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Abstract. The mean flowfield of a turbulent jet issuing into a confined, uniform

counterflow was investigated computationally. Based on dimensional analysis, the jet

penetration length was shown to scale with jet-to-counterflow momentum flux ratio.

This scaling and the computational results reproduce the well-known correct limit of

linear growth of the jet penetration length for the unconfined case when the momen-

tum flux ratio is small. However, for the high momentum flux ratio case corresponding

to the confinement, the jet penetration length is shown to reach an asymptotic limit

of about 3.57 times the confining duct diameter. This conclusion is contrary to the

existing results which predict indefinite growth. A simple modification of an exist-

ing similarity solution for the jet in an unconfined counterflow provides a convenient

framework for presenting the results of the flowfield and jet penetration length.

Keywords. Turbulent jet; counterflow; penetration length; computational fluid

dynamics; similarity solution.

1. Introduction

A turbulent jet is a basic free shear flow and has received research attention (see, for example,

Pope 2000). However, in many engineering applications the jet does not issue into a quies-

cent stream but interacts with an external stream. This interaction can be classified as co-flow,

crossflow or counterflow depending on the direction of interaction between the jet and the exter-

nal stream. Of these interactions, the jet in counterflow is the least investigated because of the

extreme theoretical and experimental difficulties associated with the reverse flow phenomenon

and marked instability of the flow. Interestingly, these flow characteristics which are responsible
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for the complexity of the flow also lead to enhanced mixing thus rendering the jet in counterflow

configuration suitable for various mixing and combustion applications.

Of the relatively few studies available on the turbulent jet in counterflow, most of them con-

sider the flowfield to be unconfined. Under this realisation, the jet penetration length is linearly

proportional to the velocity ratio between the jet and the counterflow (Arendt et al 1956; Beltaos

& Rajaratnam 1973; Yoda & Fiedler 1996; Lam & Chan 1997; Chan & Lam 1998; Bernero

2000). The turbulent jet in confined counterflow was studied by Sekundov (1969), Morgan et al

(1976), Saghravani & Ramamurthy (2010). The effect of confinement is a reduction in the pen-

etration length and more importantly departure from the linear jet penetration length-velocity

ratio relation.

The present study pertains to the computational evaluation of the penetration length of a tur-

bulent jet issuing into a confined, uniform counterflow. A series of computations was performed

for different jet-to-counterflow velocity ratios and for various duct-to-jet diameter ratios extend-

ing the range of parameters. The results compared well with the experimental data of Morgan

et al (1976) (MBE76 hereafter). The results of Oron & Abuaf (1977) (OA77 hereafter) for an

unconfined counterflow using a similarity solution provide a theoretical framework for present-

ing the present results. However, the developing region of the jet with the potential core does not

form a part of this similarity region. After adding the length of the developing region, a good

agreement with the similarity results of OA77 was seen. It is instructive to see the effects of con-

finement also in the same plot. By extending the range of the two parameters involved we are

able to make interesting observations.

The present paper is arranged as follows. The description of the flowfield under consideration

is described in section 2 followed by details of the computational procedure in section 3. The

jet penetration length obtained from the computations is compared with available experimental

results in section 4. The momentum flux scaling relation of MBE76 is used extensively to present

the jet penetration length. The similarity solution of OA77 is presented in section 5 accompanied

by a critical discussion in the light of our computational results. The regions of validity of the

similarity solution are highlighted. The decay of jet centreline velocity is presented and it is

found that similarity is found at least for high velocity ratio jets at large values of diameter

ratio. The effect of jet exit turbulence intensity is also investigated and reported in section 6, and

conclusions are provided in section 7.

2. Description of the flowfield

Consider a steady, incompressible, turbulent jet of velocity uj issuing from a nozzle of diameter

dj into a steady uniform stream of velocity u0 (uj > |u0|) confined within a duct of diameter D0

as shown in figure 1. The direction of freestream velocity is opposite to that of the jet. The ratio

of jet-to-counterflow velocity is uj/u0 and the ratio of the diameters of the confining duct and

the jet nozzle is D0/dj.

The jet penetrates into the counterflow stream up to a certain distance, then interacts with the

freestream and deflects backwards. This length, measured on the jet axis, from the nozzle exit

till where the axial velocity becomes zero is termed the penetration length, lp.

The axial extent of the jet can be divided into three distinct regions (Sekundov 1969). The

region immediately downstream of the jet nozzle consists of a developing jet with the poten-

tial core of the jet and persists downstream for a few nozzle diameters. In the potential core the

velocity is uniform and equal to uj. The jet beyond the developing region, in region 2, qualita-

tively behaves like a free jet. Later, in this paper, it will be seen that a similarity solution exists
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Figure 1. Schematic description of the flowfield. The jet-to-counterflow velocity ratio is uj/u0; the

diameter ratio is D0/dj.

in this region. The jet thickness increases with distance from the nozzle. The jet and the counter-

flow stream interact intensely in region 3 and this region is characterized by a highly turbulent

field of flow.

3. Computational procedure

The governing equations of mass and momentum conservation for a turbulent flowfield namely,

the Reynolds-averaged Navier–Stokes equations, are solved numerically using the commercial

software ANSYS FLUENT. The time-averaged computations were performed for a range of

diameter ratios, D0/dj, from 3 to 100 and jet-to-counterflow velocity ratios, uj/u0, ranging from

2 to 250. The counterflow stream inlet was placed at a distance 100 dj for D0/dj = 3 to 30 and

at 700 dj for D0/dj = 100, respectively ahead of the jet exit. The flow domain outlet was at 100

dj behind the jet exit.

An axisymmetric structured grid was devised for the computations. The computational domain

for the numerical solution consisted of 1000 axial × 25 radial (axis to wall) non-uniform cells for

D0/dj = 3; 1000 × 45 for D0/dj = 5; 1000 × 95 for D0/dj = 10; 1000 × 145 for D0/dj = 15;

1000 × 325 for D0/dj = 30; and 5200 × 510 for D0/dj = 100 (i. e., 2,652,000 cells). The

number of computational cells was chosen after a careful grid independence study. This study

was conducted for the D0/dj = 10, uj/u0 = 20 case with 52,000 (coarse grid), 95,000 (medium

grid) and also with 150,000 (fine grid) grid points. The Grid Convergence Index (see Celik et al

2008) was calculated and the numerical uncertainty in the calculation of jet penetration length in

terms of the discretisation error is 0.99% and 1.45% for the fine and medium grids, respectively.

The apparent order of the numerical method was calculated to be about 1.65. Since the medium

grid had a reasonably low value of discretisation error it was employed and grids for the other

cases were constructed with similar grid spacing, particularly in the jet penetration region, thus

ensuring an acceptably low discretisation error.

The computations were performed using the standard k-ε turbulence closure model. All cal-

culations were carried out in double-precision arithmetic. The Reynolds number (Re) of the

counterflow stream (based on D0 and u0) varied from 104 to 3 ×105 and that of the jet (based

on dj and uj) varied from 6 ×103 to 6 ×104. The values of Reynolds number used in the

present computations meet the requirements stipulated by MBE76 for results being indepen-

dent of Reynolds number. Some select calculations also showed that the present results were

independent of the Reynolds number.
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4. Results

4.1 Velocity field

The mean streamlines in the flowfield are shown in figure 2, for a diameter ratio of 10 and a

velocity ratio of 20. The jet originating from the nozzle and penetrating into the counterflow

stream can be clearly seen. The flowfield is dominated by a large recirculation region as observed

in this figure. The flowfield can be reckoned into three parts different from those shown in

figure 1. There is a toroidal shaped eddy in the jet region. The flow from the jet penetrates this

eddy, wraps around and returns backwards. The counterflow stream is distinct from the jet flow,

the two streams being separated by a dividing stream surface. The counterflow stream does not

come into contact with this eddy. The profiles of axial velocity in the radial direction at various

locations are shown in the bottom half of figure 2.

4.2 Jet penetration length

The jet penetration length, lp, is defined as the length of the jet from the nozzle exit to a point

on the axis where the axial velocity becomes zero. The penetration length depends on the jet-

to-counterflow velocity ratio, uj/u0, and on the duct-to-jet diameter ratio, D0/dj. Thus, in the

non-dimensional form
lp

dj
= f

(

uj

u0
,

dj

D0

)

. (1)

For an unconfined counterflow case this relation reduces to

lp

dj

= f

(

uj

u0

)

. (2)

It is possible to evaluate this functional form from dimensional analysis itself by taking jet

momentum as a parameter. This leads to a linear relation (see also Arendt et al 1956; Beltaos &

Rajaratnam 1973)
lp

dj

= c
uj

u0

. (3)

The value of the linearity constant c is quoted by various investigators to be in the range

from 2.4 to 2.9. Several factors might have influenced this variation in c. To list a few, we

may mention, (i) different boundary conditions at the jet exit and the counterflow stream inlet,

Figure 2. Mean streamlines in the flowfield are shown in the top half of this figure. The profiles of

axial velocity in the radial direction at various locations are shown in the bottom half; D0/dj = 10 and

uj/u0 = 20.



Turbulent jet in confined counterflow 717

(ii) different values of turbulence intensity in the two streams and (iii) influence of the confining

duct for larger values of uj/u0. It may be noted, however, that the variation in c is not substantial.

The penetration length lp/dj evaluated from the present computation was compared with the

experimental data of MBE76 and a reasonably good agreement was observed. This length from

the present computations is shown in figure 3.

A remarkable collapse of the penetration length data was achieved in MBE76 by plotting

lp/D0 as a function of jet-to-counterflow momentum flux ratio. This ratio is

Z =
(

ujdj

u0D0

)2

, (4)

since density, ρ, is constant. From their experimental results they divided the flow into two

distinct regimes based on the momentum flux ratio (see figure 4a). When the counterflow

momentum flux is high compared to the jet momentum flux (
√

Z < 0.5) the penetration length

is linearly related to the velocity ratio. This relationship is of the form

lp

D0
= 2.9

(

ujdj

u0D0

)

, (5)

which reduces back to the earlier form (Eq. 3)

lp

dj
= 2.9

uj

u0
. (6)

The linearity constant, c, is chosen here to be 2.9 as against 2.5 suggested in MBE76.

Figure 3. Non-dimensional jet penetration length, lp/dj, plotted as function of jet-to-counterflow velocity

ratio, uj/u0.
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(a)

(b)

Figure 4. Non-dimensional jet penetration length, lp/D0, as a function of the jet-to-counterflow momen-

tum flux ratio parameter, ujdj/u0D0. (a) Initial computational results compared with the experimental data

of Morgan et al (1976), and Bernero (2000); the linear and one-third power law are shown here. The limit

for unconfined jet D0/lp ≥ 2 (Sekundov 1969) is also indicated. (b) Extended computational results with

the linear and one-third power law. The asymptotic limit for the jet penetration length of about 3.57 D0 is

also depicted.
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As the value of Z increases further, the influence of confinement becomes effective for a

range of

0.5 <
√

Z < 1.5. (7)

MBE76 identify this to be a transitional zone and for
√

Z > 1.5 suggest a one-third power law,

and then the penetration length is given by

lp

D0
= 1.8

(

ujdj

u0D0

)
1
3

. (8)

The authors did not provide any explanation as to why data should collapse so neatly with

the modified coordinates and also to such a simple relation for the confined case with
√

Z >

1.5. The two regimes of MBE76 were also reiterated by one of these authors elsewhere

(Brinkworth 1999). In the present study, a dimensional analysis is carried out first using jet

momentum flux, counterflow stream velocity u0 and the diameters D0 and dj which led us to the

relation
lp

D0
= f

(

ujdj

u0D0

)

. (9)

This explains the data collapse as first indicated in MBE76. However, the present observations

differ qualitatively from those in MBE76.

Also shown in figure 4a is the criterion for the jet expanding in counterflow of infinite extent.

Sekundov (1969) indicated that the flowfield may be considered to be unconfined if D0/lp ≥ 2.

This limit is shown in figure 4a and the data points below this line are for unconfined flow.

As the effect of confinement increases, the penetration length seems to follow the one-third

power law beyond a transitional zone. However, a closer examination of the results in figure 4a

in the high jet momentum regime reveals that the agreement with the one-third power law is

not satisfactory, particularly in the presence of significant confinement where the power appears

to drop gradually to less than 1/3. This raised an important question as to whether, if at all, a

power-law behaviour would govern the jet penetration length at high momentum ratios. This led

us to investigate the jet penetration length behaviour at very high momentum ratios; the velocity

ratio was increased up to 250 which corresponded to a momentum flux ratio of about 7,000 for

a diameter ratio of three.

The extended computational results are plotted in figure 4b. It is now clear that the one-

third power law is not valid for high momentum flux ratios. More importantly, there is no

distinct regime 2 unlike a clearly identified regime 1. The experiments of MBE76 had covered

a momentum flux ratio up to about 25 and within this range they inferred the one-third power

law approximating their experimental data. However, as is evident from the present investigation

the slope of this curve continuously decreases and asymptotically tends to zero. The asymptotic

value for the maximum jet penetration length is estimated to be 3.57 times the diameter of the

enclosing duct. This value was obtained by averaging the asymptotic limits for each of the D0/dj

cases which were themselves estimated by extrapolating the present computational results.

The fact that the jet penetration length does not increase indefinitely can be seen readily from

figure 3 where the jet length is plotted as a function of the velocity ratio. The curves for each of

the diameter ratios considered do, indeed, tend to a constant value after a finite velocity ratio.

The existence of an asymptotic limit for the jet penetration length can also be explained refer-

ring to the mean streamline pattern in figure 2. There is a toroidal shaped eddy in the jet region.

The flow from the jet penetrates this eddy, wraps around and returns backwards. The counter-

flow stream is distinct from the jet flow, the two streams being separated by a dividing stream
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surface. The counterflow stream does not come in contact with this eddy. As the jet momentum

flux increases the eddy length increases and the dividing stream surface is pushed forward. This

forward force is proportional to the jet momentum and is independent of the penetration length

lp. The force on the dividing stream surface in the negative direction scales like (u2
0d

2
e ) as long as

the eddy diameter de is small compared to D0. Since de grows with lp the rate of growth of both

these scales should slow down once de becomes comparable to D0. Then the reverse jet flow and

the counterflow stream have to pass through a narrower and longer annular region. The additional

force in the negative direction scales like (u0D
2
0 lp/g

2), where g is the narrow gap (D0 − de)/2.

Because of this sharp increase, eventually it is not possible for the jet to push the eddy forward

no matter how high the momentum. There is no such restriction in the unconfined case.

The counterflow stream passes through an annular converging–diverging geometry formed by

the dividing stream surface. The pressure drop in the counterflow mainly occurs in the converg-

ing part but the minimum pressure value occurs slightly towards the downstream side of the

throat (left side of the throat in figure 2). The maximum velocity in this neighbourhood umax

non-dimensionalised by u0 grows linearly in uj/u0 for all diameter ratios D0/dj as shown in

figure 5. This interesting observation can be explained from the fact that a higher uj results in a

higher return flow and also higher velocity from counterflow due to a narrower gap thus leading

to higher umax/u0 and hence the indefinite growth.

The observation of MBE76 that high momentum jets are sternly restrained by the counterflow

stream and the confining duct is correct. The present results strengthen it further by qualifying

that the restraining is to a finite penetration length no matter how high the jet momentum flux.

Figure 5. Maximum counterflow velocity in the neighbourhood of the jet, umax, non-dimensionalised by

the counterflow stream velocity u0, is plotted for different uj/u0. It can be seen that this ratio grows linearly

and indefinitely.
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Figure 6. Variation of axial velocity along jet centreline, uc/u0. (a) D0/dj = 100 (b) uj/u0 = 20. The

similarity region starts beyond the developing region and persists till the jet interacts with the counterflow

stream intensely as indicated by a sudden change in the slope.
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Another question needs to be addressed here. Why is it that the result of dimensional analy-

sis as given by Eq. (9) shows larger scatter in figure 4b for intermediate values of momentum

flux ratios? The primary reason for this is the length of the potential core which is part of the jet

penetration length. The potential core length is fairly constant and unaffected by the counterflow

and its length is a substantial part of the penetration length. It is equivalent to other parame-

ters being introduced in the dimensional analysis of the problem leading to the scatter. We will

discuss these issues in the next section.

4.3 Variation of centreline velocity

The decay of axial velocity along the jet centreline, uc, for a diameter ratio of 100 at different

velocity ratios is plotted in figure 6a. The jet issuing out of the nozzle forms a developing region

with a central potential core. This was identified as region 1 in figure 1. The similarity region

commences beyond the developing region (region 2 in figure 1). The jet intensely interacts with

the counterflow stream in region 3. This interaction causes the jet to deflect backwards as can be

seen from the streamline plots in figure 2. A drastic change in the centreline velocity slope iden-

tifies end of the similarity region 2 and a stronger interaction between the two streams begins.

It may also be noticed that at the lowest velocity ratio of two, the jet penetration length is too

small, and the counterflow starts interacting with the jet right at the end of the potential core.

The effect of confinement on the centreline velocity can be seen from figure 6b where it is

plotted for a velocity ratio of 20 for different confinement ratios. The length of the developing

region is hardly affected by the confinement and in the similarity region the velocity profile uc/u0

does not depend on the diameter ratio. However, the length of the similarity region is shortened

due to more severe confinement. Also, the length of the interaction region is not very sensitive

to the diameter ratio.

5. Similarity solution of Oron & Abuaf (1977)

A similarity solution (Oron & Abuaf 1977) exists for the flowfield in region 2 (see figure 1) for

the unconfined case, i.e., D0/dj being very large. We start with this solution so that a rational

basis can be obtained for predicting the penetration length. This will lead us to a logical frame-

work for comparing the jet penetration length with the computational results even in the presence

of confinement.

The similarity solution for a turbulent jet in an unconfined counterflow obtained by OA77

is briefly described in this section. The governing equations for the axisymmetric flowfield are

written below following the usual boundary layer assumptions:

(

u
∂u

∂x
+ v

∂u

∂r

)

=
1

ρ

1

r

∂

∂r

(

rµt
∂u

∂r

)

(10)

∂

∂x
(ru) +

∂

∂r
(rv) = 0, (11)

subject to the boundary conditions

v = 0,
∂u

∂r
= 0 at r = 0, and (12)

u = −u0 as r → ∞. (13)
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At the jet exit (x = 0),

mj = ρ

rj
∫

0

2πu (0, r) rdr, and (14a)

u
(

0, rj

)

= 0. (14b)

Here, ρ is the density of the fluid, mj is the jet mass flow rate and rj = dj/2, is the radius of the

jet nozzle (see figure 1). The turbulent viscosity, µt, is modelled using a modified version of the

Prandtl mixing length model for free shear flows (see Schlichting 1979).

A similarity solution is attempted assuming that the streamfunction ψ is of the form

ψ = U∆f (η) . (15)

Here, ∆ is a characteristic cross-sectional mixing area in the radial direction, η = Γ/∆, and U

is the relative velocity defined as U = uc + u0; uc is the axial velocity along the x-axis and is a

function of x only.

Also, Γ is a new variable defined as Γ =
r
∫

0

rdr = r2

2
.

Substituting the assumed form of the similarity solution (15) in Eqs. (10) and (11), the

following expression was obtained for the variation of axial velocity along the jet centreline:

lp − x

dj
=

1

2λ

eηj−1

√

2ηj

[

1 −
u0

U
exp

(

1 −
u0

U

)]

, (16)

where ηj is the value of η at the starting location of the jet similarity and λ = 0.075 is the

non-dimensional value of mixing length in the jet.

If at x = 0, the relative velocity U = U0, the jet penetration length, lp, can be obtained from:

lp

dj
=

1

2λ

eηj−1

√

2ηj

[

1 − exp
(

1 − ηj − e−ηj
)]

. (17)

5.1 Application of similarity solution to nozzles with uniform velocity profiles

It is to be noted that in the derivation of the expressions (16) and (17) above, OA77 assumed a

fully developed velocity profile at the nozzle exit. They also extended their analysis to nozzles

with a uniform velocity profile at the jet exit. The velocity ratio, uj/u0, was related to ηj through

an approximation

ηj = ln

(

1 +
uj

u0

)

. (18)

A hypothetical nozzle was defined at the end of the developing region which can be used to

evaluate the penetration length beyond this location from Eq. (17). Hence in Eqs. (16) and (17) dj

is actually the diameter of the hypothetical nozzle dh, which needs to be replaced by the physical

diameter dj. This was done in OA77 by approximating

dh

dj
=

√

2ηj. (19)
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Figure 7. Non-dimensional jet penetration, lp/dj, as a function of ηj from Oron & Abuaf (1977). The

dashed line is Eq. (17) and the dark continuous curve is Eq. (21) accounting for the hypothetical nozzle

diameter given by Eq. (19).

Thus, Eqs. (16) and (17) get modified, respectively, to

lp − x

dj
=

1

2λ
eηj−1

[

1 −
u0

U
exp

(

1 −
u0

U

)]

, (20)

and
lp

dj
=

1

2λ
eηj−1

[

1 − exp
(

1 − ηj − e−ηj
)]

. (21)

The jet penetration lengths calculated from the OA77 model using Eqs. (17) and (21) using the

actual and hypothetical nozzle diameters are plotted in figure 7 and compared with the present

computational results for the highest diameter ratio D0/dj = 100 in the study. It can be seen that

the OA77 model highly under-predicts the jet penetration length.

A major difficulty in this comparison is not knowing where exactly the hypothetical nozzle is

to be located and hence the approximation given by Eq. (19) is inadequate. Also, the penetration

length starts from this hypothetical nozzle and such data will neither be available nor convenient

to a designer or an experimenter. Even though OA77 claim a good agreement with modified

experimental data of Sui (taken from Sekundov 1969), they had to curtail a significant portion

of the jet length (more than 50% in some cases).

To overcome this difficulty we account for the distinct potential core of length lc (see Eq. 22)

and also modify the approximations given by Eqs. (20) and (21) by introducing a scaling factor

α to write
lp − x

dj
=

α

2λ
eηj−1

[

1 −
u0

U
exp

(

1 −
u0

U

)]

. (22)
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Further, the procedure is simplified in this model assuming that similarity starts from the

distinct location where the potential core ends; the determination of the length of the potential

core is straightforward. This enables us to add the length of the potential core to the length of

the similarity region to obtain the jet penetration length.

Now the computational data are useful in the evaluation of the scaling factor α. This is shown

in figure 8. Again, the case of D0/dj = 100, the highest diameter ratio computed is considered.

There is a reasonably good agreement after a shift equivalent to the potential core length is made.

The advantage here compared to the strategy of OA77 is that this location is distinct and easily

identified and this length is not very sensitive to the velocity ratio uj/u0, at least for large values

of velocity ratios which are of practical interest.

Another superior feature of the procedure is that the overall jet penetration length is kept intact

unlike in OA77 where the comparison is made with a curtailed penetration length. The value of

α used here is 1.3 for all cases of uj/u0.

A particularly important observation to be made in figure 8 is when the centreline velocity,

uc/u0, becomes negative after the curve reaches the stagnation point. This is given by a dotted

curve and it does not represent the physical reality. The results given by Eqs. (16), (20), or (22) do

not have validity beyond the penetration length. The tangent to this curve at the stagnation point

is, in fact, vertical and this shows the difficulty in achieving good agreement between the actual

and similarity solutions in this neighbourhood. This difficulty, of course, is not unexpected since

the boundary layer assumptions themselves fail in the neighbourhood of the stagnation point.

x/d
j

u
c
/u

0

0 10 20 30 40 50 60 70
0

5

10

15

20

Eq. 22

Eq. 22 (unphysical branch)

Present Computation D
0
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j
=100; u

j
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Figure 8. Variation of axial velocity, uc/u0, along the jet centreline; uj/u0 = 20. The variation of jet

centreline velocity given by Oron & Abuaf (1977) modified by a scaling factor as given in Eq. (22) is

plotted here. This equation does not give values beyond the stagnation point and gives negative centreline

velocity which is not physical and is shown by a dotted curve.



726 M Sivapragasam et al

A further insight into the similarity solution and the flow may be obtained by replotting

figure 8 on a logarithmic scale as shown in figure 9 in order to examine if any power law exists

for the decay of centreline velocity. The ordinate now chosen is the centreline axial velocity, uc,

non-dimensionalised by the relative velocity U (U = uc + u0). By plotting the reciprocal of uc

we see a convincing power law with slope = 1 and agreement between the computational and

similarity solutions after the similarity solution is shifted to the right by the length of the poten-

tial core. The boundaries of the three regions shown schematically in figure 1 can clearly be seen

here. The similarity solution has difficulty in the vicinity of the stagnation point as explained

above. The equivalent of the dotted line in figure 8 is ignored here. Further, it may be mentioned

that the centreline velocity in a free round jet is like x−1 with a shifted virtual origin. Hence it is

not surprising that we see slope = 1 in this figure.

A comment on the length of the interaction region (region 3 in figure 1) is appropriate here.

OA77 estimate this region to extend from uc/u0 = 0.22 till the stagnation point. The present

results are contrary to this observation. The interaction region starts earlier where uc/u0 falls

below 2 (see figure 6a). As mentioned above, this observation will not affect the overall results

as this length constitutes only a small part of the jet penetration length.

Thus the modelled jet penetration length can finally be written as,

lp

dj
=

α

2λ
eηj−1

[

1 − exp
(

1 − ηj − e−ηj
)]

+
lc

dj
. (23)

Here, lc is the potential core length whose values were evaluated from the present computational

results. As mentioned earlier this length is not very sensitive to the velocity ratio, uj/u0.

Figure 9. Variation of axial velocity along jet centreline plotted as a function of the axial location. Plotting

the reciprocal of uc helps to identify a power law-like variation in the similarity region.
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(a)

(b)

Figure 10. Non-dimensional jet penetration length, lp/dj, as a function of ηj from modified Oron & Abuaf

(1977) similarity solution. (a) Comparison of present results for the highest diameter ratio considered in

this study D0/dj = 100 with the modified Oron & Abuaf (1977) solution. (b) Present computational results

for all diameter ratios.
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The jet penetration length given by Eq. (23) is plotted in figure 10a along with the computa-

tional data for D0/dj = 100. There is a good agreement except at the last point with the largest

value of ηj or lp. This point violates the condition D0/lp ≥ 2 (see figure 4a) and hence the pen-

etration length is seen to be shorter. An extension of this data set for larger ηj is bound to bring

about a larger deviation. This feature should be more pronounced for smaller values of D0/dj as

can be seen in figure 10b.

The modified model with the similarity solution provides a framework for plotting the jet

penetration length as a function of velocity ratio even in the presence of confinement as shown in

figure 10b. Though such a plot was originally conceived for unconfined counterflow, it has been

extended now to represent data for all values of D0/dj including those violating the condition

D0/lp ≥ 2.

6. Effect of jet turbulence intensity

The jet exit turbulence intensity was systematically varied to see its effect on the penetration

length. The computational results reported hitherto were for a jet exit turbulence level of 4.5%.

In a numerical experiment this value was reduced to 2.25% and subsequently it was increased to

9%; the results are shown in figure 11. It is observed that a higher turbulence level has decreased

the length of the potential core and the jet penetration length to a lesser extent.

Such a qualitative trend may also be seen in the similarity solution by changing the value

of λ. A smaller value of λ leads to lower turbulence viscosity corresponding to lower value of

turbulence intensity, Tu, and turbulence kinetic energy, k. This indeed will give a slightly longer

Figure 11. Effect of jet exit turbulence intensity on jet penetration length; D0/dj = 100, uj/u0 = 20. An

increase in the jet exit turbulence intensity caused a reduction in the potential core and penetration lengths.
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penetration length. However, its effect on the potential core as shown in figure 11 cannot be

deduced from the similarity solution.

7. Conclusion

The flowfield of an axisymmetric, turbulent jet issuing into a uniform, confined counterflow was

investigated computationally. The jet penetration length was found to be in good agreement with

the available experimental data.

The observations of Morgan et al (1976) regarding dependence of jet penetration length on

momentum flux ratio were derived in the present study from dimensional analysis. It was further

argued that at high momentum flux ratio their observation of a distinct flow regime with the

penetration length following a one-third power law is not correct. Instead of a one-third power,

the power is seen to diminish continuously to zero. This led to an interesting observation that

there is a limiting value of jet penetration length equal to about 3.57 times the duct diameter

unlike in an unconfined case where it grows linearly with jet-to-counterflow velocity ratio. A

scatter in data was observed for intermediate values of momentum flux ratio due to the presence

of the potential core.

The similarity solution for the jet in unconfined counterflow proposed by Oron &

Abuaf (1977) provided a good framework for comparison of both confined and unconfined cases.

A modified model based on this similarity solution with the potential core being added to the

penetration length led to good agreement with the computational results. Apart from giving an

insight to the flowfield, this method should be of use in estimating the jet penetration length for

any set of parameters.
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