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In this work, three different approaches are used for evaluating some Lagrangian
properties of homogeneous turbulence containing anisotropy due to the application
of a stable stratification and a solid-body rotation. The two external frequencies are
the magnitude of the system vorticity 2Ω , chosen vertical here, and the Brunt–Väisälä
frequency N , which gives the strength of the vertical stratification. Analytical results
are derived using linear theory for the Eulerian velocity correlations (single-point, two-
time) in the vertical and the horizontal directions, and Lagrangian ones are assumed
to be equivalent, in agreement with an additional Corrsin assumption used by Kaneda
(2000). They are compared with results from the kinematic simulation model (KS)
by Nicolleau & Vassilicos (2000), which also incorporates the wave–vortex dynamics
inherited from linear theory, and directly yields Lagrangian correlations as well as
Eulerian ones. Finally, results from direct numerical simulations (DNS) are obtained
and compared for the rotation-dominant case B =2Ω/N = 10, the stratification-
dominant case B = 1/10, the non-dispersive case B = 1, and pure stratification B =0
and pure rotation N = 0. The last situation is shown to be singular with respect
to the mixed stratified/rotating ones. We address the question of the validity of
Corrsin’s simplified hypothesis, which states the equivalence between Eulerian and
Lagrangian correlations. Vertical correlations are found to follow this postulate, but
not the horizontal ones. Consequences for the vertical and horizontal one-particle
dispersion are examined. In the analytical model, the squared excursion lengths
are calculated by time integrating the Lagrangian (equal to the Eulerian) two-time
correlations, according to Taylor’s procedure. These quantities are directly computed
from fluctuating trajectories by both KS and DNS. In the case of pure rotation, the
analytical procedure allows us to relate Brownian t-asymptotic laws of dispersion in
both the horizontal and vertical directions to the angular phase-mixing properties
of the inertial waves. If stratification is present, the inertia–gravity wave dynamics,
which affects the vertical motion, yields a suppressed vertical diffusivity, but not a
suppressed horizontal diffusivity, since part of the horizontal velocity field escapes
wavy motion.

1. Introduction

Rapid rotation and stable stratification strongly affect turbulent diffusion. Instances
of rapidly rotating turbulence with or without stable stratification may be found



232 C. Cambon, F. S. Godeferd, F. C. G. A. Nicolleau and J. C. Vassilicos

in many geophysical, industrial and laboratory flows. Direct numerical simulations
(DNS) and laboratory experiments have revealed that rapid rotation and stable
stratification have highly anisotropic effects on turbulent diffusion (e.g. Britter et al.
1983; Vincent, Michaud & Meneguzzi 1996; Kimura & Herring 1996, 1999; Kaneda &
Ishida 2000): turbulent diffusion can be suppressed in one direction but not in others.
Surprisingly, in spite of observations in nature, it is difficult to find results of laboratory
experiments on turbulent diffusion for rotating flows both with and without stable
stratification. (The only experimental work quoted in the recent review of Lagrangian
aspects by Yeung (2002) is Jacquin et al. (1990), but turbulent diffusion is only
marginally discussed, and not measured, in this paper about rotating turbulence.)

Recent modelling and theoretical approaches by Kaneda & Ishida (2000), Nicolleau
& Vassilicos (2000), Kaneda (2000), and Nicolleau & Vassilicos (2003) have been able
to explain and predict the suppression of one-particle† turbulent diffusion along the
direction of stratification (vertical) in stably stratified turbulence with and without
rapid rotation. All these approaches have in common the use of solutions of the
linearized equations of motion. However, Kaneda & Ishida (2000) and Kaneda (2000)
base their predictions on Corrsin’s conjecture whereas the kinematic simulations (KS)
of Nicolleau & Vassilicos (2000) do not. Corrsin’s conjecture allows the estimation
of two-time Lagrangian velocity correlations from a calculation of two-time Eulerian
velocity correlations.

Two-time Lagrangian velocity correlations are central quantities in turbulent
diffusion because of Taylor’s relation (equation (2.2) in the following section), which
expresses the mean-square displacements of fluid particles as a double integral over
time of two-time Lagrangian velocity correlations. Taylor’s relation has important
physical consequences for turbulent diffusion. In isotropic turbulence, the mean-
square displacement behaves proportionally to t2 for short times, in agreement with
a ballistic regime, and evolves proportionaly to t for larger times, in agreement
with a Brownian regime (Taylor 1921). Taylor’s relation can also imply depletion
of turbulence diffusion, caused, for example, by vortex trapping. One might expect
Lagrangian velocity correlations to oscillate around zero in a vortex, so that the
time integral of the Lagrangian correlations are themselves oscillating and decreasing
functions of time, thus leading to severe depletion of turbulent diffusion by direct
application of Taylor’s integral formula. In this paper, Lagrangian velocity correlations
also oscillate in some or all directions as a result of rotation alone or of combined
rotation and stratification. We therefore need to calculate these oscillations in order
to predict turbulent diffusion and its potential depletion in particular directions. In
high-Reynolds-number turbulent flows it is usually the Eulerian velocity statistics
that are (more easily) measured experimentally, not the Lagrangian ones, and it is
therefore necessary to try to relate the available Eulerian correlations to the desired
Lagrangian ones.

Kaneda & Ishida (2000) and Kaneda (2000) calculate these two-time Eulerian
correlations using rapid distortion theory (RDT), which is justifiable in the limits
of low Froude and Rossby numbers (except for the quasi-geostrophic part of the
horizontal motion, for which the nonlinearity does not scale with Rossby or Froude
numbers, see Godeferd & Cambon 1994 and Cambon 2001), and use a simplified form
of Corrsin’s conjecture to derive two-time Lagrangian correlations. The validity of
RDT and the present KS is theoretically limited to times before the appearance

† In this paper particle is synonymous with fluid element.
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of nonlinear dynamics. Also, polarized vortex tubes and sheets, which are not
included in the RDT and KS modelling approaches presented here, might have
additional effects on turbulent diffusion which are beyond our reach. Except for DNS
results, we demonstrate in this paper how an unstructured velocity field is capable of
anisotropically dispersing particles, by considering linear dynamics only. Thorough
investigation of how nonlinear velocity field dynamics and polarized flow structures
can affect Lagrangian statistics is left for future work.

DNS calculations by Kimura & Herring (1996, 1999) Kaneda & Ishida (2000)
confirm the vertical capping of one-particle turbulent diffusion and Nicolleau &
Vassilicos (2000, 2002) explain it in terms of energy conservation without recourse
to Corrsin’s conjecture. Is there a real need, therefore, for Corrsin’s conjecture in
the context of rapidly rotating and/or stably stratified turbulence? And is Corrsin’s
conjecture valid in this context? In this paper we attempt to answer these questions
by use of theoretical arguments, RDT, KS and DNS, and with particular emphasis
on the case of rapid rotation without stratification which has been neglected in the
previous studies and which is the one case where conservation of energy arguments
are not conclusive with regard to turbulent diffusion. Corrsin’s conjecture concerns the
relation between Eulerian and Lagrangian turbulence statistics which is of central and
pivotal importance to turbulent diffusion theory. We study the validity of a simplified
version of Corrsin’s conjecture (which we call the ‘simplified Corrsin hypothesis’) and
its implications for one-particle turbulent diffusion in terms of Taylor’s relation (2.2)
in all directions, both parallel and normal to the direction of the rotation vector.

The paper is organized as follows. In § 2 we introduce Corrsin’s conjecture and the
simplified Corrsin hypothesis. In § 3 we introduce the governing equations and the ana-
lytical and numerical tools used in this study: RDT, KS and DNS. In § 4 the second-
order Eulerian velocity correlations are calculated on the basis of RDT solutions,
and we use the simplified Corrsin conjecture introduced by Kaneda & Ishida (2000)
to predict Lagrangian velocity correlation functions. Also, in this section, we show
how the dispersivity of inertial waves modulates, and in fact can even in some cases
prevent, the depletion of turbulent diffusion by the oscillations in the flow. At the
end of § 4 we use Taylor’s (1921) relation between one-particle second-order statistics
and two-time Lagrangian correlations to calculate turbulent diffusivities. The validity
of the simplified Corrsin conjecture is tested against KS and DNS in § 5 and in § 6
we compare our turbulent-diffusion theoretical predictions with KS and DNS results
obtained at low Rossby and Froude numbers. Particular attention is given to the case
of rapidly rotating turbulence without stratification, which has been neglected in the
literature, and for which our results are new and perhaps the most surprising. We
conclude in § 7.

2. Turbulent diffusion and Corrsin’s conjecture

The position of a particle advected by a velocity field u is given by

ẋ = v,

where the overdot denotes the substantial derivative following trajectories labelled by
the initial (t = 0) position X ,

x = x(X, t),

and v(t) is the Lagrangian velocity related to the Eulerian velocity field u(x, t) by

v(t) = u(x(X, t), t). (2.1)
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One-particle dispersion in the vertical and horizontal directions is given by 〈(x3 − X3)
2〉

and 〈(x1 − X1)
2 + (x2 − X2)

2〉 respectively.
Crucial two-time quantities for turbulent diffusion are the covariances �ij (t, t

′) =
〈�xi(t, t

′)�xj (t, t
′)〉 of the displacement

�x(t, t ′) = x(t) − x(t ′) =

∫ t

t ′
ẋ(s) ds.

Taylor (1921) obtained the well-known relation

�ij (t, t
′) =

∫ t

t ′
ds

∫ t

t ′
ds ′〈vi(s)vj (s

′)〉, (2.2)

where 〈vi(s)vj (s
′)〉 denotes Lagrangian velocity correlations, which differ a priori

from their Eulerian counterparts. Among these Lagrangian integral quantities, �33

and �11 +�22 are particularly informative as they are the mean square of the lengths
of particle excursions in the vertical and in the horizontal directions. Let us just
recall here that in isotropic turbulence without rotation or stratification, �ii(t, 0) is
proportional to t2 for short times, in agreement with a ballistic regime, and evolves
proportionally to t for larger times, in agreement with a Brownian regime (Taylor
1921).

Taylor’s relation (2.2) means that one-particle turbulent diffusion can be calculated
provided that Lagrangian velocity statistics are known. However, it is the Eulerian
velocity statistics that are (more easily) usually measured experimentally in high-
Reynolds-number turbulent flows, not the Lagrangian ones, and one is therefore
confronted with the task of deriving Lagrangian velocity statistics from Eulerian
velocity statistics. This is a highly non-trivial task and a central problem of turbulent
diffusion which is usually overcome by introducing conjectures and approximations.
Corrsin’s conjecture is one important such conjecture which is closely related to
Kraichnan’s direct interaction approximation (see Kraichnan 1970, 1977) and which
has recently been used by Kaneda & Ishida (2000) to calculate one-particle turbulent
diffusion in strongly stratified turbulence. We now describe this conjecture.

Equation (2.1) can also be written

v(t) =

∫

d3 y u( y, t)δ( y − x(X, t)),

and the Lagrangian two-time velocity correlation needed in (2.2) is therefore given by

〈vi(t)vj (t
′)〉 =

∫

d3 y〈ui(x(X, t), t)uj ( y, t ′)δ( y − x(X, t ′))〉. (2.3)

Corrsin’s conjecture (Corrsin 1963) states that, for |t − t ′| large enough, (2.3) can be
approximated by

〈vi(t)vj (t
′)〉 =

∫

d3 y〈ui(x(X, t), t)uj ( y, t ′)〉〈δ( y − x(X, t ′))〉. (2.4)

The reasoning behind this approximation is that x(X, t ′) and u(x(X, t), t) are
effectively uncorrelated when |t − t ′| is large enough. Note how this approximation
equates the two-time Lagrangian velocity correlation to a weighted integral over
the two-point and two-time Eulerian velocity correlation. Fourier transformation of
the right-hand side of (2.4) (assuming the turbulence is statistically homogeneous)
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leads to

〈vi(t)vj (t
′)〉 =

∫

d3k R̂ij (k; t, t ′)
〈

e−ik·(x(X,t ′)−x(X,t))
〉

(2.5)

where

R̂ij (k; t, t ′) = (2π)−3

∫

〈ui(x + r, t)uj (x, t ′)〉e−ik·r d3r.

Equations (2.4) and (2.5) are two different forms of Corrsin’s conjecture neither of
which can be of use in practice for calculations concerned with fully turbulent flows.
We therefore do not directly study the validity of these equations but of a further
simplification which has been introduced by Kaneda & Ishida (2000) and used by
them to calculate one-particle vertical diffusion in strongly stratified turbulence. This
simplification replaces (2.5) by

〈vi(t)vj (t
′)〉 =

∫

d3k R̂ij (k; t, t ′) = 〈ui(x, t)uj (x, t ′)〉, (2.6)

and we refer to it as the ‘simplified Corrsin hypothesis’ even though only (2.5) is due
to Corrsin.

There is more than one way to derive (2.6) from (2.5) and one series of assumptions
is given in Kaneda & Ishida (2000). Effectively, because Eulerian velocity correlations
must be dominated by large ‘eddies’ (i.e. small wavenumbers |k|), one might expect the
high-wavenumber part of the integral (2.5) to make a negligible contribution to the
right-hand side of (2.5). The term 〈e−ik·(x(X,t ′)−x(X,t))〉 is equal to 1 at k = 0 and might
be expected to remain close to 1 at small wavenumbers and decrease with increasing
wavenumber. This term might therefore be close to 1 in the range of wavenumbers
that makes the dominant contribution to the integral in (2.5); on replacing it with 1 in
(2.5) one obtains (2.6) without expecting much error, independently of the exact form
of the energy spectrum, as long as a logarithmic slope steeper than −1 is assumed.

Corrsin’s conjecture (2.5) has been tested against kinematic simulations of two-
and three-dimensional flows with an energy spectrum sharply peaked about one
well-defined lengthscale (Kraichnan 1970, 1977; Lundgren & Pointin 1976) with the
conclusion that it is valid for all times (not only large times) provided that there is no
helicity and that the flow is not frozen in time. Furthermore, as stated by Kraichnan
(1970), “if the correlation time of the Eulerian velocity field is very short compared
with the eddy circulation time, the Eulerian and Lagrangian velocity covariances are
almost the same”, i.e. (2.6) holds. Is this statement true in turbulent-like (KS) velocity
fields with a wide range of excited wavenumbers and correlation times comparable
with eddy-circulation times? And what happens when stratification and/or rotation
introduce their own timescales? How do predictions of one-particle dispersion based
on (2.2), (2.6) and RDT calculations of two-time Eulerian velocity correlations (as
in Kaneda & Ishida 2000) compare with numerical simulations (KS and DNS) of
rapidly rotating turbulence with and without stable stratification? These questions
are pertinent in particular because such velocity fields are more representative of real
turbulence than those considered by Kraichnan (1970, 1977). We now describe the
methods we use to obtain these velocity fields: DNS, RDT and KS. The DNS and KS
velocity fields are used to integrate particle trajectories and the RDT solutions of the
linearized dynamical equations are used both in KS and for analytical calculations of
Eulerian two-time velocity correlations.
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3. Background equations and methods

The Navier–Stokes equations using the Boussinesq approximation in a rotating
frame are

(∂t + u · ∇) u + 2Ωn × u + ∇p − ν∇2u = b, (3.1)

(∂t + u · ∇)b − χ∇2b = −N2n · u, (3.2)

∇ · u = 0, (3.3)

for the fluctuating velocity u, the pressure p divided by a mean reference density, and
the buoyancy force b; ν and χ are the kinematic viscosity and thermal diffusivity
respectively. The vector n denotes the vertical unit upward direction aligned with
both the gravitational acceleration g = −gn and the angular velocity of the rotating
frame Ω = Ωn. The buoyancy force is related to the fluctuating temperature field τ by
b = −gβτ = bn, through the coefficient of thermal expansivity β . With temperature
stratification characterized by the vertical gradient γ , the Brunt–Väisälä frequency
N =

√
βgγ appears as the characteristic frequency of buoyancy–stratification. Hence

the linear operators in equations (3.1) and (3.2) display the two frequencies N and
2Ω , and we define B = 2Ω/N as a measure of the relative importance of rotation
and stratification. Without loss of generality the fixed frame of reference is chosen
such that ni = δi3. Therefore, u3 is the vertical velocity component.

3.1. Direct numerical simulation

Using DNS, the system of equations (3.1), (3.2), (3.3) is solved by a numerical spectral
collocation method – with 192 Fourier polynomials in each direction of space – in
a now classical way for homogeneous turbulence simulations (see e.g. Vincent &
Meneguzzi 1991). Prior to solving, the system of equations is rewritten using the
vector identity

(u · ∇) u = ω × u +
∇|u2|

2
,

where ω = ∇ × u is the vorticity. The background rotation 2Ω can therefore be
directly added to the vertical vorticity. The boundary conditions are periodic in
all three directions, and the numerical domain is a cubic box of side L0, so that
the dimensionless wave vector components are k∗

i = ki2π/L0. Spatial derivatives are
treated numerically in Fourier space using the pseudo-spectral method and aliasing
is treated in spectral space by a spherical truncation of the Fourier components of
the fluctuating velocity field, using a 2/3 de-aliasing rule at every time step. The time
scheme is third-order Adams–Bashforth, and the viscous term is integrated exactly
using the change of variable u′(k) = u(k) exp(νk2t).

A total of 1000 fluid particles are located initially with a uniform random
distribution in the numerical box, and are followed by solving the Lagrangian
trajectory equation d(x(X, t))/dt = u(x(X, t), t) at each timestep with a second-order
Runge–Kutta scheme. The necessary interpolation for obtaining the velocity u(x(X, t))
at the location of the particle is performed with great accuracy by a Lagrange
interpolation scheme which makes use of six points in each direction of space.

The Eulerian velocity field is initialized using an isotropic field obtained from a
pre-computation of (3.1) with zero buoyancy force and zero angular velocity but with
large-scale forcing in order to achieve a classical DNS isotropic turbulence stationary
state. This pre-computation is itself initialized by a velocity field with uniformly
distributed Fourier phases and an analytically prescribed energy spectrum E0 as in
Orszag & Patterson (1972). The peak of this spectrum is chosen at k∗

p = 4.52, and
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Figure 1. Time evolution of the dimensionless kinetic energy for the entire simulation time
span, for the presented DNS runs. t∗ = t/τ is the dimensionless time since the beginning of the
isotropic pre-computation, drawn as a solid line (τ = 1.01 is the eddy turnover time at the end
of the pre-computation). The anisotropic runs are initiated at t∗ =12.59. All the values of B
are plotted, B = 0, 1/10, 1, 10, ∞. Black circles indicate the end of computions of Lagrangian
statistics, corresponding to different times when non-dimensionalized by the linear timescale
(either 2π/N or π/Ω).

the corresponding (non-dimensional) total kinetic energy E∗
kin =Ekin/u

′2 is 1.5 at t =0
(u′ =

√
2Ekin/3 being the r.m.s. velocity scale in one direction). The pre-computation

of forced isotropic turbulence is performed for a dimensionless time t/τ = 12.59,
allowing the turbulent dynamics to set up a realistic distribution with built-up triple
correlations (τ is the eddy turnover time at the end of the isotropic run). The evolution
of the kinetic energy during this stage is shown in figure 1. During this period and
after, the Eulerian velocity field is forced by maintaining the large scales – small
wavenumbers – at their level at t = 0. This is achieved by multiplying, at every
timestep, each spectral coefficient û(k∗) within the spherical spectral shell |k∗| < 4.52
by E0(k∗)/|û(k∗)|. In so doing, one only modifies the amplitude of the Fourier modes
concerned, letting their phase evolve freely through the action of (3.1), (3.2) and (3.3),
so as to minimize the impact of forcing on anisotropy, which we want to develop as
‘naturally’ as possible. This simple forcing method yields turbulence statistics that do
not depart too much from those at the initial time (i.e. t = 12.59τ ), as would occur
for a freely decaying run. The turbulent flow is nevertheless unsteady (see figure 1).
The Lagrangian statistics are computed starting at t = 12.59τ , that is fluid particles
are released at this instant only, and from now on in this paper we use the notation
t for t − 12.59τ , so that the initial time of fluid particle release is t = 0. Eulerian
velocity correlations are obtained for t � 0 by spatial averages over all the collocation
points. The initial (t = 0 with the new origin) values of the non-dimensional numbers
are as follows: the Reynolds number Re = u′L/ν at t = 0 is the same for all the
runs, Re(0) = 217, where u′ =

√
2Ekin/3 is the r.m.s. velocity scale and L the integral

lengthscale. The Froude number is therefore computed as Fr = u′/(NL) and the
Rossby number as Ro = u′/(2ΩL). Their initial respective values for the different
runs are shown in table 1.
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B ∞ 10 1 1/10 0

Ro(0) 0.81 0.162 0.81 1.61 ∞
Fr(0) ∞ 1.62 0.81 0.16 0.4

Table 1. Initial Rossby and Froude numbers for DNS runs at different values
of parameter B .

3.2. Linearized dynamical equations

As in RDT, equations (3.1), (3.2) can be linearized for small enough Rossby and
Froude numbers. Solutions are easily found in terms of plane waves, and consist of a
superposition of steady and oscillating modes of motion, the latter corresponding to
dispersive, inertia–gravity, waves (see Cambon 2001). Fourier space is useful for taking
into account the divergence-free constraint (3.3), and for allowing exact treatment of
the pressure gradient in (3.1). This is important because pressure disturbances are
responsible for a coupling of vertical and horizontal velocity components, and for the
anisotropic dispersion law of the wavy part of the flow. The solenoidal part of the
horizontal field is unaffected by the wave part of the flow and remains constant in
the linear inviscid limit: it corresponds to the ‘vortex’ part of the flow in the purely
stratified case (see Riley, Metcalfe & Weissman 1981). Accordingly, complete linear
solutions (which we call RDT solutions) for the velocity in terms of plane waves may
be written as

u(x, t) =
∑

exp(ik · x)[A0(k) + A1(k) exp(iσ t) + A−1(k) exp(−iσ t)] (3.4)

(and similarly for b) where the three vectors Aǫ(k), ǫ = 0, ±1 correspond to the one
steady and two wavy modes (see § 4 for details) and are such that Aǫ(k) · k = 0 for
incompressibility. The unsigned dispersion frequency σ of inertia–gravity waves is
given by

σ =
√

N2 sin2 θ + 4Ω2 cos2 θ,

where θ(k) is the angle between k and the vertical direction. As a consequence of our
use of Fourier space and of Aǫ(k) · k = 0, the five unknowns u1, u2, u3, p, b in physical
space are now reduced to three in Fourier space, namely two velocity components
which we detail in § 4 and the Fourier transform of b.

Note that two particular cases require special treatment. For pure rotation N = 0
the vector A0 corresponding to the steady part of the flow vanishes in (3.4). And in
the case B = 1, it is the dependence of the dispersion frequency on k that vanishes,
so that the group velocity is zero for all wavevectors. (This special character of the
B = 1 case has also been noted in DNS by Iida & Nagano 1999 and in RDT by
Kaneda 2000 and Hanazaki 2002.)

3.3. Kinematic simulation

KS of strongly stratified and rotating non-decaying turbulence has been introduced
by Nicolleau & Vassilicos (2000, 2003), where detailed presentations can be found.
This KS is based on the velocity field (3.4) which incorporates the linear dynamics.
Similarly to initializations of pseudo-spectral DNS, the velocity field at time t = 0 is
isotropic, incompressible and has a prescribed Eulerian energy spectrum E(k) (this
spectrum is chosen with an inertial range, as for developed turbulence). Moreover, the
incompressibility and isotropy of initial conditions constrain the angular dependences
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of the vectors Aǫ(k) and k. (The link of A0, A1 and A−1 to the initial realization
is fully specified by equations (4.3)–(4.5), as explained at the end of § 4.1.) At given
parameter B , the initial energy spectrum determines the average amplitudes of the
vectors Aǫ(k), where these averages are taken over many realizations of the velocity
field. Different realizations are obtained by specifying different angular dependences
of the vectors Aǫ(k) and k. Great care has to be taken for the angular distribution of
modes in these realizations, for the phase and amplitude of oscillation of turbulence
to be properly reproduced.

Following Nicolleau & Vassilicos (2000, 2002), additional time decorrelation terms
are included in the KS velocity field to yield

u(x, t) =
∑

exp(ik · x + iωt)[A0(k) + A1(k) exp(iσ t) + A−1(k) exp(−iσ t)], (3.5)

where the frequencies ω(k) = λ
√

k3E(k) with k = |k| and in this paper we investigate
both options, λ = 1 and λ = 0. The inclusion of these time decorrelation terms is
intended to model the Eulerian decorrelating effect of the nonlinear advection which
we have neglected in the RDT solutions. Indeed, similarly to Nicolleau & Vassilicos
(2000) in the purely stratified case, we report in § 5 of this paper that the inclusion
of the frequencies ω(k) accelerates the decay of some Eulerian velocity correlation
functions obtained by KS of strongly stratified and rotating turbulence, thus leading
to more realistic Eulerian correlations. The impact on Lagrangian correlations is
shown to be unimportant.

The number of wavevectors over which the summation in every realization of the
velocity field (3.5) is carried out is 2000 to 6000, which is much less than in a 1923 DNS.
It is therefore practicable to average over many realizations of the flow in KS, whereas
the high cost involved in DNS allows the use of only one DNS realization in practice.
Accordingly, KS achieves better converged statistics than DNS. It should be stressed
that KS is a Lagrangian model of turbulent diffusion and should therefore be used
to integrate particle trajectories and generate Lagrangian statistics. Its Eulerian flow
structure is flawed as it does not incorporate the persistent characteristic pancake- or
cigar-shaped structures that DNS can capture. Of course, the results should coincide
with those of analytical RDT when calculating Eulerian velocity correlations, this
being an unavoidable validation test.

In our KS, in accordance with Nicolleau & Vassilicos (2000), particles are released
at a random time large enough for the velocities to have reached their asymptotic
r.m.s. values. This is consistent with KS as a Lagrangian model. Here in contrast to
DNS, averages are taken over realizations and in such an approach there is no reason
why particles should be released at the same time in each realization.

4. Analytical calculations using RDT

4.1. Projection of the fluctuating fields onto the basis of eigenmodes

The notation and equations in this subsection are the same as in Cambon (2001),
which have much in common with Kaneda (2000) (see also Godeferd & Cambon
1994 for details of the mathematical formulation in the stratified case).

In order to unify the mathematical formulation, we shall use a vector ŵ whose first
two components are û1 and û2, the components of the spectral coefficient û(k) of u

in the plane orthogonal to the wavenumber k. The local frame in this plane is chosen
such that û1 is the component in the horizontal plane. The corresponding local frame
is the Craya–Herring frame described at length in the Appendix. The last component
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ŵ3 contains the buoyancy force scaled as a velocity:

ŵ3 = iN−1b̂.

In the local frame, the linearized system of equations (3.1)–(3.3) becomes

∂t

(

ŵ1

ŵ2

iŵ3

)

+

(

0 −σr 0
σr 0 −σs

0 σs 0

) (

ŵ1

ŵ2

iŵ3

)

= 0 (4.1)

or ∂tŵ + Mŵ = 0, where

σr = 2Ω cos θ, σs = N sin θ, σ =
√

σ 2
r + σ 2

s (4.2)

are respectively the unsigned dispersion-law frequencies for inertial waves, gravity
waves, and inertia–gravity waves.

The system of equations (4.1) is easily solved by diagonalizing the matrix M. Three
eigenmodes are obtained in the local frame as follows:

N0 =





σs/σ

0
σr/σ



, N1 =

√
2

2





−σr/σ

i
σs/σ



, N−1 =

√
2

2





−σr/σ

−i
σs/σ





They are related to the eigenvalues 0, σ and −σ , respectively. N0 is the stationary
mode, which coincides with the quasi-geostrophic mode (QG). Its two components are
the horizontal divergence-free part of the velocity, or vortex mode, and one associated
with the temperature field. N±1 are the wave modes, also called ageostrophic
modes hereinafter in agreement with classic geophysical literature. The wave–vortex
terminology was used by Riley et al. (1981) for analysing DNS of stably stratified
turbulence, whereas geostrophic and ageostrophic were terms used by Bartello (1995)
and Babin, Mahalov & Nicolaenko (1998).

The orthonormal basis of eigenmodes is used to express ŵ as

ŵ =
∑

ǫ=0,±1

ξ ǫ Nǫ,

with

ξ ǫ = ŵ · N−ǫ, ǫ = 0, ±1.

Accordingly, the linearized problem (4.1) obtained from (3.1)–(3.3) is writen (∂t +
iǫσ )ξǫ = 0, whose general solution, given initial values ŵ(k, 0), becomes

ŵ(k, t) =
∑

ǫ=0,±1

Nǫe−iǫσ t [N−ǫ
· ŵ(k, 0)]. (4.3)

At this point, one may compute the Aǫ defined in (3.4), since they are directly related to
the initial conditions through the two kinematic components Aǫ

i = N ǫ
i (N−ǫ

· ŵ(k, 0)),
i = 1, 2.

4.2. RDT solutions for second-order Eulerian statistics

From equation (4.3), the linear solution for any statistical Eulerian quantity is
readily derived. Second-order statistics are defined through the spectrum of two-
point correlations Vij :

1
2
〈ŵ∗

i ( p, t)ŵj (k, t ′)〉 = Vij (k, t, t ′)δ(k − p). (4.4)
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The RDT equations for Vij are unchanged if one accepts the ‘stretching’ of notation
Vij = 〈ŵ∗

i (k, t)ŵj (k, t ′)〉 (instead of the exact equation (4.4)) for linking Vij to its
initial value through the general solution (4.3).

Its components V11(k, t, t ′ = t), V22(k, t, t ′ = t), V33(k, t, t ′ = t), V23(k, t, t ′ = t) are
therefore spectral densities of the vortex energy, kinetic wave energy, potential energy,
and vertical buoyancy flux, in the absence of system rotation. Only the components
with indices 1 and 2 contribute to the spectral tensor R̂ij (k, t, t ′) which appears in
(2.5).

Without any calculation, it is obvious that the RDT history of any two-point or
single-point correlation can be obtained in a quasi-analytical way provided initial
data have simple two-point statistics. For instance, initial three-dimensional isotropic
conditions can be chosen as

V11 = V22 =
Ec(k)

8πk2
, V33 =

Ep(k)

8πk2
, (4.5)

at t = t ′ = 0, all other cospectra being zero. Furthermore, the spherically averaged
energy spectra can be chosen proportional, such that Ep(k) = αEc(k), for even greater
simplicity. Initial data in KS and DNS are restricted to α = 0 in this article, as in
Nicolleau & Vassilicos (2000), but RDT calculations can be easily carried out for any
arbitrary value of α, and the particular case α = 1 deserves further investigations.
(Non-zero values for α were also considered in RDT by Hanazaki & Hunt 1996.)
Using the above initial data, the spectra of Eulerian correlations N−2〈b(t ′)b(t)〉,
〈u3(t

′)u3(t)〉, and 〈ui(t
′)ui(t)〉 are calculated from linear combinations of the solution

of the Vij integrated over k (see the Appendix). One finds

〈ui(t
′)ui(t)〉 + N−2〈b(t ′)b(t)〉

= Ekin(0)

∫ 1

0

[

(1 − (1 − α)
σ 2

r

σ 2
+

(

2 − (1 − α)
σ 2

s

σ 2

)

cos σ (t − t ′)

]

dµ

〈u3(t
′)u3(t)〉

= Ekin(0)

∫ 1

0

(1 − µ2)

σ 2

[(

σ 2
r + ασ 2

s

)

sin(σ t) sin(σ t ′) + σ 2 cos(σ t) cos(σ t ′)
]

dµ (4.6)

〈u1(t
′)u1(t)〉 + 〈u2(t

′)u2(t)〉 = Ekin(0)

∫ 1

0

[F (B, µ) + G(B, µ)(cos σ t + cos σ t ′)

+ C(B, µ) cos σ t cos σ t ′ + D(B, µ) sin σ t sin σ t ′] dµ, (4.7)

with

F (B, µ) = σ 2
s

(

σ 2
s + ασ 2

r

)/

σ 4, G(B, µ) = (1 − α)σ 2
r σ 2

s

/

σ 4,

C(B, µ) = σ 2
r

(

σ 2
r + ασ 2

s

)/

σ 4 + µ2, D(B, µ) =
[

σ 2
r (1 + µ2) + ασ 2

s µ2
] /

σ 2,

}

(4.8)

and with σr , σs and σ given by (4.2) and µ = cos θ . The initial amount of kinetic
energy in the whole flow is Ekin(0). It is clear from equations (4.6) to (4.8) that the
oscillatory behaviour of Eulerian velocity correlations is modulated by integrations
over the wave dispersivities σr = σr (µ), σs = σs(µ) and σ = σ (µ).

For pure rotation, N = 0, equations (4.6) and (4.7) reduce to

〈u3(t
′)u3(t)〉 = Ekin(0)

∫ 1

0

[(1 − µ2) cos 2Ωµ(t − t ′)] dµ
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and

〈u1(t
′)u1(t)〉 + 〈u2(t

′)u2(t)〉 = Ekin(0)

∫ 1

0

[(1 + µ2) cos 2Ωµ(t − t ′)] dµ.

As for (4.6) and (4.7) the integrands in the above equations are simplified forms of
V22(1 − µ2) and V11 + µ2V22 given in the Appendix. Note from the above equations
the important conclusion that both vertical and horizontal Eulerian velocity two-time
correlations decay to zero as a result of wave dispersivity.

For pure rotation, setting t = t ′ in the above equations we retrieve the well-
known result (also reflected by the measure of Reynolds stress anisotropy) that
the initial isotropy of the velocity field is conserved by RDT in the sense that
〈u2

3(t)〉/[(〈u2
1(t) + u2

2(t)〉)/2] = 1.

4.3. Analytical approach to turbulent diffusion

Only the case of pure rotation is treated in detail in this subsection. Analytical results
for the general case, N 	= 0, will be given in the next two sections, where numerical
results are discussed.

Making use of the simplified Corrsin hypothesis (2.6), and therefore equating RDT
Eulerian and Lagrangian velocity correlations in Taylor’s equation (2.2), yields

�33(s, 0) =
Ekin(0)

2Ω2

∫ 1

0

(1 − µ2)
1 − cos 2Ωµs

µ2
dµ (4.9)

and

�11(s, 0) + �22(s, 0) =
Ekin(0)

2Ω2

∫ 1

0

(1 + µ2)
1 − cos 2Ωµs

µ2
dµ, (4.10)

where use has been made of
∫ s

0

dt

∫ s

0

dt ′(cos 2Ωµt cos 2Ωµt ′ + sin 2Ωµt sin 2Ωµt ′) = (1 − cos 2Ωµs)/(2Ω2µ2).

The integrals (4.9) and (4.10) result in analytical solutions as follows:†
〈

x̃2
3(s)

〉

= �33(s, 0) =
Ekin(0)

4Ω2

[

4Si (2Ωs)Ωs + 2 cos 2Ωs − 4 +
sin 2Ωs

Ωs

]

(4.11)

and

〈

x̃2
1(s) + x̃2

2(s)
〉

= �11(s, 0) + �22(s, 0) =
Ekin(0)

4Ω2

[

4Si (2Ωs)Ωs + 2 cos 2Ωs − sin 2Ωs

Ωs

]

(4.12)

with Si (t) =
∫ t

0
u−1 sin u du.

Equations (4.11) and (4.12) show that, at large Ωt , both the vertical and horizontal
r.m.s. displacements behave as

√
Ωt , or more precisely

〈

x̃2
3(t)

〉

∼
〈

x̃2
1(t) + x̃2

2(t)
〉

∼ Ekin(0)

2Ω2
πΩ t (4.13)

using the limit Si (∞) = π/2. In the limit Ω → 0, equations (4.9) and (4.10) tend to
〈

x̃2
3(t)

〉

= 1
2

(〈

x̃2
1(t)

〉

+ x̃2
2(t)

〉)

= 2
3
Ekin t2 (4.14)

† Integrals similar to (4.9) and (4.10) were assumed to diverge by Kaneda (2000), since he only
looked at the non-oscillating part of their integrand. Convergence at µ = 0 is guaranteed if the
cosine term is correctly accounted for.
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Figure 2. Purely rotating case B = ∞. (a) Analytical RDT for the two-time Eulerian
velocity correlations: , horizontal correlations 〈u1(0)u1(t)〉 = 〈u2(0)u2(t)〉; , vertical
correlation 〈u3(0)u3(t)〉. (b) KS Eulerian correlations for λ = 0: , horizontal correlations
〈u1(0)u1(t)〉 and 〈u2(0)u2(t)〉 (as in the following KS plots); , vertical correlation
〈u3(0)u3(t)〉.

since cos 2Ωµs ∼ 1 − 2Ω2(µs)2, for all times. This ballistic behaviour is valid only
at small times, thus pointing to the inadequacy of RDT and/or simplified Corrsin
hypothesis in the case without rotation.

Diffusivity in purely rotating turbulence, given by (4.13), is therefore identical to
the classical behaviour of isotropic turbulence, after a time large enough to reach
the ‘Brownian’ regime for which 〈x̃2〉 ∝ t . The asymptotic ratio 〈x̃3

2〉/〈x̃1
2〉 shows

that isotropy is broken, although not in a dramatic way since it tends towards 2 at
large t . The depletion of turbulent diffusion expected from the oscillatory behaviour
of the rotating flow is prevented in this case by the wave dispersivity, specifically by
integrations over this wave dispersivity as clearly seen in equations (4.9) and (4.10).
In other cases of combined rotation with stratification this wave dispersivity simply
modulates, and in fact weakens, the depletion of turbulent diffusion due to flow
oscillations.

5. The simplified Corrsin hypothesis: Eulerian and Lagrangian two-time

correlations from RDT, KS and DNS

In this section we compare Eulerian and Lagrangian two-time correlations obtained
by RDT, KS and DNS. Comparisons between Eulerian two-time correlations obtained
with RDT, and KS with λ = 0, are used to validate our KS and to determine the time
ranges where comparisons are possible.

5.1. Pure rotation, N = 0

Choosing t ′ = 0, the RDT solutions predict decay to zero for both horizontal and
vertical Eulerian two-time velocity correlations when t increases (figure 2). Results
from KS (λ = 0) compare satisfactorily, as shown on the same figure. Note, however,
that a sufficiently refined KS discretization of the KS sum (3.5) is required to achieve
good comparison. Damped oscillations reflect the dispersivity of inertial waves, as
expected. Comparing 〈u3(0)u3(t)〉 with 〈u1(0)u1(t)〉, a departure from isotropy is
observed although remaining quite small. The simplified Corrsin hypothesis (2.6) is
found to be sufficiently well satisfied in KS both for λ = 0 and λ = 1 in both the
horizontal and the vertical directions (see figure 3b for λ = 0 and 3c for λ = 1
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Figure 3. Purely rotating case B = ∞. , two-time horizontal velocity correlations; ,
vertical correlation, for (a) DNS results with Eulerian correlations drawn with heavy lines, and
Lagrangian ones with thin lines; (b) KS Lagrangian correlations (λ = 0); (c) KS Lagrangian
correlations (λ = 1); (d) KS Eulerian correlations with λ = 1.

and compare with figures 2b and 3d respectively). Our DNS results (see figure 3a)
confirm the validity of the simplified Corrsin hypothesis in the horizontal direction.
They are less conclusive in the vertical direction, as we can observe a rather clear
difference between the Eulerian and the Lagrangian vertical correlations from about
Ωt/π ≃ 1. However, one must take into account the lack of statistical sampling for
the Lagrangian velocity correlations, which are computed using 1000 fluid particles
in the DNS, which is much less than the 1923 collocation points used to calculate
the Eulerian correlations. This lack of sampling causes a difference in the oscillation
amplitude between horizontal Eulerian and Lagrangian correlations, and may be the
cause of (or at least contribute to) the observed departure in the vertical. Moreover, no
ensemble average is performed for the DNS results, so that large overall oscillations
in the correlations are present, which would tend to be smoothed out when averaging
with results from other runs with different initial turbulent phases.

5.2. General case with stable stratification

In the stratified case, with and without rotation, initial isotropy is not conserved by
RDT for single-time Eulerian correlations, in the absence of initial equipartition, that
is when (1/2)N−2〈b2〉(0) 	= Ekin(0)/2 or α 	= 1. The asymptotic value of 2〈u2

3〉/(〈u2
1 +

u2
2〉)(Nt ≫ 1) is found to be a function of α and B . The depletion in the vertical

contribution, which is found in the particular case B = 0, α = 0, has nothing to do
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with the collapse of vertical motion, and the above ratio could be larger than 1 for
different values of α and/or different values of B (see Cambon 2001).

In the general case for which N is not zero, two-time Eulerian correlations calculated
by RDT depend on t and t ′ separately (for all α 	= 1), and not only through their
difference, as in the case of pure rotation and in the isotropic case. Correlations in the
vertical direction decrease to zero for large Nt, whereas they tend to a non-zero plateau
for the horizontal direction according to the non-zero value of F (B, α, µ) in (4.7) and
(4.8). The main difference with the case of pure rotation is that the horizontal two-time
velocity correlation (4.7) tends to a non-zero limit as Nt increases, whereas its vertical
counterpart decreases to zero. Hence, two-time Eulerian correlations become strongly
anisotropic at sufficiently large separation times. The Eulerian two-time correlations
obtained from RDT and KS with λ = 0 are compared in figure 4 for a choice of
values of B , and the comparison is satisfactory.

The simplified Corrsin hypothesis is found to hold in KS in the vertical direction
for all finite values of B and for both values of λ. This is illustrated in figures 5–8
for Eulerian and Lagrangian vertical and horizontal correlations in KS for different
B values and λ = 0 or λ = 1: figure 5 for B = 0, figure 6 for B = 1/10, figure 7 for
B = 1, figure 8 for B = 10. It is interesting to note that the Lagrangian two-time
correlations are unaffected by the value of λ except in the vertical direction for the
case B = 1. In the horizontal direction the simplified Corrsin hypothesis is recovered
by KS only for λ = 1: in figures 3, and 5 to 8 Lagrangian and Eulerian correlations
look quasi-identical, and even those in the horizontal direction have the same decay
to zero for λ = 1. When λ = 0, the horizontal Eulerian two-time correlations obtained
by KS and by RDT do not decay to zero, as shown in figure 4, which means that
the simplified Corrsin hypothesis is not valid in that case. In the non-dispersive
B = 1 KS results, the difference between Eulerian correlations for λ = 0 and λ = 1
is therefore striking (figures 4f and 7d). This effect of λ on the decay of Eulerian
velocity correlations is also present in KS results for isotropic turbulence (Ω = N = 0)
as shown in figure 9. Figure 9 shows clearly that Eulerian velocity correlations are
equal to 1 for all time in KS when λ = 0 but decay with time when λ = 1. From
tracking of fluid particles in the laboratory, Mann & Ott (2002) have found some
evidence that the simplified Corrsin hypothesis is valid in isotropic turbulence.

Our DNS results confirm, at least qualitatively, that the simplified Corrsin
hypothesis is valid in the vertical direction for all values of B but seem to invalidate
this hypothesis in the horizontal directions. In the stratification-dominant cases, from
figures 5 and 6 the conclusion is very clear: apart from small differences due to
statistical aliasing, Eulerian and Lagrangian DNS correlations are very close in the
vertical direction, and also compare very well with KS evolutions. On the other
hand, horizontal DNS correlations separate at about half a Brunt–Väisälä period
Nt/2π ≃ 0.5, for both B = 0 and B = 1/10 cases. For the non-dispersive case
(figure 7), while Eulerian and Lagrangian DNS correlations are nearly identical at the
initial stage, one observes a slight separation of the horizontal correlations. For the
rotation-dominant case B = 10, the simplified Corrsin hypothesis seems well-verified
in both the vertical and the horizontal directions (figure 8).

6. Results for turbulent diffusion

6.1. Pure rotation

The analytical results of equations (4.11) and (4.12) for 〈x̃2
3〉 and 〈x̃2

1〉 are plotted in
non-dimensional form in figure 10, along with results from KS with λ = 0 at two
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Figure 4. Eulerian two-time velocity correlations for B = 0: , horizontal; , vertical.
(a) RDT and (b) KS with λ = 0; B = 1/10: (c) RDT and (d) KS with λ = 0; B = 1: (e) RDT
and (f ) KS with λ = 0; B = 10: (g) RDT and (h) KS with λ = 0.
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Figure 5. Two-time horizontal velocity correlations for the purely stratified case B = 0:
, horizontal; , vertical. (a) DNS results for Eulerian correlations are drawn with

thick lines, and thin lines for Lagrangian correlations; (b) Lagrangian correlations from KS
with λ = 0; (c) Lagrangian correlations from KS with λ = 1; (d) Eulerian correlations from
KS with λ = 1.

different values of the Rossby number Ro = 0.04 and 0.08, and the DNS case at
B = ∞. To be precise, Ω2〈x̃2

1〉/u′2 and Ω2〈x̃2
3〉/u′2 are plotted against Ωt/π, whereby

a very good collapse of the curves is obtained. Moreover, we observe the following
two features: the evolution ultimately leads to a Brownian behaviour, and the ratio
of vertical to horizontal diffusivity tends towards the analytically predicted value of
2. RDT and KS with λ = 1 exhibit this value exactly, whereas in DNS this ratio
only reaches the smaller value 1.4. Our DNS run exhibits the long-time Brownian
behaviour as well, although for Ωt/u′2 � 10 dispersion in the DNS seems to drop
a little as observed on the zoomed figure 10(b), departing from the behaviour of
RDT and KS. This can be due to nonlinear effects, but also to the fact that vertical
and horizontal diffusivity depend on the particular realization of initial phases of
the turbulent structures in the flow. There again, one is confronted by the classical
problem of obtaining converged ensemble averages, which require many realizations,
particularly in the case of rotating turbulence.

6.2. General case with stable stratification

A plateau is predicted for the r.m.s. vertical displacement, as shown by computing
�33(0, t) from (4.6) using (2.2) and the simplified Corrsin hypothesis. In so doing,
cos σ t cos σ t ′ and sin σ t sin σ t ′ in (4.6) are replaced by sin2 σ t/σ 2 and (1−cos σ t)2/σ 2,
respectively. In this analytical approach, the integrals look very similar to the case of



248 C. Cambon, F. S. Godeferd, F. C. G. A. Nicolleau and J. C. Vassilicos

Nt/2p

1.0

0.5

0

–0.5

–1.0

0 1 2 3 4 5

�
u

1
(0

)u
1
(t

)�
,�

u
2
(0

)u
2
(t

)�
, 
�

u
3
(0

)u
3
(t

)�

(a) DNS 1.0

0.5

0

–0.5

–1.0

0 1 2 3 4 5

(b) Lagrangian KS k = 0

Nt/2p

1.0

0.5

0

–0.5

–1.0

0 1 2 3 4 5

�
u

1
(0

)u
1
(t

)�
,�

u
2
(0

)u
2
(t

)�
, 
�

u
3
(0

)u
3
(t

)�

(c) Lagrangian KS k = 1 1.0

0.5

0

–0.5

–1.0

0 1 2 3 4 5

(d) Eulerian KS k = 1

Figure 6. As figure 5 but for the stratification-dominant case B = 1/10.
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Figure 7. As figure 5 but for the non-dispersive case B = 1.
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Figure 8. As figure 5 but for the rotation dominant case B = 10.
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Figure 9. Correlations of velocity for isotropic turbulence, computed from KS:
, vertical; , horizontal.

pure rotation, especially in the simplest case α = 1, where �33(0, t) at N 	= 0 is an
integral derived from (4.9) by only replacing 2Ωµ by σ . Nevertheless, its evolution
exhibits a plateau only if N 	= 0, illustrating the strong sensitivity of the integral to
the mathematical form of the dispersion law.
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Figure 10. One-particle non-dimensional diffusion for pure rotation (B = ∞), vertical
Ω2�33/u

′2 ( ) and horizontal Ω2�11/u
′2 ( ). The thin lines (extending to

Ωt/π ≃ 1000) show results obtained with KS, with two different values of the Rossby
number, Ro = 0.08 and 0.04; in each set, the horizontal dispersion is the lowest of the two.
Heavy lines indicate analytical RDT with the simplified Corrsin hypothesis ( , vertical
dispersion; , horizontal dispersion), and DNS results, identified on the close-up plot (b)
by a black circle for the vertical dispersion, and an open circle for the horizontal dispersion.
On the large-scale plot (a), the t2 and t laws are easily identified, respectively at short and
long times.

Looking at its horizontal counterpart, the leading term, which is obtained by
replacing (4.7) in (2.2) and invoking the simplified Corrsin hypothesis, shows that

the square of the horizontal displacement is proportional to [
∫ 1

0
F (B, µ) dµ]t2. Such

a ‘ballistic’ behaviour in the horizontal direction, already found by Kaneda (2000),
disagrees with KS results with λ = 1, which exhibit an eventual Brownian behaviour
at largest time (Nicolleau & Vassilicos 2003), and preliminary DNS results tend to
confirm this KS long-time behaviour, although many more runs would be needed for
a complete confirmation.

In figure 11, we collect all the analytical results obtained from RDT with the
simplified Corrsin hypothesis. An interesting feature is the presence of a transient t

zone, and the larger the B the larger the zone, although the t2 law always ‘catches
up’, except for the pure rotation case. Horizontal dispersion in DNS contains hints
of this transient t zone, in the same B range, although the time duration of this zone
is much shorter.

6.3. Physical discussion

When the dynamics is not completely dominated by rapid oscillations connected to
dispersive waves, the analytical procedure only captures a ‘ballistic’ regime at larger
times, since quasi-steady motion prevails. This is the case for the non-rotating non-
stratified flow, in which inviscid RDT yields only pure steady Eulerian correlations.
It is also the case for horizontal dispersion for N 	= 0, since the pure divergence-free
horizontal velocity field, which contributes to the quasi-geostrophic mode, disperses
the particles with increasing r.m.s. displacement at increasing Nt. This effect only
leads to a ‘ballistic’ regime when predicted by our analytical procedure, but to a
more realistic ‘Brownian’ regime with KS (especially with λ = 1), and DNS seems to
support the latter results.

Only in the case of pure rotation, N = 0, are all components only altered by
dispersive inertial waves. Not surprisingly, the analytical procedure and KS at λ = 0
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Figure 11. One-particle diffusion �11(t) = �22(t) calculated with analytical RDT, using the
simplified Corrsin hypothesis, for the different parameter cases: , B = 0; ,
B = 1/10; , B = 1; · · · , B = 10; , B = ∞. The two segments show t and t2

power laws.

and λ = 1 are in agreement in this case in predicting a ‘Brownian’ behaviour with
a constant ratio of the smaller horizontal diffusivity to the vertical diffusivity. The
level of the turbulent diffusion obtained in KS depends on the Rossby and Reynolds
numbers, in a way which is briefly mentioned in the next section.

Crude scaling arguments based on the Rossby radius, often used in rotating flows,
yield the wrong conclusion that for horizontal dispersion a plateau may be expected
(see for instance the sketch in figure 18 in Jacquin et al. 1990). When the nonlinearity is
important, however, it could have a different impact on the vertical and on horizontal
diffusivities in pure rotation, a problem which remains open and which motivates
future refined DNS calculations.

Finally, it is important to underline that the theoretical and computational tools
used here are completely different from the Lagrangian stochastic models. For
instance, the classical approach for diffusion in stratified fluids by Csanady (1964)
uses a stochastic model in which the pressure is treated as a random force, in contrast
with our KS, RDT, and pseudo-spectral DNS approaches, where the pressure field is
naturally accounted for by the divergenceless property of the whole flow.

7. Concluding remarks

Using analytical linearized theory, the stochastic kinematic simulation model (KS),
direct numerical simulations, and comparisons thereof, we have drawn conclusions
pertaining to the validity of Corrsin’s hypothesis in stably stratified/rotating turbulent
flows, and to the diffusion laws, summed up as follows.

We begin with our evaluation of the simplified Corrsin hypothesis by KS.
(i) We find that this hypothesis is always valid in the vertical direction, irrespective

of the value of B , and for both λ = 0 and λ = 1.
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(ii) In the horizontal direction, Eulerian two-time velocity correlations decay to 0
only as a result of nonlinearity (i.e. when λ = 1 which models the decorrelation due
to Navier–Stokes nonlinearity) when B is not infinite. When B = ∞, the horizontal
Eulerian two-time correlations decay to zero as a result of the dispersivity of inertial
waves (and therefore for both λ = 0 and λ = 1). In the presence of stratification
(i.e. at finite values of B) part of horizontal motion is not affected by inertia–gravity
waves, so that the horizontal Eulerian two-time correlations do not decay to zero
except when the effect of decorrelation by Navier–Stokes nonlinearity is factored
into the KS model by λ = 1. However, Lagrangian two-time velocity correlations
decay to 0 even when the nonlinearity of the velocity field is severely depleted, that
is even when λ = 0 in KS, because of the time-decorrelation that is inherent in the
integration of particle trajectories. Hence, the simplified Corrsin hypothesis is not
valid in the horizontal when the nonlinearity is depleted in the flow itself. In the
rotating case without stratification, the simplified Corrsin hypothesis is always valid
in the horizontal as a result of the dispersive inertial waves that affect the whole flow.

Our DNS results do not invalidate the simplified Corrsin hypothesis in the vertical
in all cases of stratification with or without rotation. These results are not conclusive
for the case of pure rotation in the vertical direction. In the horizontal direction,
all our DNS runs with dominant stratification show that the simplified Corrsin
hypothesis fails after a short time. This might suggest that the impact of Navier–
Stokes nonlinearity on the validity of this hypothesis is complex and not easy to
model: the simple nonlinear model incorporated in KS through random frequencies,
with λ = 1, seems to be sufficient to validate the simplified Corrsin hypothesis for
horizontal motion, but DNS results are not in agreement for long enough time.
Long-time behaviour being the hardest to compute accurately both in KS and DNS
of rotating and/or stratified turbulence (and in fact more so in DNS), we chose to
take a careful stance and not draw definitive conclusions from this failure of DNS to
fully support the simplified Corrsin hypothesis in the horizontal direction.

It is a direct consequence of Taylor’s (1921) relation that any mechanical effect
producing negative loops in two-time Lagrangian correlations can reduce turbulent
diffusion. In the context of this paper, these effects are caused by the stratification
and/or rotation and are modulated, sometimes even prevented, by wave dispersivity.
Accordingly, concerning anisotropic diffusivity, we have observed the following.

(i) In the case of rotation without stratification, RDT and the simplified Corrsin
hypothesis along with Taylor’s (1921) relation imply that both the horizontal and
vertical diffusion is Brownian for long times and ballistic for short times and that
the ratio of the vertical to the horizontal turbulent diffusivities is 2. KS confirms
the ballistic and Brownian behaviours, as well as the ratio 2, but predicts a different
scaling which depends on both the Rossby and Reynolds numbers. KS results suggest
a scaling of 〈x̃2〉/L2 ∼ Ro2u′t/L (Nicolleau & Vassilicos 2003), in contrast to the
Ro u′t/L dependence which derives from the analytical relationship (4.13).

(ii) In the case of stratification with or without rotation, RDT and the simplified
Corrsin hypothesis along with Taylor’s (1921) relation imply that the horizontal
diffusion is ballistic for short and long times with a Brownian behaviour in between.
This theory predicts that the vertical diffusion is depleted at long times (still ballistic
at short ones) to the point there being a zero vertical turbulent diffusivity if the effects
of molecular diffusivity are neglected. These results are in agreement with those of
the KS with λ = 0 of Nicolleau & Vassilicos (2003). Their KS with λ = 1 leads to the
same results except in the horizontal direction where they find a Brownian long-term
behaviour of turbulent diffusion. This distinction between KS results for λ = 1 and
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λ = 0 is in keeping with the fact that the simplified Corrsin hypothesis is validated
by KS in the horizontal for λ = 1 but not for λ = 0.

J. C. V. acknowledges support from the Royal Society. Direct numerical simulations
were performed on the Fujitsu VPP5000 of CEA, thanks to computing time allocated
by the “Centre Grenoblois de Calcul Vectoriel.”

Appendix. Analytical or semi-analytical results for damped oscillations

The Craya–Herring frame of reference is defined by

e1 =
k × n

|k × n| , e2 =
k

k
× e1, e3 =

k

k
, (A 1)

except for k‖n, where it coincides with the fixed frame of reference. Note that the
spectral components of the velocity/temperature vector ŵ = ŵ1e1 + ŵ2e2 + ŵ3e3

written in this frame have counterparts in physical space which can be directly
associated with the oscillating motion and the potential vorticity. Accordingly, w2

represents twice the total, kinetic + potential, energy.
From (4.3), (4.4) and (4.5) one finds

Vii(k, t, t ′) =
E(k, 0)

8πk2

[

1 − (1 − α)
σ 2

r

σ 2
+

(

2 − (1 − α)
σ 2

s

σ 2

)

cos σ (t − t ′)

]

. (A 2)

From (A 1) û3 = ŵ2e
2
3 and ŵ3 = iN−1b̂, with ni = δi3, e1

3 = 0 and e2
3 = − sin θk .

From (4.3) ŵ2 = ŵt=0
2 cos σ t − (σrŵ

t=0
1 + σsŵ

t=0
3 ) sin σ t/σ , so that using (4.4) and

(4.5)

V22(k, t, t ′) =
E

8πk2

[

cos σ t cos σ t ′ +
σ 2

r + ασ 2
s

σ 2
sin σ t sin σ t ′

]

, (A 3)

from which the integrand of (4.6), or (1 − µ2)V22, is derived. From ŵ3 = ŵt=0
1 σrσs/

σ 2(cos σ t − 1) + ŵt=0
3 (σ 2

r + σ 2
s cos σ t)/σ 2 + ŵt=0

2 (σs/σ ) sin σ t one obtains

V33(k, t, t ′) =
E

8πk2

[

H (B, x) − (1 − α)
σ 2

r σ 2
s

σ 4
(cos σ t + cos σ t ′)

+ L(B, x) cos σ t cos σ t ′ +
σ 2

s

σ 2
sin σ t sin σ t ′

]

. (A 4)

Finally, V11 is obtained by subtracting (A 3) and (A 4) from (A 2), so that

V11(k, t, t ′) =
E

8πk2

[

F (B, µ) + (1 − α)
σ 2

r σ 2
s

σ 4
(cos σ t + cos σ t ′)

+ C(B, µ) cos σ t cos σ t ′ +
σ 2

r

σ 2
sin σ t sin σ t ′

]

, (A 5)

with

H (B, µ) = σ 2
r

(

σ 2
s + ασ 2

r

)/

σ 4, L(B, µ) = σ 2
s

(

σ 2
r + ασ 2

s

)/

σ 4

F (B, µ) = σ 2
s

(

σ 2
s + ασ 2

r

)/

σ 4, C(B, µ) = σ 2
r

(

σ 2
r + ασ 2

s

)/

σ 4,

}

(A 6)

and (4.7) is derived from its integrand V11 + µ2V22.
Only single-time correlations for t ′ = t are considered from here on. In RDT results

for single-time Eulerian correlations, we shall take advantage of two conservation
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laws: conservation of total energy in any orthonormal frame of reference w∗
i wi =

∑

ǫ=0,±1 ξ ǫ∗ξ ǫ , and conservation of QG energy ξ 0∗ξ 0.

Finally 〈u2
3〉 and 〈b2〉 are given by integrals over the angular variable µ. Their history

shows damped oscillations (due to the integral of emiσ t , m = ±1, ±2) and constant
terms (m = 0 due to contributions from ξ 0∗ξ 0, ξ 1∗ξ 1, ξ−1∗ξ−1). Hence, at least the
asymptotic values can be analytically calculated. Of course, other simplifications
due to semi-axisymmetry (axisymmetry without mirror symmetry) have to be used
(〈u2

1〉 = 〈u2
2〉, etc.), as well as optimal sums and differences of solution equations.

Reynolds stress components and buoyancy variance are

〈

u2
3

〉

=
2Ekin(0)

3
[P + (1 − α)fv(Nt, B)] (A 7)

N−2〈b2〉 =
2Ekin(0)

3
[Q + (1 − α)fb(Nt, B)] (A 8)

〈

u2
1

〉

+
〈

u2
2

〉

=
2Ekin(0)

3
[3(1 + α/2) − P − Q − (1 − α)(fv(Nt, B) + fb(Nt, B))] (A 9)

with

P =
3

4

∫ 1

0

1 − µ2

B2µ2 + (1 − µ2)
[2B2µ2 + (1 − µ2)(1 + α)] dµ, (A 10)

Q =
3

4

∫ 1

0

(

1 − (1 − α)
B4µ4 + (1 − µ2)2/2

(B2µ2 + 1 − µ2)2

)

dµ, (A 11)

fv(Nt, B) =
3

4

∫ 1

0

(1 − µ2)2

B2µ2 + (1 − µ2)
cos[2Nt

√

B2µ2 + (1 − µ2)] dµ, (A 12)

fb(Nt, B) = −3

4

∫ 1

0

(

(1 − µ2)2

2(B2µ2 + 1 − µ2)2
cos[2Nt

√

B2µ2 + (1 − µ2)]

+
2B2µ2(1 − µ2)

(B2µ2 + 1 − µ2)2
cos[Nt

√

B2µ2 + (1 − µ2)]

)

dµ. (A 13)

P (α, B) and Q(α, B) are easy to calculate, especially for B = 0 (no rotation), B = 1
(no wave dispersivity), pure rotation (singular case). For instance P = (1 + α)/2 for
B = 0, and P = (3 + 2α)/5 for B = 1. The function f (Nt, B) can be shown to give
damped oscillations.
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