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ABSTRACT

We study the effect of an imposed vertical magnetic field on the turbulent mass diffusion
properties of magnetorotational turbulence in protoplanetary discs. It is well-known that the
effective viscosity generated by the turbulence depends strongly on the magnitude of such an
external field. In this Letter we show that the turbulent diffusion of the flow also changes, but
that the diffusion coefficient does not rise with increasing vertical field as fast as the viscosity
does. The vertical Schmidt number, i.e. the ratio between viscosity and vertical diffusion, can
be close to 20 for high field magnitudes, whereas the radial Schmidt number is increased
from below unity to around 3.5. Our results may have consequences for the interpretation of
observations of dust in protoplanetary discs and for chemical evolution modelling of these
discs.

Key words: accretion, accretion discs – diffusion – MHD – turbulence – planetary systems:
formation – planetary systems: protoplanetary discs.

1 I N T RO D U C T I O N

Planets form out of micrometre-sized dust grains that are embedded
in the gas in protoplanetary discs [see Dominik et al. (2006) for a
recent review]. The observed infrared radiation from protoplane-
tary discs comes primarily from micron-sized grains, although ob-
servations at longer wavelengths show that some discs have large
populations of grains with sizes up to millimetres and centimetres
(e.g. Rodmann et al. 2006). Turbulent motions in the gas play a
big role in the dynamics of chemical species and solids, at least
as long as the solids are smaller than a few tens of metres. Thus
an understanding of how dust grains and chemical species move
under the influence of turbulence is vital for our understanding
of the physical processes that take place in protoplanetary discs
and the observational consequences (Ilgner et al. 2004; Ilgner &
Nelson 2006; Willacy et al. 2006; Dullemond, Apai & Walch 2006;
Semenov, Wiebe & Henning 2006).

Turbulence has a number of effects on the embedded dust grains.
Larger grains (rocks and boulders) can be trapped in the turbulent
flow due to their marginal coupling to the gas (Barge & Sommeria
1995), whereas smaller grains feel the effect of the turbulence as
a combination of diffusion and simple advection. Any bulk motion
of the gas, e.g. turbulent motion with a turnover time that is longer
than the time-scale that is considered or even a radial accretion
flow, leads to an advective transport of the dust grains rather than
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diffusion. The turbulent transport acts as diffusion only when the
considered time-scale is longer than the eddy turnover time. The
turbulent diffusion coefficient of the grains, D t = δc2

s �−1
0 , is of-

ten assumed to be equal to the turbulent viscosity of the gas flow,
ν t = αc2

s �−1
0 . Here a non-dimensionalization with sound speed cs

and Keplerian frequency �0 is used (Shakura & Sunyaev 1973).
The Schmidt number, a measure of the relative strength of turbu-
lent viscosity and turbulent diffusion, is defined as the ratio Sc =
ν t/D t = α/δ. Several recent works have measured the turbulent
diffusion coefficient directly from numerical simulations of magne-
torotational turbulence (Balbus & Hawley 1991). The simulations by
Johansen & Klahr (2005, hereafter JK05) yielded a Schmidt num-
ber that is around unity for radial diffusion, whereas Carballido,
Stone & Pringle (2005, hereafter CSP05) found a value as high as
10. The vertical Schmidt number, measured by JK05, Turner et al.
(2006) and Fromang & Papaloizou (2006), gives more consistently
a number between 1 and 3. Here it is worthy of note that Turner
et al. (2006) consider stratified discs, and Fromang & Papaloizou
(2006) even include the effect of a magnetically dead zone without
turbulence around the mid-plane (Gammie 1996; Fleming & Stone
2003).

This Letter addresses the discrepancy between the diffusion prop-
erties of turbulence in protoplanetary discs reported in the literature.
We show that a vertical imposed magnetic field affects the diffusion
coefficient strongly. It is known that a net vertical field component
leads to turbulence with a stronger angular momentum transport
(Hawley, Gammie & Balbus 1995). We perform computer simu-
lations of magnetorotational turbulence for various values of the
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vertical field and find that turbulent diffusion does not increase as
much as the viscosity increases. Thus the ratio between viscous
stress and diffusivity, i.e. the Schmidt number, also increases with
the magnitude of the external field. As a result we are able to give
a possible explanation for the discrepancy in the radial Schmidt
numbers found in the literature.

2 S O U R C E S O F A N E X T E R NA L M AG N E T I C

F I E L D

The properties of any external magnetic field threading protoplan-
etary discs are not well-known. Close to the central object there is
an interaction with the possibly dipolar or maybe quadrupolar mag-
netic field of the young stellar object. Also the occurrence of jet
phenomena indicates that at least for the originating zone of the jet,
e.g. a few protostar radii, there should be a large-scale vertical mag-
netic field (e.g. Fendt & Elstner 1999; Vlemmings, Diamond & Imai
2006). However, at larger orbital distances relevant for planet for-
mation, it is not obvious what the global field configuration should
look like.

To get some physical insight into the role of an external magnetic
field in the dynamics of protoplanetary discs, we do here some rough
estimations for two cases, either that the field originates in the central
object, or that it comes from the molecular cloud core out of which
the disc formed.

2.1 Protostar

The dipolar field of the central protostar dominates the gas pressure
of the disc until a certain inner disc radius Rin. This is typically a
few times the protostellar radius (Camenzind 1990; Königl 1991;
Shu et al. 1994). Beyond Rin the interaction between the dipole
field and the accretion disc is strongly unstable and leads to an
opening up of the protostellar dipole field lines (Miller & Stone
1997; Fendt & Elstner 2000; Küker, Henning & Rüdiger 2003).
Even if the protostar could retain its dipolar field at larger orbital
radii, the magnetic pressure exerted by the field lines would fall so
quickly with orbital radius [B2

z (r ) ∝ r−6] that it would be completely
unimportant at several au from the protostar where the gas planets
are believed to form.

2.2 Molecular cloud

In molecular cloud cores the magnetic field, Bcloud, can be as large as
∼100 μG (Bourke et al. 2001). The gas pressure in the disc can be
written as P = c2

s ρ, where cs is the sound speed and ρ is the gas den-
sity. The mid-plane density of an exponentially stratified disc with
scaleheight H depends on the column density � as ρ = �/(

√
2πH ).

The scaleheight to radius ratio H/r, which also corresponds to the
ratio of local sound speed to Keplerian speed vK, can be used to
rewrite the gas pressure at the mid-plane of the disc as

P =
(

H
r

)2

v2
K

�(r )√
2π(H/r )r

= H
r

G M�√
2π

�(r )

r 2
. (1)

The plasma beta of the external magnetic field is defined as the ratio
between gas pressure and magnetic pressure β = P/P mag. One can
write the following scaling for the plasma beta β cloud due to the
magnetic field from the molecular cloud:

βcloud = 5.9 × 107

(
H/r
0.1

)(
M�

M�

)(
Bcloud

μG

)−2

×
(

�

1 g cm−2

)(
r

100 au

)−2

.
(2)

Here β cloud has a falling trend with r because the low gas density
in the outer part of the disc makes the magnetic pressure more
important there. For a sufficiently strong cloud field, the plasma
beta could be relatively low at a disc radius of several hundred
astronomical units.

3 S I M U L AT I O N S

We simulate a protoplanetary disc in the shearing sheet approxi-
mation (e.g. Goldreich & Tremaine 1978; Brandenburg et al. 1995;
Hawley et al. 1995). Here a local coordinate frame corotating with
the disc with the Keplerian rotation frequency �0 at a distance r0

from the central source of gravity is considered. The coordinate
system is oriented so that x points radially away from the cen-
tral object, y points in the azimuthal direction parallel to the the
Keplerian flow, and z points normal to the disc along the Keplerian
rotation vector Ω0. Numerical calculations are performed using the
Pencil Code [a finite difference code that uses sixth-order symmet-
ric space derivatives and a third-order time-stepping scheme – see
Brandenburg (2003)].

3.1 Gas

Considering the velocity field u relative to the Keplerian flow
u(0)

y = −(3/2) �0 x , the equation of motion of the gas is

∂u

∂t
+ (u · ∇)u + u(0)

y
∂u

∂y
= f (u) − c2

s ∇ ln ρ

+ 1

ρ
J × (B + B0 ẑ) + f ν .

(3)

The left-hand side of equation (3) contains terms both for the ad-
vection by the velocity relative to the Keplerian flow and for the
advection by the Keplerian flow itself. The terms on the right-hand
side are the modified Coriolis force,

f (u) =
(

2�0uy

− 1
2 �0ux

0

)
, (4)

which takes into account that the Keplerian velocity profile is ad-
vected with any radial motion, the force due to the isothermal pres-
sure gradient with a constant sound speed cs, the Lorentz force (in-
cluding the contribution from an imposed vertical field of strength
B0) and the viscous force f ν that is used to stabilize the numer-
ical scheme. The viscosity term is a combination of sixth-order
hyperviscosity and a localized shock capturing viscosity. The use of
hyperviscosity, hyperdiffusion and hyperresistivity is explained in
JK05. For the shock viscosity, where extra bulk viscosity is added
in regions of flow convergence, we refer to Haugen, Brandenburg
& Mee (2004) for a detailed description.

The evolution of the mass density is solved for in the continuity
equation

∂ρ

∂t
+ u · ∇ρ + u(0)

y
∂ρ

∂y
= −ρ∇ · u + fD, (5)

where f D is a combination of sixth-order hyperdiffusion and
shock diffusion. The magnetic field evolves by the induction equa-
tion which we write in terms of the magnetic vector potential A,

∂A

∂t
+ u(0)

y
∂A

∂y
= 3

2
�0 Ay x̂ + u × (B + B0 ẑ) + f η. (6)

Again we use sixth-order hyperresistivity and shock resistivity,
through the function f η, in regions of strong flow convergence.
The value of B0 sets the strength of an external vertical magnetic
field.
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Table 1. Measured turbulent viscosity and diffusion coefficients.

Run Lx × Ly × Lz B0 β α Max May Maz δx Scx δ z Scz

A 1.32 × 1.32 × 1.32 0.00 ∞ 0.0028 ± 0.0004 0.053 0.053 0.041 0.0031 0.90 0.0016 1.75
B − 0.01 20000 0.0078 ± 0.0015 0.079 0.092 0.064 0.0058 1.34 0.0031 2.52
C − 0.03 2222 0.0367 ± 0.0142 0.197 0.185 0.140 0.0225 1.63 0.0092 3.99
D − 0.05 800 0.1811 ± 0.0773 0.416 0.300 0.181 0.0574 3.16 0.0123 14.72
E − 0.07 408 0.5529 ± 0.0964 0.761 0.421 0.330 0.1984 2.79 0.0300 18.43

A4 1.00 × 4.00 × 1.00 0.00 ∞ 0.0015 ± 0.0002 0.055 0.036 0.031 0.0017 0.88 0.0009 1.71
B4 − 0.01 20000 0.0038 ± 0.0009 0.079 0.057 0.052 0.0038 1.00 0.0024 1.58
C4 − 0.03 2222 0.0414 ± 0.0176 0.206 0.182 0.134 0.0177 2.34 0.0078 5.31
D4 − 0.05 800 0.0793 ± 0.0371 0.279 0.239 0.179 0.0268 2.96 0.0091 8.71
E4 − 0.07 408 0.1242 ± 0.0694 0.366 0.291 0.221 0.0356 3.49 0.0121 10.26

3.2 Dust particles

The turbulent diffusion coefficient Dt of the flow is measured by
letting dust grains settle to the mid-plane of the turbulent disc. The
dust layer is represented as individual particles each with a position
x(i) and velocity vector v(i) (measured relative to the Keplerian ve-
locity u(0)

y ŷ). The gas acts on a dust particle through a drag force that
is proportional to but in the opposite direction from the difference
between the velocity of the particle and the local gas velocity. The
dust grains do not interact mutually and do not have any feedback
on the gas. The equation of motion of the dust particles is

dv(i)

dt
= f

(
v(i)

) − 1

τf

(
v(i) − u

) + g, (7)

where the modified Coriolis force f is defined in equation (4), τ f is
the friction time and g is an imposed gravitational field (see below).
We assume in the following that τ f is constant and thus independent
of the relative velocity between the grain and the surrounding gas. In
protoplanetary discs this is a valid assumption for sufficiently small
dust grains (Weidenschilling 1977). We use a value of �0 τ f =
0.01 which is small enough that the diffusion coefficient should not
differ significantly from that of a passive scalar (which can be seen
as a dust grain in the limit of a vanishingly small friction time). This
value is also large enough that the computational time-step is set by
the Courant criterion for the gas and not by the friction force in the
dust equations.

The particles change positions according to the dynamical equa-
tion

dx(i)

dt
= v(i) + u(0)

y ŷ. (8)

Under the effect of a special gravity field acting on the dust only, g

in equation (7), the particles fall either to the horizontal mid-plane
of the disc, in the case of a vertical gravity field g = gz(z)ẑ, or to a
vertical ‘mid-plane’ in the case of a radial gravity field g = gx (x)x̂.
We use a sinusoidal expression gi =− g0 sin (kixi) with a wavelength
that is equal to the size of the simulation box. In the equilibrium
state, the sedimentation is balanced by the turbulent diffusion away
from the mid-plane, and the dust number density n, for the case of
a vertical gravity field, is given by (see JK05)

ln n(z) = ln n1 + τfg0

kz D(t)
z

cos(kz z), (9)

where n1 is an integration constant. The equivalent expression for the
radial gravity case is found simply by replacing z by x in equation (9).

We run simulations with different values of the external magnetic
field strength B0 between 0 and 0.07, corresponding to a β ranging
from infinity down to approximately 400. Our computational unit of

velocity is the constant sound speed cs, length is in units of the disc
scaleheight H, and density is measured in units of mean gas density
ρ 0. In these units the turbulent viscosity and the turbulent diffusion
coefficient, ν t and Dt, are numerically equal to the dimensionless
coefficients α and δ. The unit of the magnetic field is then [B] =
cs

√
μ0ρ0 and is chosen such that μ0 = 1. For each value of B0 we

run one simulation with a vertical and one simulation with a radial
gravitational field on the dust particles. The diffusion coefficients
δx and δ z are found by fitting a cosine function to the logarithmic
dust density. From the amplitude we then determine the diffusion
coefficient using equation (9). The run parameters and the results
are shown in Table 1. Two simulation box sizes are considered, a
square box with a side length of 1.32 and an elongated box with (Lx,
Ly, L z) = (1.0, 4.0, 1.0) (similar to the setup of Sano et al. 2004).
For the first case we use a resolution of 643 grid points and 1 000 000
dust particles. Simulations with 1283 grid points were done by JK05
and showed only small differences from the 643 simulations in the
measured Schmidt numbers. Each model is run for 20 local orbits,
i.e. 20 × 2π�−1

0 , of the disc. The runs with an elongated box are
done with 64 × 256 × 64 grid points and 4 000 000 dust particles.

4 R E S U LT S

For each value of the imposed magnetic field we have measured
the α-value from the Reynolds and Maxwell stress tensors (see
Table 1). The α-value grows approximately exponentially with B0.
An α-value close to unity can be reached already for B 0 = 0.07
(corresponding to β 	 400). A similar investigation into the de-
pendence of α on an imposed vertical field was undertaken by
Hawley et al. (1995). Comparing with Table 1 in that work, one sees
that there is a relatively good agreement between those results and
ours. Magnetorotational instability (MRI) with an imposed vertical
field develops into a ‘channel’ solution (Hawley & Balbus 1992;
Goodman & Xu 1994; Steinacker & Henning 2001), characterized
by the transfer of the most unstable MRI mode to the largest scale
of the simulation box and the subsequent decay of this large-scale
mode (Sano & Inutsuka 2001). Sufficiently strong vertical fields can
even cause stratified discs to break up altogether (Miller & Stone
2000). The creation and destruction of the unstable channel solution
give significant temporal fluctuations in the measured stresses, ev-
ident in the standard deviation of the turbulent viscosity in Table 1
(see also fig. 1 of Sano & Inutsuka 2001).

For measuring the turbulent diffusion coefficient we consider the
logarithmic number density of the dust particles averaged from 10
to 20 orbits. We have chosen to calculate the diffusion coefficient
directly from this average state, rather than calculating it from the
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instantaneous dust density at a given time t, because large-scale
advection flow only works as diffusion when averaged over suffi-
ciently long times. The average dust density is found to be in ex-
cellent agreement with the cosine distribution of equation (9) with
a deviation from a perfect cosine of less than 5 per cent for all
simulations. Thus diffusion is a good description of the turbulent
transport over long time-scales. This is partly due to the fact that
we consider diffusion at the largest scale of the flow, i.e. at a scale
that is similar to or larger than the energy injection scale of the
MRI. Diffusion over length-scales that are smaller than the energy
injection scale should be weaker, because dust density concentra-
tions at small length-scales are not stretched by the full velocity
amplitude of the larger scales, but only by the velocity difference
that the larger scales exert over the much narrower dust concentra-
tion. The exp (cos ) equilibrium state for the dust density, however,
has almost all of its power at the largest scale of the simulation
box, so any scale-dependence of the diffusion coefficient should not
have any influence on the equilibrium state (the fact that the log-
arithmic dust density in the equilibrium state is a cosine supports
this).

The measured turbulent diffusion coefficients are written in
Table 1. It is evident that the turbulent diffusion coefficient does
not increase as fast with increasing vertical field as the turbulent
viscosity does. In Fig. 1 we plot the vertical and radial Schmidt
numbers as a function of α. Both Schmidt numbers approximately
follow a power law with α. Making a best-fitting power law, we find
the empirical connections

Scx = 4.6α0.26, (10)

Scz = 25.3α0.46. (11)

Considering the two box sizes individually (black and grey symbols
in Fig. 1), the radial Schmidt number is seen to rise slightly faster
with increasing α in the case of the elongated box with Ly = 4,
whereas the vertical Schmidt number follows a trend that is inde-
pendent of the box size. In ideal magnetohydrodynamic simulations
with β = 400, CSP05 find a radial Schmidt number of around 10.
Using a similar value for β, we find that the radial Schmidt number
rises from unity in the case of no external field to ∼3–4 when β 	
400. This may explain at least part of the discrepancy between the
results by CSP05 and JK05. The box size used in CSP05 is 1.0 ×

0.001 0.010 0.100 1.000
α

1

10

S
c

Scx
Scz
Scx (Ly=4)
Scz (Ly=4)

Figure 1. The Schmidt number plotted against the α-value and the best
power-law fit (dotted lines). The best fit has Scx = 4.6 α0.26 and Scz =
25.3α0.46.

6.28 × 1.0, and is thus comparable to our elongated box. We have
tried with Ly = 6.28 as well, but found no significant difference in
the results.

It is interesting to note that Fromang & Papaloizou (2006) have
an α-value of 0.015 and a vertical Schmidt number of 2.8. That fits
almost perfectly in Fig. 1. Since Fromang & Papaloizou (2006) do
not have an imposed vertical field in their simulations, this may mean
that the rise in Schmidt number with α is something fundamental and
not only an effect of the imposed magnetic field, although further
investigations would have to be done to explore this connection in
more detail.

4.1 Correlation times

One can express the diffusion coefficient caused by the scale k of a
turbulent flow as Dk = uk �k . Here uk is the velocity amplitude of
that scale and �k is the typical length-scale over which a turbulent
feature transports before dissolving. The advection length �k can
be approximated by �k = uktk, where tk is the correlation time,
or life time, of a turbulent structure. Taking now an average (and
weighted) correlation time τ cor of all the scales, one gets the mixing
length expression for the diffusion coefficient in direction i,

D(t)
i = τcoru2

i , (12)

valid for Fickian diffusion [for the validity of Fickian diffusion
see Brandenburg, Käpylä & Mohammed (2004)]. Here the Mach
number,

√
u2

i /cs, is the root-mean-square velocity fluctuation in
real space. The diffusion coefficient should thus scale roughly with
Mach number squared. We plot the correlation times, calculated
from equation (12), of δx and δ z versus the α-value of the flow in
Fig. 2. The correlation time of the turbulent diffusion coefficients
falls steeply with increasing α-value, so even though the Mach num-
ber of the flow increases, the time that a given turbulent structure has
for transporting the dust becomes shorter and shorter. Since the cor-
relation times of radial and vertical diffusion have approximately
the same dependence on α, the ratio of the diffusion coefficients
can be expressed as δ x/δ z = (Max/Maz)2. The anisotropy in the
diffusion coefficient in favour of the radial direction is then mostly
an effect of the anisotropy between the radial and vertical Mach
numbers.

0.001 0.010 0.100 1.000
α

0.1

1.0

τ c
o

r/
Ω

0–
1

 
Scx (Ly=4)
Scz (Ly=4)

Scz

Scx

Figure 2. The correlation time of the turbulent mixing coefficients versus
the α-value. The correlation times fall significantly with increasing α.
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5 S U M M A RY

In this Letter we report that the Schmidt number of magnetoro-
tational turbulence depends strongly on the value of an imposed
vertical magnetic field. For large values of the vertical field, the
relative strength of the turbulent diffusion falls with respect to the
turbulent viscosity. This could explain part of the discrepancy be-
tween measurements of the radial turbulent diffusion coefficient in
magnetorotational turbulence without an imposed field (Johansen
& Klahr 2005) and with an imposed field (Carballido et al. 2005).
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