× 1012 9592± 152 0.0102± 0.0020 0.00841± 0.00075 (1600, 512)
10−10 10−2 1.950× 1012 11156± 168 0.0107± 0.0021 0.00906± 0.00075 (1600, 512)
10−10 10−2 2.100× 1012 12421± 136 0.0112± 0.0023 0.00944± 0.00072 (1600, 512)
10−10 10−2 2.400× 1012 14459± 182 0.0119± 0.0024 0.00999± 0.00097 (1600, 512)
10−10 10−2 2.700× 1012 15906± 173 0.0126± 0.0027 0.0105± 0.0008 (2000, 512)
10−10 10−2 3.150× 1012 18587± 214 0.0134± 0.0029 0.0110± 0.0013 (2000, 512)
10−10 10−2 3.900× 1012 22573± 279 0.0149± 0.0033 0.0121± 0.0011 (3000, 700)
10−10 10−2 4.200× 1012 24263± 324 0.0153± 0.0033 0.0124± 0.0015 (3000, 700)
10−10 10−2 4.500× 1012 26152± 289 0.0158± 0.0033 0.0126± 0.0014 (3000, 700)
10−10 10−2 5.250× 1012 31018± 316 0.0173± 0.0040 0.0136± 0.0012 (3000, 900)
10−10 10−2 5.700× 1012 34032± 534 0.0178± 0.0038 0.0137± 0.0011 (3000, 900)
10−10 10−2 6.300× 1012 38381± 672 0.0190± 0.0045 0.0146± 0.0016 (3000, 1024)

10−10.5 10−2 7.200× 1012 12779± 84 0.00709± 0.00161 0.00596± 0.00043 (3500, 1024)
10−10.5 10−2 7.500× 1012 13723± 113 0.00726± 0.00167 0.00621± 0.00077 (3500, 1024)
10−10.5 10−2 9.000× 1012 17621± 142 0.00810± 0.00192 0.00671± 0.00044 (3500, 1024)
10−10.5 10−2 1.050× 1013 20540± 145 0.00871± 0.00211 0.00717± 0.00045 (3500, 1024)
10−10.5 10−2 1.200× 1013 23086± 163 0.00924± 0.00228 0.00740± 0.00050 (3500, 1024)
10−10.5 10−2 1.350× 1013 25577± 202 0.00976± 0.00240 0.00779± 0.00055 (3500, 1024)
10−10.5 10−2 1.500× 1013 28174± 256 0.0103± 0.0025 0.00795± 0.00057 (3500, 1024)
10−10.5 10−2 2.250× 1013 41907± 290 0.0122± 0.0029 0.00945± 0.00094 (3500, 1024)

10−11 10−2 2.700× 1013 15800± 83 0.00462± 0.00112 0.00403± 0.00022 (2400, 950)
10−11 10−2 2.850× 1013 17897± 91 0.00482± 0.00120 0.00427± 0.00018 (2400, 1024)
10−11 10−2 3.300× 1013 21754± 99 0.00536± 0.00137 0.00455± 0.00027 (4000, 1100)
10−11 10−2 3.750× 1013 25243± 127 0.00579± 0.00149 0.00485± 0.00016 (4000, 1536)
10−11 10−2 4.200× 1013 28140± 108 0.00622± 0.00166 0.00496± 0.00026 (4000, 2048)
10−11 10−2 4.500× 1013 29846± 85 0.00639± 0.00168 0.00514± 0.00019 (4000, 2048)
10−11 10−2 5.250× 1013 33657± 211 0.00682± 0.00189 0.00537± 0.00025 (4000, 2048)

Table 1: Continued.
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Ek Pr Ra Re L (Nr, L,M)

10−6 10−2 6.02× 107 1160± 148 0.268± 0.029 (560, 150, 127)
10−6 10−2 1.00× 108 2050± 139 0.315± 0.037 (560, 150, 127)
10−6 10−2 2.00× 108 3370± 177 0.376± 0.048 (560, 150, 127)

10−7 10−2 7.00× 108 1470± 201 0.0943± 0.0136 (1152, 199, 159)
10−7 10−2 1.10× 109 3340± 190 0.115± 0.0089 (1152, 199, 159)
10−7 10−2 1.25× 109 3800± 213 0.119± 0.0079 (1152, 199, 159)

3× 10−8 10−2 3.00× 109 2897± 150 0.0648± 0.0035 (1568, 277, 255)
3× 10−8 10−2 4.00× 109 3967± 85 0.0719± 0.0036 (1568, 277, 255)
3× 10−8 10−2 5.10× 109 4600± 96 0.0754± 0.0051 (1568, 277, 255)

10−8 10−2 1.50× 1010 4780± 75 0.0492± 0.0056 (2016, 351, 319)
10−8 10−2 2.00× 1010 5550± 70 0.0525± 0.0061 (2016, 351, 319)
10−8 10−2 2.50× 1010 6100± 82 0.0560± 0.0079 (2016, 351, 319)

Table 2: List of the input and output parameters for the simulations performed with the 3D
model. The azimuthal lengthscale L is averaged in radius between s = 0.1 and 0.6. The last
column gives the numerical resolution with Nr the number of grid points in radius, L and M
the truncation degree and order of the spherical harmonics.

21



Ek Pr Ra Re L (Ns,M)

10−8 1 1.780× 1011 2864± 31 0.0346± 0.0079 (4000, 600)
10−8 1 2.670× 1011 4979± 76 0.0452± 0.0118 (4000, 600)
10−8 1 3.560× 1011 7825± 244 0.0540± 0.0147 (4000, 800)
10−8 1 4.450× 1011 9151± 365 0.0573± 0.0188 (4000, 800)

10−8 10−2 1.780× 109 5372± 149 0.0467± 0.0100 (2000, 200)
10−8 10−2 3.560× 109 13161± 423 0.0629± 0.0151 (2000, 300)
10−8 10−2 6.675× 109 23267± 592 0.0843± 0.0286 (2000, 300)
10−8 10−2 1.113× 1010 36404± 620 0.0939± 0.0288 (2500, 384)

10−9 10−2 1.780× 1010 3967± 231 0.0194± 0.0016 (2000, 384)
10−9 10−2 2.225× 1010 7726± 129 0.0221± 0.0034 (2000, 384)
10−9 10−2 3.115× 1010 12884± 180 0.0268± 0.0047 (2000, 384)
10−9 10−2 4.005× 1010 18033± 188 0.0293± 0.0070 (2000, 384)

10−10 10−2 2.670× 1011 7998± 53 0.0098± 0.0003 (3000, 700)
10−10 10−2 3.115× 1011 10210± 95 0.0106± 0.0005 (3000, 700)
10−10 10−2 4.450× 1011 16947± 112 0.0126± 0.0019 (3000, 700)
10−10 10−2 6.675× 1011 28376± 165 0.0150± 0.0029 (3000, 700)

Table 3: List of the input and output parameters for the simulations performed with the QG
model with differential heating and an inner core of radius Ri = 0.35. The azimuthal lengthscale
L is averaged in radius between s = 0.35 and 0.6. The last column gives the numerical reso-
lution with Ns the number of grid points in radius and M the truncation order of the Fourier
decomposition in azimuth.
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