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Abstract—Extra mixing of matter in stellar interiors at the boundaries of the convective cores of main-
sequence stars is considered for the first time using the physical model of turbulent entrainment developed
by Arnett and collaborators based on three-dimensional hydrodynamical simulations. The model takes
into account the energy that goes into mixing the matter of the convective core and layers stable against
convection located above the core. It is shown that the extent of the region of extra mixing expressed
in units of the pressure scale height is not constant, and decreases as the star evolves along the main
sequence. Adequate allowance for extra mixing at the boundaries of convective cores is necessary to clarify
the relative importance of different mixing mechanisms in stellar interiors, as well as to determine stellar
parameters using asteroseismlogy.
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1. INTRODUCTION

It is well known that one of the most important
characteristics of a star—its luminosity—is deter-
mined by the stellar mass and chemical composition.
The chemical composition of a star varies due to
nuclear reactions occurring in the stellar interior. In
the main-sequence stage, hydrogen is converted into
helium in the central regions of the star. The increase
in the helium abundance decreases the opacity of the
stellar matter, which, in turn, increases the stellar
luminosity. The total increase in the stellar luminosity
during the main-sequence lifetime is determined by
the total mass of hydrogen converted into helium. In
standard models for stellar evolution, this mass is de-
termined by the dimensions of the convective region
in the stellar interior. As was shown by the earliest
large-scale computations of the stellar evolution on
the main sequence, the calculated increase in the
stellar luminosity is lower than the observed increase
for stars in open clusters [1–3].

The motion of matter in the zone of convective
instability has a turbulent character. A turbulent flow
moving upward spreads in the horizontal plane in the
vicinity of the boundary of the turbulent region and
then descends, flowing around the upward-moving
stream. In the region of horizontal flow, the velocities
of the different horizontal layers varies in the vertical
direction. This shear flow catches up superposed
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layers stable to convection into the motion, bringing
their matter into the turbulent region.

In the stellar interior, the matter of layers that are
unstable to convection located in central and close to
central regions of the star is enriched in the products
of nuclear fusion, is well mixed, and differs from the
matter of the superposed layers in its higher molar
mass. Therefore, mixing of matter in the regions of
convective turbulence and matter in the superposed
stable regions increases the gravitational potential
energy of these layers, which is possible only due to
the kinetic energy in the shear turbulent flow close to
the boundary between the convective, turbulent re-
gion and stable regions. This boundary moves along
the stable layers of matter as a result of the continual
involvement of new layers in the turbulent motion.
This increases the mass of hydrogen available for
nuclear fusion, thereby facilitating a larger increase
in the stellar luminosity on the main sequence. The
velocity of the boundary and the distance it moves are
determined by the ratio of the excess kinetic energy
in the shear turbulent flow close to the boundary and
the variation of the potential energy resulting from
the involvement of new layers in the turbulent mo-
tion. The growth of the extent of the stable layers
involved in the turbulent motion must balance the
growth of the potential energy associated with the
equalization of the chemical compositions of these
and underlaying layers. Since the kinetic energy of
the turbulent motion that can go into increasing the
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potential energy is limited, the extent of the layers that
can be involved in the turbulent motion is also limited.

There is no theoretical model for the well known
qualitative picture of turbulent entrainment described
above. Therefore, the possible inclusion of stable,
circum-boundary regions into the zone of convective
turbulence has long been described using the param-
eter α: d = αHP , where d is the distance between
the boundaries of the regions of convective insta-
bility and convective turbulence and HP is pressure
scale height. For example, for achieve agreement
between the computed and observed increase of the
stellar luminosity on the main sequence invoking tur-
bulent entrainment alone, the parameter α must be
∼(0.15−0.17) [1].

Another possible way to study the properties of
stellar cores is analysis of the gravitational modes of
the pulsations of variable stars. The most interesting
objects for this purpose are main-sequence B stars.
The frequency spectrum of the pulsations of these
stars does not contain solar-type oscillations, and
instead contains p and g modes of pulsations exited
by the κ mechanism. The identification of the fre-
quency spectrum and determination of the degree and
azimuthal number of the mode using multicolor pho-
tometry and spectroscopy are simplest for these stars.
Seismological parameters of several main-sequence
B stars have been determined by fitting the computed
and observed frequency spectra (Table 1). The pa-
rameter α can vary over a fairly broad range, both for
a particular star and for an ensemble of stars. The
observed frequency spectra for HD 180642, 12 Lac,
and ν Eri can also be obtained numerically for α = 0.
For the rest of the listed stars, α > 0. The largest
value of α was found for the close binary θ Oph.

The progress of computational hydrodynamics
over the last several decades has enabled direct
numerical simulations of complex hydrodynamic
processes under astrophysical conditions. Three-
dimensional numerical modeling of the flow at the
boundary between the zone of convective turbulence
and the overlying stable zones has confirmed the
existence of turbulent entrainment in stellar interi-
ors [13]. Computations were made for part of the
convective core and the adjacent superposed stellar
layer for a 23M� star with a hydrogen-burning core
and for a convective, carbon-burning shell with stable
underlying and overlying layers for the same mass
star. The extent of the computational domain in the
vertical direction was ∼5HP in the former case and
∼3HP in the latter case. The dimensions of the
computational domain in the two other directions
exceeded the size of the largest turbulent vortices.

The time integrations are limited by the time for a
sound wave to cross the computational domain. The

velocity of the convective motions in the core is rela-
tively low; for this reason, the luminosity at the lower
boundary of the computational domain was artifi-
cially increased by an order of magnitude. This made
it possible to cover five typical turbulence turnover
times. The computations for the carbon-burning
shell covered eight typical turbulence turnover times.
In each case, a solution that can be considered to
represent an equilibrium in a statistical sense was
achieved in a time that was shorter than the con-
vective turnover time. These numerical results made
it possible, for the first time, to formulate a model
for turbulent entrainment at the boundaries of con-
vective zones in stellar interiors that can be applied
to traditional one-dimensional (1D) stellar-evolution
computations [13–15].

In the present study, we investigate the mixing
of matter at the boundary of the convective zone
in the central region of a star using the turbulent-
entrainment model developed in [13–15].

2. BASIC EQUATIONS

The velocity Ve of the penetration of the convec-
tive-turbulence boundary into the stable layers is de-
termined by the turbulent-entrainment law

Ve/Vt = ARi−n
B , (1)

where the bulk Richardson number RiB has the form

RiB =
�b�

V 2
t

, (2)

Vt is the typical value of turbulent velocity pulsations,
and � is the largest scale for the turbulence. If the
excess kinetic energy in the turbulent flow that is
responsible for increasing the potential energy of the
mixed stellar layers is determined in the immediate
vicinity of the boundary of the region of convective
turbulence, the power n in the turbulent-entrainment
law should be unity [16].

According to Meakin and Arnett [13], the chemi-
cally homogeneous zone of convective turbulence and
neighboring stellar layers are separated by a boundary
layer with a thickness h ∼ 2Vc/N , where Vc is the
convective velocity and N is the buoyancy frequency,
which is given by the expression

N2 =
gδ

HP
(�ad −� + �μ/δ),

where g is the free-fall acceleration, � the tempera-
ture gradient, �ad the adiabatic temperature gradi-
ent, �μ the gradient of the mean molar mass, δ =
(4− 3β)/β, and β is the ratio of the radiation pressure
to the total pressure. The buoyancy jump �b is
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Table 1. Seismological parameters of stars

Star Spectrum M , M� Xc α Ref.

HD 46202 O9V ∼24 ∼0.58 0.05–0.15 [4]

β CMa B1II–III 13.0–14.2 0.11–0.13 0.15–0.25 [5]

HD180642 B1.5II–III 11.4–11.8 0.21–0.25 0.00–0.05 [6]

δ Cet B2IV 10.0–10.4 ∼0.25 0.15–0.25 [7]

θ Oph B2IV 7.9–8.5 0.36–0.40 0.37–0.51 [8]

12 Lac B2III 10.0–14.4 0.13–0.21 0.00–0.40 [9]

ν Eri B2III 9.0–9.9 0.24–0.27 0.00–0.10 [10]

HD 129929 B3V ∼9.35 ∼0.35 0.05–0.15 [11]

HD 50230 B3V ∼7.0 ∼0.28 0.20–0.30 [12]

determined by integrating over a distance equal to the
thickness of the boundary layer:

�b =
∫

h

N2dr. (3)

The values of the variables in the turbulent-entrain-
ment law Ve, Vt, �b, and � were found via three-
dimensional (3D) numerical simulations of the flow
hydrodynamics in the vicinity of the boundary layer of
the convective core in the central hydrogen-burning
stage, and in the vicinity of the lower and upper
boundary layers of the convective, carbon-burning
shell. Using these values, Meakin and Arnett [13]
found the parameters of the turbulent-entrainment
law n = 1.05 ± 0.21 and log A = 0.027 ± 0.38.

Analysis of the numerical data on the dynamics of
the motion in the turbulent convection zone obtained
in [13] led to the conclusion [15] that the rate of dis-
sipation of the kinetic energy of the turbulent motions
in the convective-turbulence zones in stellar interiors
εk can be described by the well-known Kolmogorov
relation [17]:

εk =
V 3

t

�
. (4)

A method for computing the rate of dissipation
of the kinetic energy based on data from 1D stellar
models, without 3D hydrodynamic simulations, was
proposed in [14]. The rate of dissipation of the kinetic
energy is related to the specific kinetic energy Ek,iso,
which is determined from the isotropic component of
the turbulent-flow velocity:

εk =
(2Ek,iso)2/3

HP
. (5)

If the average rate of the entropy variation 〈ṡ〉m is
defined as

〈ṡ〉m =
〈εn + εk〉m

〈T 〉m
, (6)

where the averaging is performed over the mass of gas
m supposed to be involved in the convective turbu-
lence, εn is the rate of nuclear energy generation, T
is the temperature, and averaged values are shown in
angular brackets 〈. . .〉, the convective luminosity Lc

can be found from the formula:

Lc(m̃) = ξ

∫

m̃

(εn + εk − T 〈ṡ〉m)dm′, (7)

and the flux of kinetic energy in the turbulent region
Lk from the formula:

Lk(m̃) =
∫

m̃

(Lc �ad
dr′

HP
− εkdm′). (8)

The isotropic component of the specific kinetic energy
of the turbulent flow Ek,iso is approximately constant
over the region of convective turbulence. The value
of Ek,iso can be found by requiring the kinetic-energy
flux to vanish at the boundary of the convective tur-
bulence, Lk(m) = 0.

The largest turbulence scale � in (2) is equal to
�Ri ∼ 0.15HP − 0.18HP for the convective core and
the upper boundary of the convective shell [13], while
�ε ∼ HP in (4) for the convective shell [15]. Thus, the
values of � in (2) and (4) may differ.

Knowing the stellar structure, it is possible to
determine the buoyancy jump �b at the boundary of
the region of convective instability (3) and the rate
of dissipation of the kinetic energy εk [see (5)–(8)].
Specifying � in (2) and (4), it is possible to find the
rate of penetration of the boundary of the region of
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convective turbulence Ve using (1), (2), and (4). The
distance d over which this boundary shifts during an
evolutionary time step �t is given by

d = Ve � t. (9)

After determining the position of the boundary of the
region of convective turbulence, the chemical compo-
sition inside this region is equated to a homogeneous
composition.

In our present study, the mixing of matter at
the boundary of the convective cores of 16 and
24M� main-sequence stars is investigated using
the turbulent-entrainment model described above.
The computations were carried out using the code
described in [18], with the modifications [19]. The
initial stellar chemical composition was specified to be
close to the solar composition: (X,Z) = (0.70, 0.02),
where X and Z are the mass abundances of hydrogen
and heavy elements. The opacity tables [20] were
used for high-temperature regions (log T ≥ 4.0), and
the opacity tables [21] for low-temperature regions
(log T < 4.0). The velocity of the boundary of the
region of convective turbulence in the overlying layers
Ve is determined by the turbulent entrainment law (1),
and the parameter n was specified to be equal to the
value derived in [13] for physical conditions typical for
stellar interiors. This value of n is essentially equal to
unity in our case, as should be the case based on the
condition of energy balance [16]. The value of A can
be very different for laboratory and geophysical turbu-
lent entrainment [22]. The velocity of the convective
turbulence boundary motion is also determined by the
largest turbulence scale. Assuming that the values of
� in (2) and (4) are different, after substituting (2)
and (4) into (1), we obtain in the expression for the

velocity the factor �
(2n+1)/3
ε /�n

Ri. In the present paper,
the value of � is specified to be 0.10HP in both (2) and
(4). Any inaccuracy in Ve due to this choice of � is
compensated by the parameter A, which is fitted so
as to satisfy asteroseismology data.

3. RESULTS OF THE COMPUTATIONS

Formula (7) for computing the convective lumi-
nosity for the case of a carbon-burning convective
shell was suggested in [14]. Radiative transfer is
inefficient in such a shell, and ξ = 1. Radiative trans-
fer plays an appreciable role in energy transport in
the convective core in the central hydrogen-burning
stage of a massive star. For this reason, we added to
(7) the factor

ξ =
1
m

m∫

0

(
1 − �ad

�

)
dm′,

where m is the mass of the region unstable to con-
vection and the integrand is the ratio of the convec-
tive and total luminosities (according to the mixing-
length theory [23]) as a function of the Lagrangian
variable m′. The convective luminosities in the cores
of 16 and 24M� stars computed using (7) differ from
the luminosities computed according to the mixing-
length theory by less than 20%, independent of the
hydrogen abundance in the convective core (Fig. 1).
The mixing-length theory is a simplified crude model
for the convection intended for use in computing the
convective energy flux [23]. In this model, the real
flux of matter in the convective region of the star
is replaced by radial motions of identical convective
elements. Computation of the convective energy flux
requires assumptions about the values of several pa-
rameters: the fraction of the work done by the buoy-
ancy force that goes into accelerating the convective
element, the distance traveled by the element before it
loses its identity, the correlation coefficient for fluc-
tuations of the temperature and velocity, and some
others. The computed average values of these param-
eters differ from the typical values adopted in mixing-
length theory by tens of percent, and may depend on
the depth of the convective zone [13]. Therefore, the
convective energy flux provided by the mixing-length
theory is not completely accurate.

Substituting (1), (2), and (4) into (9) yields an
expression for the dependence of the distance d be-
tween the boundaries of the regions of convective
instability and convective turbulence on the hydrogen
abundance in the region of convective turbulence Xc:

d(Xc) = A
V 2n+1

t (Xc)
�n

�t

[�b(Xc,�t)]n
.

The formation of the buoyancy jump can be traced
in real time in laboratory experiments and 3D hydro-
dynamic computations. Theoretical studies of stellar
evolution are carried out by computing sequences
of stellar models in hydrostatic equilibrium for dis-
crete times separated by fairly large time steps. The
buoyancy jump �b(Xc,�t) is then determined by the
characteristics of the stellar model, and depends on
the time step. Let d(Xc) and dq(Xc) be computed
for different time steps �t and �t/q. The distance
between the boundaries of the regions of convective
instability and convective turbulence does not depend
on the time step (i.e., d(Xc) = dq(Xc)) if[

�b(Xc,�t)
�b(Xc,�t/q)

]n

= q. (10)

For example, if q = 2, the ratio �b(Xc,�t)/
�b(Xc,�t/q) does not depend on the time step dur-
ing the entire time for the evolution of the star along
the main sequence if the time step is bounded from
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Fig. 1. Convective luminosity in the cores of 24M� (left) and 16M� (right) stars with hydrogen abundances in the zone of
convective turbulence Xc = 0.7 (upper row), Xc = 0.4 (middle row), and Xc = 0.1 (lower row), computed using (7) (solid
curve) and mixing-length theory (dotted curve).

above, with this limitation being stricter in advanced
phases than in the early phases of the main-sequence
evolution (Fig. 2). This ratio also does not depend on
the index n in the turbulent-entrainment law (1) and
on whether or not mixing of matter located between
the boundaries of the regions of convective instability
and convective turbulence and matter located in the
region unstable to convection is taken into account.

The condition (10) is satisfied for n = 1 only.
Computations of the main-sequence evolution of a
24 M� star for this case were performed with an
appropriate upper limit for the time step, depending
on the hydrogen abundance in the region of convec-
tive turbulence. The parameter A was fitted in order
to ensure that α(Xc) = d(Xc)/Hp(Xc) was equal
to 0.10 in the zero-age model; here, Hp(Xc) was
determined at the boundary of the region unstable
to convection. The parameter α(Xc) does not remain
constant, and gradually decreases as the star evolves
along the main sequence (Fig. 3). By substituting (1),
(2), and (4) into (9), we find for n = 1

d(Xc) = A
εk(Xc)

�b(Xc)/ � t
.

The rate of hydrogen depletion in the central region
of the star increases as the star evolves, due to the
increased luminosity. On the contrary, the region

of convective instability in the center of the star de-
creases (Fig. 1). Therefore, the rate of formation of the
buoyancy jump at the boundary of the region unstable
to convection �b(Xc)/ � t increases with time, as
the hydrogen abundance in the zone of convective
turbulence decreases (Fig. 4a). The increase of the
rate of hydrogen depletion also leads to an increase
in the convection velocity (Fig. 4a), and therefore to
an increase in the turbulent velocity pulsations Vt and
the convective luminosity (Fig. 1) with time, as the
star evolves. The increase in Vt means that the kinetic
energy of the convective turbulence that goes into
mixing the matter of the turbulent region and adjacent
regions that are unstable to convection increases. In
the turbulent-entrainment model considered, the typ-
ical value of the turbulent velocity pulsations Vt is de-
termined by (4). The rate of dissipation of the kinetic
energy of the turbulent motions εk(Xc) is computed
directly from the stellar model. Therefore, in this
turbulent-entrainment model, the kinetic energy that
goes into mixing can be indirectly characterized by
the value of εk(Xc). The rate of dissipation of εk(Xc)
increases as the star evolves, but this increase does
not compensate the increase in the rate of growth of
the buoyancy jump (Fig. 4a). For this reason, the
distance d(Xc) between the boundaries of the regions
of convective instability and of convective turbulence

ASTRONOMY REPORTS Vol. 57 No. 5 2013
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normalized to the value for �b0 obtained in the first evolutionary model for each time step.
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Fig. 3. Dependence of the distance α between the boundaries of the regions of convective instability and convective turbulence
at the center of a 24M� main-sequence star in units of the pressure scale height on the hydrogen abundance Xc in the region
of convective turbulence. The dependence computed using the physical turbulent-entrainment model is shown by solid curves
for n = 0.85 (upper), n = 1.00 (middle), and n = 1.20 (lower). The squares show the dependence for n = 1.00, with the
convective luminosity computed using mixing-length theory. The dashed curve shows the dependence when the turbulent
pulsations of the velocity are equal to the average velocity of convective elements in the boundary convective layer with a
thickness Hp, determined based on mixing-length theory. The average value of α (circle) and the range of its possible values
(vertical bar) were determined for the 24M� star HD 46202 using asteroseismology methods [4].
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Fig. 4. (a) Velocity of formation of the buoyancy jump (solid) and the rate of dissipation of the kinetic energy of the convective
turbulence (dashed) at the boundary of the zone unstable to convection and the cube of the average convective velocity
computed using mixing-length theory for the boundary layer with a thickness Hp (dotted). (b) Distance d between the
boundaries of the regions of convective instability and convective turbulence (solid) and the pressure scale height at the
boundary of the region unstable to convection (dotted). These computations were carried out for a 24M� star and n = 1.00.
All values are normalized to their zero-age model values.

decreases as the star evolves. This distance should
also decrease when α is assumed to be constant, since
Hp(Xc) also decreases as the star evolves. However,
if the energy that goes into mixing is also considered,
d(Xc) diminishes more rapidly than Hp(Xc) (see
Fig. 4b). Therefore, α(Xc) also decreases with time,
as the hydrogen abundance in the region of convective
turbulence decreases.

The seismological parameters of the stars were
derived using models computed assuming that α re-
mains constant during the star’s evolution along the
main sequence. Most of the stars studied are in
advanced stages of their main-sequence evolution
and have reduced central hydrogen abundances Xc ≤
0.35 (Table 1). Since α(Xc) varies during the star’s
evolution, the values α obtained for these stars can-
not be used to determine A. Unfortunately, α0 has
been determined for only one weakly evolved star—
HD46202. The mass measured from seismology data
and the age of this star are 24M� and 2 Myr [4].
The hydrogen abundance in the convective turbu-
lence zone of a star of this mass and age is ∼0.58.
The chosen value of A was based on the seismological
value of α0 for this star (Fig. 3).

The evolution of one 24M� star was studied for the
case when, in the calculation of the rate of dissipation
of the kinetic energy of the turbulent motion εk(Xc),
the convective luminosity was calculated based on
mixing-length theory rather than (7). In this case,
the value of εk(Xc) was ∼20% larger than when (7)

was used during the entire main-sequence stage. The
parameter A was fit such that the zero-age model
had α0 = 0.10, and it turned out to be ∼20% lower
than when (7) was used. The computed dependence
α(Xc) essentially does not differ (Fig. 3) from the one
obtained when (7) was used to determine εk(Xc).

The typical value of the turbulent velocity pulsa-
tions Vt at the boundary of the region of convec-
tive turbulence is comparable to the radial compo-
nent of the velocity of the convective flow [13]. The
evolution of one 24M� star was studied assuming
that Vt was equal to the average convective velocity
derived using mixing-length theory, for a layer with
a thickness of Hp adjacent to the boundary of the
region unstable to convection. At the beginning of
the main-sequence evolution, this average value is
∼2 × 104 cm/s. The radial component of the con-
vective velocity at the boundary of the region unstable
to convection found in [13] is an order of magnitude
higher (∼2 × 105 cm/s), since the luminosity at the
bottom of the computational domain was artificially
enhanced. It was not necessary to compute the rate
of dissipation of the kinetic energy of the turbulent
motions εk(Xc) for the stellar evolution considered
here. The velocity Ve can be found from (1), (2), and
(3). In this case, the parameter α(Xc) also decreases
as the star evolves (Fig. 3), since the increase in the
convective velocity does not balance the increase in
the rate of formation of the buoyancy jump (Fig. 4a).
The turbulent pulsations of the velocity determined
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using (4) comprise ∼1.6 × 104 cm/s at the beginning
of the star’s evolution along the main sequence, and
do not exceed the average convective velocity during
the entire main-sequence stage. In the case consid-
ered, the parameter α(Xc) remains larger than when
the typical velocity of the turbulent motions is derived
using (4).

If n 	= 1, condition (10) is not satisfied. However,
since the ratio �b(Xc,�t)/ � b(Xc,�t/q) does not
depend on the time step for small enough �t for such
values of n, it is possible to compute α(Xc), which
does not depend on the choice of time step (Fig. 3).
This requires that the stellar evolution be compuated
with a constant time step, and the parameter A must
be adjusted at every time step so as to satisfy the
requirement that α0 has the chosen value in the zero-
age model. If condition (10) is not satisfied for n 	= 1,
A becomes a formal fitting parameter.

Turbulent entrainment at the boundary of the
main-sequence convective core changes the profile
of the hydrogen distribution in the zone of variable
chemical composition, resulting in an increase of the
mass of synthesized helium and an increase in the
main-sequence lifetime compared to the standard
case. For comparison, we computed the evolution
of a 24M� star with constant values αc = 0.05 and
αc = 0.10. The hydrogen profile that forms during
the evolution beyond the boundary of the region of
convective instability depends on the index n in the
turbulent-entrainment law, and is flatter than in the
standard case and in the case of constant αc (Fig. 5).
With fixed α0, the increase of the mass of hydrogen
burnt to form helium and of the stellar lifetime also
depend on n (Table 2).

The seismological values of α for the stars studied
display a large scatter (Table 1). Further, the possible
values of α for stars with close masses do not overlap
(for instance, in the pairs β CMa and HD 180642
or δ Cet and ν Eri). The mass of the convective
core of the main-sequence star may also increase
compared to the standard case due to the influx of
matter from its radiative envelope because of shear
mixing due to rotation [24]. The flux of hydrogen
from the radiative turbulent envelope into the con-
vective core has its maximum in the second half of
the star’s evolution along the main sequence [25].
The intensity of hydrodynamic transport processes in
the non-convective layers of a star is determined by
the momentum and Schmidt number in the turbulent
radiative envelope [25, 26], and can be different for
stars of the same mass. For example, the mass of the
chemically homogeneous region in the central part of
the star during the second half of its main-sequence
evolution is determined by the combined action of
turbulent entrainment and shear turbulence, and can
be different for stars of the same mass. If stellar

Table 2. Increase in the mass of synthesized helium and
the main-sequence lifetime for a 24M� star in the physical
turbulent-entrainment model with α0 = 0.10 and in the
model with αc = constant

Value αc = 0.05
α0 = 0.10

αc = 0.10
n = 1.20 n = 1.00 n = 0.85

ΔM 4.5% 7.0% 7.5% 7.9% 9.1%

Δt 2.6% 3.6% 4.0% 4.3% 5.0%

models in which additional mixing is accounted for
by specifying the time-invariant parameter α are used
to analyze the frequency spectrum, this can result
in different values of the latter parameter for stars of
similar mass.

The presence in the stellar interiors of a layer with
variable chemical composition located above the re-
gion of convective turbulence results in specific fea-
tures in the periods of the g modes of high order
and low degree. The deviations of the differences of
the pulsation periods for neighboring orders from the
average value vary according to a sinusoidal law. If
the hydrogen profile in the layer of variable chemical
composition is computed for a model with constant
α, the amplitude of the sinusoid is constant, while
the amplitude decreases with increasing order of the
mode when the profile is determined by turbulent
diffusion [27, 28]. Such an amplitude decline was
detected for HD 50230 [12]. The difference in the hy-
drogen profiles that are formed in the zone of variable
chemical composition if the two processes described
above are considered separately is also reflected in the
pulsation periods for low-order p and g modes [29].
However, precisely these modes were used to deter-
mine the parameter α for most stars from Table 1.
For the flatter hydrogen distribution obtained in the
zone of variable chemical composition when a phys-
ical model of turbulent entrainment is applied, the
amplitude of the variability of the deviations of the
differences between the periods of the gravitational
pulsation modes of sequential orders from the average
value may be smaller than in the case of constant
α, for the same central abundance. This variability
amplitude serves as an indicator of the stellar age
in asteroseismology. Therefore, including turbulent
entrainment should influence the seismological pa-
rameters of the stars.

The seismological values of α for the studied
stars with the highest central hydrogen abundances
(HD 46202 and HD 129929) are 0.05–0.15 (Table 1).
Having in mind these values, we computed the evolu-
tion of a 16M� star using the turbulent-entrainment
model with α0 = 0.15 and n = 0.85, 1.00, and 1.20,
as well as for the cases of constant αc = 0.10 and
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Fig. 5. Hydrogen abundance X at the center of a 24M� star. Solid curves correspond to the case when the boundary of
the convective turbulence region was determined using the turbulent-entrainment model, with n = 1.20 (upper), n = 1.00
(middle), and n = 0.85 (lower). The dashed and dot-dashed curve show the case of constant αc equal to 0.10 and 0.05,
respectively. The dotted curve shows the case when mixing occurs in the region of convective instability only.

αc = 0.15. In the model with turbulent entrainment,
the increase in the mass of hydrogen converted
into helium during the main-sequence lifetime is
lower that for the model with constant αc = 0.15
(Table. 3), which is necessary to bring the computed
and observed increases in the luminosity during this
evolutionary stage into agreement. However, the
mass of synthesized helium also increases due to
shear turbulence. For example, hydrogen from the
radiative envelope is transported into the convective
core quite intensively in the case of the fast rotation
typical for Be stars [25]. Thus, if the turbulent
Schmidt number is 0.7–0.4, the mass of helium
synthesized during the main-sequence lifetime of a
16M� star can increase by 25−50%. It is possible
that hydrogen from the radiative turbulent envelope is
also transferred into the zone of convective turbulence

Table 3. Increase in the mass of synthesized helium and
the main-sequence lifetime for a 16M� star in the physical
turbulent-entrainment model with α0 = 0.15 and in the
model with αc = constant

Value αc = 0.10
α0 = 0.15

αc = 0.15
n = 1.20 n = 1.00 n = 0.85

ΔM 14.2% 16.5% 19.0% 20.8% 23.6%

Δt 7.9% 8.9% 10.1% 11.2% 12.5%

in the case of lower rotation rates, but with a lower
intensity.

4. CONCLUSION

The distance α(Xc) between the boundaries of
the regions of convective instability and convective
turbulence derived according to the physical model
for turbulent entrainment [13–15] (expressed in the
units of the pressure scale height, as is usual in
the astrophysical literature) is not constant, and de-
creases as 16 and 24M� stars evolve along the main
sequence. The exact behavior of α(Xc) is deter-
mined by the fraction of the kinetic energy of the
convective turbulence that can go into mixing the
matter of the region of convective turbulence and the
overlying layers that are stable against convection.
In the turbulent-entrainment model considered, this
fraction is measured using the rate of dissipation of
the kinetic energy of the turbulent flow εk(Xc), which
can be computed directly using a stellar model. A
method for determining εk(Xc) was proposed in [14]
for the case of convective turbulence in a carbon-
burning shell in a 23M� star. Confident application of
the turbulent-entrainment model in computations of
stellar structure and evolution requires confirmation
of the correctness of the derivation of εk(Xc) using
this method in other stages of stellar evolution, in-
cluding the main sequence stage. A crude determina-
tion of α(Xc), when the convective velocity obtained
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from mixing-length theory is used for the typical val-
ues of the turbulent velocity pulsations, results in
qualitatively the same temporal behavior for α(Xc).
If α0 is fixed at the beginning of a star’s evolution
along the main sequence, the behavior of α(Xc) does
not depend on whether the convective luminosity is
derived as in [14] or based on mixing-length theory.

Since α(Xc) decreases in the course of a star’s
evolution, the distribution of the hydrogen abundance
by mass in the layer of variable chemical composition
is flatter than in standard models of stellar evolution
and in models where α is specified to be constant.
A flatter hydrogen-abundance distribution could in-
fluence the pulsation frequencies of the stars, and
accordingly their derived seismological parameters.

In our computations of the evolution of main-
sequence stars, the parameter A in the turbulent-
entrainment law was ajusted so that α0 acquired a
prespecified value. For n = 1 and α0 = 0.1, A =
4.425 × 10−4 and 4.054 × 10−4 for the 16 and 24M�
model stars, respectively. The parameter A contains
an uncertainty, due to the possible difference of the
largest scale of the turbulence in the expression for
the bulk Richardson number (2) and in the expression
for the rate of dissipation of the kinetic energy of the
turbulent flow (4). After removing this uncertainty
using the values of these variables for a carbon-
burning shell [13, 15], A still remains much lower
than the value obtained in [13]. Computing the stellar
evolution using A (instead of α0) requires that the
source of this disagreement be found. It is possible
that the artificial enhancement of the luminosity at
the bottom of the computational domain, which is
necessary for 3D computations of the turbulent en-
trainment, influenced the value of A. It is possible
also that the largest turbulence scales in (2) and (4)
are different in the convective core and convective
shell. If α0 is constant, the increase in the mass of
helium synthesized on the main sequence is larger
for lower-mass stars. If A is constant, α0 decreases
with the mass of the star. This may be reflected in
the dependence of the additional mass of synthesized
helium on the mass of the star. If the convective
luminosity is derived using mixing-length theory, the
value of A is ∼20% lower, for the same α0. Hence, if
a fixed value of A is used, α(Xc) will depend on the
details of the turbulent-entrainment model.

In the early stages of main-sequence stellar evo-
lution, shear turbulence and meridional circulation
due to the star’s rotation do not result in appreciable
mixing of the matter outside the region of convective
turbulence in the center of the star, even for large
rotational velocities [25]. Turbulent entrainment is
the only mixing mechanism that may change the
stellar structure in this evolutionary stage, compared
to standard models. The hydrogen profile in the zone

of variable chemical composition that forms above the
region of convective turbulence in the early stages of
stellar evolution does not depend on the index n in the
turbulent-entrainment law. Therefore, another possi-
ble way to obtain information about A is determining
the parameter α0 using asteroseismology, for stars
that are in the initial stages of their main-sequence
evolution. The theoretically computed lower bound-
ary of the instability strip for slowly pulsating B stars
with 3 ≤ M/M� ≤ 7 in the Hertzsprung–Russell di-
agram practically overlaps with the zero-age main
sequence, while it is close to the zero-age main se-
quence for β Cep pulsating stars with 7 ≤ M/M� ≤
20 [30, 31]. Currently, α0 has been determined only
for the star HD 46202, which has a mass of 24M�
and a central hydrogen abundance Xc ∼ 0.58; the
problem of the excitation of the observed pulsation
modes of this star remains theoretically unsolved.

To explain the observed increase in the lumi-
nosities of main-sequence stars, the mass of helium
synthesized in hydrogen-burning nuclear reactions
must be higher than in standard stellar models by
the amount obtained in computations with constant
αc ∼ 0.15−0.17 [1]. Given that, according to the
turbulent-entrainment model, α(Xc) decreases with
time, and guided by the value of α0 for HD 46202,
we find that turbulent entrainment alone is not suffi-
cient to provide the required increase in the mass of
synthesized helium. Another possible way to enhance
this mass is to transport hydrogen from the radiative
envelope involved in shear turbulence into the region
of convective turbulence [25].

Determining the relative roles of various mixing
processes acting in stellar interiors requires improve-
ment of the turbulent-entrainment model; i.e., deter-
mining whether the expression for the rate of dissi-
pation of the kinetic energy of the turbulent motion
is valid for different stages of stellar evolution, finding
values of A for stars of different masses, and finding
the value of α0 using asteroseismology methods ap-
plied to a statistically significant sample of stars.
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