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The properties of turbulent mixing in a Richtmyer–Meshkov (RM) unstable fluid
layer are studied under the impact of a single shock followed by a reshock wave
using simultaneous velocity–density measurements to provide new insights into the
physics of RM mixing. The experiments were conducted on a varicose SF6 fluid
layer (heavy fluid) interposed in air (light fluid) inside a horizontal shock tube at
an incident Mach number of 1.21 and a reflected reshock Mach number of 1.14.
The light–heavy–light fluid layer is observed to develop a nonlinear growth pattern,
with no transition to turbulence upon impact by a single shock (up to tU/λ = 23.4).
However, upon reshock, enhanced mixing between the heavy and light fluids along
with a transition to a turbulent state characterized by the generation of significant
turbulent velocity fluctuations (σu/U ∼ 0.3) is observed. The streamwise and spanwise
root-mean-squared velocity fluctuation statistics show similar trends across the fluid
layer after reshock, with no observable preference for the direction of the shock wave
motion. The measured streamwise mass flux (ρ ′u′) shows opposing signs on either
side of the density peak within the fluid layer, consistent with the turbulent material
transport being driven along the direction of the density gradient. Measurements
of three of the six independent components of the general Reynolds stress tensor

(Rij = ρu′′
i u′′

j ) show that the self-correlation terms R11 and R22 are similar in magnitude
across much of the fluid layer, and much larger than the cross-correlation term R12.
Most importantly, the Reynolds stresses (Rij) are dominated by the mean density,

cross-velocity product term (ρ u′
iu

′
j), with the mass flux product and triple correlation

terms being negligibly smaller in comparison. A lack of homogeneous mixing (and,
possibly, a long-term imprint of the initial conditions) is observed in the spanwise
turbulent mass flux measurements, with important implications for the simulation and
modelling of RM mixing flows.
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1. Introduction

Richtmyer–Meshkov (RM) instability refers to the growth of perturbations at an
impulsively accelerated interface between two fluids of differing densities driven
by the deposition of baroclinic vorticity. The perturbation amplitude grows linearly
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with time during the early phase under certain conditions (Richtmyer 1960; Latini,

Schilling & Don 2007; Nishihara et al. 2010). When these conditions are not met,

the amplitudes exhibit nonlinear growth and, given sufficient initial energy, the flow

eventually transitions to a turbulent mixing state. In all these regimes, the net effect

of the RM instability is to enhance the mixing between fluids of different densities,

which has important consequences for real-life problems. For example, in inertial

confinement fusion reactions, the mixing induced by the RM instability (created by

surface non-uniformities at the fuel–shell interface or by non-uniform radiation drive)

results in the contamination of the fuel and limits the fusion energy gain (Aglitskiy

et al. 2010). On the contrary, RM instabilities enhance mixing between the oxidizer

and the fuel in supersonic engines to improve combustion efficiency (Yang, Kubota &

Zukoski 1993). The pearl-necklace patterns observed in supernova explosions and the

ejection of heavy elements from supernovae have also been attributed to RM instability

(Arnett et al. 1987).

A substantial amount of experimental effort has been invested in RM instability

studies focused on the initial, linear and early nonlinear periods of RM instability

growth, despite the fact that most applications involve high Reynolds numbers and

sufficiently large time scales and/or initial energies for the flow to transition to a

turbulent mixing regime (Ryutov et al. 1999; Robey et al. 2003). In these cases, the

efficacy of species mixing is heavily influenced by the dynamics of the turbulence

contained within the flow. Thus, the development of predictive capabilities for the

aforementioned applications requires the accurate measurement and modelling of RM

turbulence, especially considering the fact that the dynamics of mixing are not fully

understood as yet. For example, the observed mixing transition Reynolds number of

turbulence (Robey et al. 2003; Dimotakis 2005) and the challenges associated with

the development of a wide spectral range in variable-density flows (Cook, Cabot &

Miller 2004) have only recently been explained by the theoretical analysis presented in

Abarzhi (2010), where it was found that unsteady turbulent mixing exhibits more order

and is more sensitive to the initial conditions than canonical turbulence.

The dynamics of variable-density RM turbulence (and mixing) is interesting as it

is dependent not only on the velocity field, as in passive scalar mixing, but also

on the density fields. Unlike constant-density flows, the density fields in variable-

density flows actively modulate the response of the fluids to a given stress condition,

and are called level-two mixing flows by Dimotakis (2005). Recent studies have

also suggested that the physics of variable-density turbulent mixing might deviate

significantly from those of Boussinesq fluids (Ristorcelli & Clark 2004; Livescu &

Ristorcelli 2007, 2008; Livescu et al. 2009). While numerous experiments involving

passive scalar mixing have been performed in the past (see Warhaft 2000, for a recent

review), detailed experiments on level-two mixing flows are few in number, despite the

possibility of attaining higher Reynolds numbers beyond the reach of direct numerical

simulation (DNS) (Cook et al. 2004). In this work, we adopt a broad definition of

turbulence as an irregular state of flow in which physical quantities possess a cascade

and allow the calculation of distinct average values (von Kármán 1938; Hinze 1959).

Such a view is necessary to create reasonable models of turbulence in unsteady flows

such as RM flows (Besnard et al. 1992), and has been widely adopted in several

contexts of variable-density turbulence (Chassaing et al. 2002; Hill, Pantano & Pullin

2006; Livescu & Ristorcelli 2008). Further, we will follow the metrics and formulation

given in Besnard et al. (1992), consistent with recent research trends (see e.g. Livescu

& Ristorcelli 2007, 2008; Banerjee, Gore & Andrews 2010a).
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Given the experimental focus in this paper, it is helpful to understand the nature of

the difficulties associated with the experimental measurement of variable-density RM

mixing flows. RM experiments typically occur within short time scales and require

a careful experimental set-up and diagnostic timing. For example, in fluid layers,

such as those used at the Los Alamos National Laboratory’s gas shock tube facility,

even at low Mach numbers (Ma = 1.2), strong mixing occurs within the first 2–3 ms

of the first shock impact. This event duration is further reduced in the presence of

multiple shocks, as evidenced by the enhanced mixing observed within the first 100 µs

of a reshock impact (Balakumar et al. 2008). Therefore, the accumulation of large

sets of statistics requires either high-frequency data acquisition diagnostics (for time

averaging) or highly repeatable experimental runs with short turnaround times (for true

ensemble measurements). RM flows also involve strong spatial gradients and vortex

fields, the capture of which requires high-resolution diagnostics. The computation

of reliable ensemble statistics requires a repeatable initial condition that does not

change the base flow upon which the turbulent flow field is superimposed. Thus,

the challenges of measuring density and velocity fields simultaneously, in multiple

realizations of the same experiments, with adequate spatial resolution, on stable initial

conditions, have combined to slow down progress in the experimental study of RM

turbulence.

The diagnostics deployed on RM mixing flows thus far suffer from the major

limitation of an inability to perform simultaneous density–velocity measurements

at multiple points in the flow fields. Previous work on RM turbulence has been

confined to the use of simple optical (Schlieren, shadowgraphy), thermal anemometry

or laser Doppler anemometry (LDA) diagnostics that provide only limited information

about the flow. Such optical techniques, while easy to implement, are limited to

the measurement of gross metrics, such as mixing zone width and growth rate

measurements of the mixing zone, owing to resolution limitations imposed by beam

path averaging. Further, the interrogation beams for Schlieren and shadowgraphy pass

through the wall boundary layers of the shock tube, introducing large errors in the

reported width measurements (Jacobs et al. 1995). Recently, the use of holographic

velocimetry for three-dimensional velocity measurements in variable-density flows

has been proposed (Orlov et al. 2010). Thermal anemometry offers high data rates

but is limited by its intrusive nature. Recent efforts in the use of hot wires to

measure density and velocity have proven to be considerably challenging (Mariani

et al. 2009; Banerjee, Kraft & Andrews 2010b). Thermal anemometry is also

incapable of measuring statistics at multiple points within the flow field without

intrusion, especially in the presence of shock waves. Finally, calibration of thermal

anemometers in variable-density flows with thermal variations (as in RM turbulence)

is a non-trivial task, relegating thermal anemometry to the measurement of only shock

widths in RM flows (Jourdan et al. 2001). LDA diagnostics have been used with

greater success in RM flows. For example, Poggi, Thorembey & Rodriguez (1998)

have measured the velocity fluctuations inside a turbulent mixing zone induced by

shock interaction(s) with a single interface using a high-sampling-rate LDA burst

sampler. As they have noted, LDA measurements yield only single-point turbulent

velocity statistics and require the generation of an ensemble of RM mixing data

to calculate velocity variances. Moreover, in RM mixing, both density and velocity

fluctuations are important and should be measured at the same instant of time in

order to calculate the true Reynolds stresses. These limitations can now be overcome

with simultaneous, high-resolution, particle image velocimetry–planar laser-induced
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fluorescence (PIV–PLIF) diagnostics, which have been developed and applied to RM
mixing flows recently (Balakumar et al. 2008).

Simultaneous PIV–PLIF diagnostics provide the instantaneous velocity and density
fields inside turbulent flows at multiple points and are minimally intrusive. In the
present work, a two-dimensional PIV diagnostic, in conjunction with an acetone–PLIF
diagnostic, is used to measure simultaneously the evolution of velocity and density
fields in a gas curtain before and after reshock. Statistics are measured from an
ensemble generated from several runs of the same experiment. Each run was started
from closely controlled initial conditions and shock wave parameters to measure
mean and turbulence velocity and density statistics, mixing parameters such as the
density self-correlation parameter, mass flux and Favre-averaged Reynolds stresses.
The present work involves the most detailed measurements in RM flows thus far
and measures hitherto unknown turbulence quantities for the first time in RM flows.
In addition to providing new experimental insights into variable-density turbulent
mixing, the present data also enable a detailed comparison of experimentally measured
turbulence statistics to the predictions of numerical simulations (Hill et al. 2006;
Gowardhan, Grinstein & Wachtor 2010; Thornber et al. 2010). Some simulations using
implicit large-eddy simulation techniques have been performed on the experimental
configurations presented here, although the comparisons have been limited to only a
few turbulence variables thus far (Zoldi-Sood et al. 2008; Gowardhan & Grinstein
2010; Gowardhan et al. 2011).

2. Experimental details

2.1. Shock tube apparatus and diagnostics

The experiments reported here were performed in a 75 mm square diaphragm-driven
horizontal shock tube facility at Los Alamos National Laboratory. The first shock
(Mach 1.21) is created by the rupture of a polypropylene diaphragm that separates the
high-pressure driver gas (nitrogen) from ambient air inside the shock tube. The shock
wave travels down the shock tube to impinge upon the initial conditions consisting
of a thin fluid layer of SF6 interposed across the test section to generate the RM
instability. Subsequently, the transmitted shock that has passed through the curtain
travels down the tube and is reflected by a rigid wall located 0.137 m downstream
of the initial conditions. The reflected shock (Mach 1.14) impinges once again on the
developing fluid layer to deposit additional vorticity. This event is called the reshock,
and the reflected shock wave is called the reshock wave.

The RM instability is driven by the baroclinic vorticity deposited due to a
misalignment between the density and pressure gradients. Since the shock waves in
the present experiments are planar, an initial condition with a corrugated density
distribution is required for generating RM instability. In the present experiments, initial
conditions consisting of varicose spatial perturbations on a temporally steady heavy
gas curtain of SF6 were used to create this density gradient. The thin fluid layer
with varicose perturbations is generated by passing SF6 through a suitably profiled
nozzle containing a closely spaced array of holes at its exit. Diffusion and convective
processes together act to create a layer containing varicose perturbations on either
edge. This fluid layer is introduced into the shock tube by locating the nozzle exit at
the top wall. The SF6 flows through the cross-section of the shock tube by gravity and
is removed by a suction manifold attached to the bottom wall of the horizontal shock
tube. One prominent difference between the present series of experiments and previous
experiments is the stability of the initial condition. Gas curtains flowing in enclosed
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(a) (b)

FIGURE 1. (a) Instantaneous snapshot from a time-resolved laminar flow simulation
illustrating the oscillating instability of a confined gas jet. This instability is mitigated
in the present experiments by using a passive air–SF6–air co-flow configuration. Vectors
represent velocity and colours represent magnitude of velocity, with red and blue representing
high and low velocities, respectively. (b) Calibration apparatus used to calculate third-order
polynomial functions for superimposing velocity and density fields, shown along with a
sample calibration image (inset).

environments have been known to be unstable (Maurel et al. 1996). The interactions
of the shear-driven vortices on either side of the layer with the vortex created near the
suction manifold cause an unstable flapping of the curtain, which disturbs the steady
state of the initial conditions (figure 1a). This instability was mitigated in the present
experiments by deploying two openings on either side of the nozzle. These openings
created a co-flowing curtain of air–SF6–air that reduced the shear at the edges to create
a very stable curtain yielding repeatable initial conditions that were used to obtain the
statistics presented here.

During each run of the experiment, a Mach 1.21 shock impinges upon the fluid
layer to deposit baroclinic vorticity. The evolving interfaces are then subjected (after
t = 600 µs) to a second interaction with a reflected reshock wave (Mach 1.14) that
deposits additional energy and induces a transition to a turbulent state. A reshock
wave is employed in the present experiments to induce a rapid transition to turbulence
(relative to the duration of shock propagation across the shock tube). This allows the
study of turbulent RM mixing in isolation from the impact of additional reflected
rarefaction and compression waves that are typically present in a shock tube apparatus.
Secondly, a reshock wave is representative of what happens in applications (e.g.
inertial confinement fusion), where multiple shock interactions are common. Thirdly,
in the flows investigated here, it has been observed earlier that coherent initial
perturbations in the flow dynamics remain ordered in a single-shock system until
late times (Balakumar et al. 2008). A reshock wave induces the dissociation of this
order and the generation of smaller scales (akin to a cascade). Finally, a two-shock
system (in contrast to a multi-shock system) is the simplest configuration that deviates
from a single-shock system, and was therefore used in the present experiments. Also,
the present experimental apparatus does not allow for more than two shocks to be
generated in a single run of the experiments.

The turbulent RM mixing structure generated in the shock tube is studied using
planar, simultaneous PIV–PLIF diagnostics to obtain instantaneous velocity–density
statistics. Turbulence statistics are calculated as ensemble averages, followed by
spanwise averages in the periodic direction where applicable. All of the turbulence



72 B. J. Balakumar and others

data presented in this paper were obtained at t = 800 µs after first shock corresponding

to t = 200 µs after reshock. These correspond to non-dimensional times (t∗ = tU/λ)

of 22.9 and 5.7, respectively. Here, U denotes the particle velocity behind the first

shock (103.3 m s−1), t represents the absolute time elapsed since the impingement of

the first shock upon the initial condition and λ represents the primary wavelength

of the initial condition (3.6 mm). The reshock time was adjusted by fixing the end

wall location at an appropriate distance from the initial conditions. The reshock

time was selected to occur when the initial perturbations on the curtain had grown

sufficiently convoluted to represent several zero crossings of the density gradient along

the centreline (Balasubramanian et al. 2011). Under these conditions, the reshock wave

has been shown to be most effective in driving the fluid layer to a state of turbulent

mixing (Balasubramanian et al. 2011).

During each run of the experiment, two instantaneous PLIF and a pair of PIV

images are captured. The heavy gas (SF6) is seeded with acetone vapour and fog

droplets prior to entry into the shock tube. The evolving instability is interrogated

by two pulses each from a 266 nm and a 532 nm dual-head Nd:YAG pulsed laser.

The laser beams are shaped into thin laser sheets of thickness less than 0.5 mm

(as measured using marking paper). The PLIF images are captured by a pair of

Apogee cameras and the PIV images are captured by a Kodak Megaplus 2k × 2k

cross-correlation camera. The PLIF and PIV cameras are equipped with suitable

visible-light interference filters and Raman notch filters to eliminate spurious signals

from the PIV and PLIF lasers, respectively. One of the PLIF images is always

obtained at t = 515 µs (t∗ = 14.8) after first shock to act as a reference image. Any

changes in the reference image from the nominal caused by a modification of the

initial condition or experimental conditions are thus detected during every run of the

experiment. Data from such deviant runs of the experiment are discarded during the

calculation of the statistics presented here. The PLIF resolution of the evolving curtain

is 51.8 µm pixel−1, while the vector-to-vector spacing for the PIV fields is 181 µm,

corresponding to a pixel resolution of 15.1 µm pixel−1 on the PIV camera.

It is critical to calibrate the PIV and PLIF cameras accurately in order to

superimpose the density and velocity fields spatially. Previous experience shows that

simple calibration procedures using fixed rulers are prone to errors and result in

significant spatial offsets and magnification variations across the density and velocity

fields. Therefore, a plate with an array of accurately positioned through-holes mounted

on a high-accuracy translation stage (650 nm accuracy) was used to perform the

calibrations by back-lighting the holes (figure 1b). Covering the holes with translucent

tape and carefully positioning the light sources allowed the precise determination

of the hole centres on the image plane using a centroid identification procedure.

The spatial locations of the holes on the image planes were then mapped to the

spatial location of the holes in the measurement space using a third-order polynomial

mapping function following the procedure detailed in Soloff, Adrian & Liu (1997).

To compensate for the location of the PIV and PLIF cameras on either side of

the calibration target, the target was moved to place the imaged end of the holes

at the same spatial locations for all cameras. Further details about the experimental

apparatus and characterization of the initial conditions are provided in Balakumar et al.

(2008). All initial condition parameters in the present experiments are identical to

those presented in Balakumar et al. (2008) except for the peak concentration (Atwood

number, At = 0.6 in our present experiments).
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2.2. Shot-to-shot variations

Unlike some classes of canonical turbulent flows in the laboratory (such as channel
flows, pipe flows and flat-plate zero-pressure-gradient boundary layers), whose
statistics are generally considered to be insensitive to minor variations in the initial
conditions, the sensitivity of the RM turbulence statistics to small changes in
initial conditions is currently unclear – see Ristorcelli & Clark (2004), Livescu &
Ristorcelli (2007, 2008), Livescu et al. (2009) and Abarzhi (2010) for discussions
on the sensitivity properties of variable-density turbulence. Hence, turbulence statistics
for RM flows must be calculated from carefully controlled initial conditions. The
ensemble averages in the present experiments are created by assembling instantaneous
realizations from several runs of the same experiment, and variations between the runs
can introduce spurious increases in the calculated turbulence intensities. Therefore, it is
important to measure and document the variations between the individual realizations
in the present experiments, and it is expected that this additional step in characterizing
the experiments will help to answer future questions that arise during comparisons
with numerical simulations.

The density measurements obtained using the fluorescence signals induced by the
266 nm pulsed Nd:YAG laser are subject to errors due to laser intensity variations
between shots. Since the density calibrations are performed independently of the
instantaneous measurements (either before or after the experimental runs), variations
of the laser intensity between shots directly translate to fluctuations in the density
field. Note that, unlike true turbulence density fluctuations, these fluctuations are
correlated within the same realization, and can be removed systematically from the
PLIF measurements by measuring the laser pulse intensities. The net laser intensity
for each measurement pulse during each run of the experiment was measured by
deflecting a portion of the laser beam into a photo-sensor and recording it digitally.
Based on 100 measurements, it was found that the instantaneous laser energy varied by
less than 3.5 % of the mean energy.

Another source of error in the measurement of turbulence statistics arises from
the variation of the shock speed between shots. Shock speed variations manifest
themselves in two different ways in the measurement of the statistics: (a) changes
in the initial baroclinic vorticity deposition due to shock strength variations; and
(b) variation in the location of the turbulent structure between shots. The first error
was found to be negligible, while the second source of error is significant and
requires a careful selection of a subset of realizations from all the experimental
runs to calculate ensemble statistics. The measured variation of the shock speed
(based on pressure transducers located along the wall of the shock tube) was about
±0.5 %. This translates to an equivalent percentage error in the circulation and is
negligible. However, the same variation in the shock speed also translates to a particle
velocity variation of about ±2 m s−1, resulting in a jitter in the instantaneous location
of the turbulent structure of about ±2 mm. Since the structure width after reshock
is 5.2 mm, this jitter in the instantaneous location is significant when instantaneous
fields are superimposed to calculate single-point statistics. That is, superimposing
the ensemble of instantaneous realizations without accounting for the shot-to-shot
variations in the structure location would contaminate the instantaneous statistics with
the streamwise two-point correlation functions (Adrian & Westerweel 2010). While
one might consider displacing the measured instantaneous structure prior to calculating
the ensemble statistics to compensate for the shock speed variations, we took the
stricter approach of utilizing only those realizations in the ensemble whose structures
are within 250 µm of one another along the streamwise direction (corresponding to a
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pixel displacement of ±5 pixels for the PLIF images). One advantage of this approach
is that PIV ensemble averages can be calculated by a direct superposition rather than
correcting for the locations, since a ±5 pixel variation in the PLIF images corresponds
to a ±16 pixel variation in the PIV images, which is within the vector-to-vector
spacing. A more important advantage of this approach is that the timing of the reshock
impact between the realizations of the ensemble is preserved, thereby increasing the
reliability of the calculated statistics. The Atwood number variation between shots is
negligible, since the ambient temperature is maintained constant and ultra-pure gases
are used in creating the initial conditions.

2.3. Measurement and statistical error estimates

2.3.1. PIV and PLIF measurements
The PIV image pairs were interrogated using 24 × 24 pixel windows and 50 %

overlap using the Insight 3G (ver. 9.0.3.2) software. The vector field was validated
using standard-deviation filters (σ = 3) and mildly smoothed using a Gaussian filter
(σ = 0.8 over a 5 × 5 vector neighbourhood). Instantaneous velocity vectors were
estimated to carry a sub-pixel error of 0.1 pixel corresponding to an absolute error of
0.75 m s−1 on the fluctuation fields. Although this error does not propagate into the
mean velocity measurements, there is a small (<10 %) bias created on the root-mean-
squared (r.m.s.) statistics of the velocity field. This error is less than the statistical
convergence error.

The concentration profiles and peak concentration in the initial conditions were
characterized using quantitative PLIF measurements. Intensity images of the flowing
curtain were obtained before shock impact. These intensities were converted to density
measurements using a calibration procedure that employed an anodized nozzle flowing
pure (100 %) SF6 (seeded with acetone) and placed above the light sheet. The position
of the nozzle was adjusted to preclude errors due to spatial variations of the laser light
sheet intensity. The measured PLIF intensity across the nozzle exhibited exponential
decay in the direction of the light sheet (Beer’s law). Curve fits to the intensity
variations in both the spanwise and streamwise directions were used to measure
the extinction coefficients. Using these extinction coefficients, the errors due to light
absorption on the measured peak intensity were calculated to be less than 1.5 %. The
variation in the instantaneous density measurements (without correcting for shot-to-
shot laser pulse intensities) was estimated to be 3.5 % and provide a bound for the
peak density variation in the initial condition. The laser pulse intensities were also
measured using a pyroelectric joulemeter. Corrections for the instantaneous density
fields using these measurements resulted in small (<10 %) errors on the density self-
correlation profiles that were within the statistical measurement uncertainty. We also
note that our measurements are generally presented without normalization. This is
because several of the variables presented here are being measured in RM flows for
the first time. In these flows, the appropriate scaling variables to use are unclear and
remain open problems. Such a method of presentation does not diminish the value of
these measurements in providing useful insights into RM turbulence and allows a more
stringent validation of simulations.

2.3.2. Mass conservation estimate
Since it is non-trivial to calibrate the fluorescent signals from the fluid layer

after one or more shocks inside the confined shock tube, the relationship between
the concentration of the shocked fluid and the measured PLIF image intensity was
established using mass conservation (Tomkins et al. 2008). Although mixing might
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entrain air, the mass of the fluorescent fluid will remain the same before first shock,
after first shock and after reshock. Therefore, by measuring the total mass of the
fluorescent fluid in the initial condition before first shock using the aforementioned
calibration procedure with a nozzle flowing pure SF6, one can calculate the scaling
coefficient (α) in the relation c = αI both before and after reshock. Here, I represents
the measured charge-coupled device (CCD) pixel count on the PLIF camera and
c represents the SF6 concentration. The light sheet was also adjusted such that
it maintained the same thickness through the test section. That is, the waist of
the light sheet occurred at the midpoint of the measurement stations and minimal
variations in the light sheet thickness were measured on either side of the waist near
the measurement locations. Using this procedure, the total mass of the heavy gas
contained within the control volume was measured to carry a statistical error of ±2 %.

2.3.3. Uncertainty estimates
Owing to the difficulties associated with repeating RM experiments from closely

controlled initial conditions, RM turbulence statistics must be computed from only
a limited number of realizations, introducing sampling errors. The errors associated
with the finite sample size used in calculating the turbulence quantities are estimated
following the general procedure given in Bevington (1969). The procedure is briefly
summarized here for completeness.

Consider an estimate (x̂) for a variable, x, calculated as

x̂ = f (U1, U2, U3, . . .), (2.1)

where U1, U2, . . . could be any variable used in the calculation, such as the
instantaneous measurement values, actual (error-free) values, or measurement errors.
To illustrate the general procedure, let us consider the mean velocity estimate

Û = (
∑

Ui)/N, where Ui are the instantaneous measured velocity values. Then, the
variance of this estimate is given by (Bevington 1969)
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where σ 2
Ui

is the variance of the quantity Ui and σUiUj
is the covariance of the

quantities Ui and Uj. Estimates of several turbulence quantities calculated in this
paper are presented in table 1, assuming independent measurements (i.e. vanishing
covariances in (2.2)). More detailed discussions along with different methods of
calculating errors in turbulence quantities can be found in Benedict & Gould (1996).

3. Results

3.1. Growth of the instability before and after reshock

The variation of the width of an RM unstable fluid layer with time is often used as
a gross metric to characterize the instability growth. Although easy to measure, the
effects of refraction of light rays at the wall of the shock tube due to the presence
of boundary layers introduce errors that depend upon the diagnostic technique.
In particular, Schlieren and shadowgraphy techniques could introduce significant
deviations from actual values owing to the volume-averaged nature of the measurement
(Jacobs et al. 1995). While PLIF measurements are also prone to such errors, PLIF
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Ŵ

)

√
σ

2 x N
±

1

V
ar

ia
n
ce

(σ
2 ρ
,
σ

2 u
,
σ

2 v
,
σ

2 w
)

2

√
σ

4 x N
±

3

D
en

si
ty

se
lf

-c
o
rr

el
at

io
n

(b
)

1
√

N
〈 ρ

〉√

σ
2 ρ

[
∣ ∣ ∣ ∣〈 ρ

〉4

〈
1 ρ

4

〉
+

(1
+

b
)2

−
2
(1

+
b
)

〈
1 ρ

2

〉
〈 ρ

〉2

∣ ∣ ∣ ∣]
±

1
5

M
as

s
fl

u
x

(a
1
,

fo
r

ex
am

p
le

)
1 √
N

√
2
σ

2 u
σ

2 ρ
+

2
σ

2 ρ
u

ρ̂
2

+
σ

2 u
σ

2 ρ
u

ρ̂
4

±
2
0

F
ir

st
te

rm
in

R
ij

ex
p
an

si
o
n

ρ
u

′ iu
′ j

1 √
N

√
〈 u

v
〉2

σ
2 ρ
+

2
〈 ρ

〉2
(σ

2 u
σ

2 v
+

σ
4 u
v
)

±
4

T
A

B
L

E
1

.
S

ta
ti

st
ic

al
an

d
m

ea
su

re
m

en
t

er
ro

rs
as

so
ci

at
ed

w
it

h
th

e
tu

rb
u

le
n

ce
m

ea
su

re
m

en
ts

.



Turbulent mixing in Richtmyer–Meshkov fluid after reshock 77

W
id

th
 o

f 
th

e 
fl

u
id

 l
ay

er
 (

m
m

)

Non-dimensional time elapsed from 

first shock impact, t*

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35

FIGURE 2. Growth of the RM unstable fluid layer after first shock and after reshock in
the present experiments (�), compared to previous data from nominally identical initial
conditions (△, Balakumar et al. 2008; ▽, Orlicz et al. 2009).

diagnostics offer quantitative density fields, making them superior to line-of-sight
techniques.

The presence of noise in the recorded PLIF images is another salient source
of variability in the measured widths. Based on width measurements from
several realizations, and after accounting for potential shot-to-shot variations in the
illumination intensity (which directly affect the width for a given fixed threshold
of pixel intensity), it is estimated that the widths in the present measurements are
accurate to within ±3 %.

The variation of the measured layer width with time is shown in figure 2. The
widths are measured between locations where the concentration of SF6 falls to 5 %.
Data from previous experiments on a varicose initial condition that is nominally
identical to the present experiments are also plotted for comparison (Balakumar et al.

2008; Orlicz et al. 2009). The present data fall within ±5 % of the previously
measured widths. It should be noted that these data sets were obtained with
two different set-ups on experiments that were conducted several months apart.
Despite this, the small variation in the measured widths between these data sets
is an immediate indicator of the repeatability of the present experimental set-up.
Qualitatively, the structures in the present data were found to be very similar to
the structures observed in Balakumar et al. (2008), especially during the early growth
phase up to 200 µs (t∗ = 5.7).

The maximum growth rate of the curtain after first shock occurs between t∗ = 2.9
and 11.4. During this time, the layer width grows at an average rate of 8.7 m s−1.
Subsequently, the growth of the singly shocked curtain slows down and reduces to a
value that is approximately an order of magnitude smaller until reshock. Upon reshock,
the growth rate once again increases dramatically to reach a value of 7.6 m s−1, at
t∗ = 2.9 after reshock. The corresponding bulk Reynolds number (Re = hḣ/ν, where h
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is the layer width and ν is the viscosity of a 50 % SF6–air mixture at ambient
conditions) changed from Re = 691 before reshock to Re = 3275 after reshock.

These detailed measurements of the curtain width and growth rate provide an
opportunity to compare the results of numerical simulations with experiments. Our
experience in comparing two- and three-dimensional codes with experimental results
has shown that matching the growth rates between experiments and simulations is
achieved with much less effort than a comparison of absolute widths.

3.2. Transition during reshock

A time series showing the transition of the RM fluid layer into a strongly mixed
state after reshock is presented in figure 3. Rapid material mixing occurs within the
first 100 µs of reshock (corresponding to a duration of t∗ = 2.9). During this time
(17.2 6 t∗ 6 20.0), vortical structures are observed in the fluid layer at t∗ = 18.0 and
t∗ = 18.9. The large-scale symmetry present before reshock is destroyed to create
small-scale vortical structures, some of which are not symmetric (as is clear from
the upstream structures at t∗ = 18.9). The presence of these vortical structures is
interesting, as it allows for the possibility of modelling RM turbulence after reshock
using elementary vortex dynamics similar to the wall-turbulence models proposed in
the past (Marusic 2001). It is worthwhile noting that the baroclinic vorticity deposition
mechanism is active during both the first shock passage and the reshock (see also
Velikovich et al. 2000; Nishihara et al. 2010). In the case of reshock, however, the
convoluted interface (i.e. density gradients) present just prior to reshock results in a
more complex deposited vorticity field, and thus faster transition to a state of turbulent
mixing. This might offer a clue in the choice of metrics to determine transition. Note
that the dynamics of the flow, driven by vortical interactions, among other mechanisms,
is complex and is not fully understood as yet. The focus of the present paper is the
statistics of the turbulent (or near-turbulent) state, so our discussion of the transition
process here is limited. Further discussion about the fine-scale structure of the fluid
layer in this early turbulent state is provided elsewhere, however, including before and
after reshock (Balakumar et al. 2008) for M = 1.2 and prior to reshock (Orlicz et al.

2009) for M = 1.2 and 1.5. Note that the turbulence statistics presented in the present
paper are obtained well past this transition, at t∗ = 22.9.

There is one aspect of the post-reshock transition that may be illuminated by the
present data, and so will be discussed here. The enhanced mixing after reshock may be
understood by looking at the PIV–PLIF fields of the evolving curtain immediately after
reshock. Figure 4 shows that the post-reshock mixing is driven by four large-scale
vortices, presumably created by the roll-up of baroclinic vortex sheets deposited at
the material interfaces. Unlike the pre-reshock case, which is driven by a row of
approximately equispaced counter-rotating vortices, the post-reshock flow is driven
by two rows of counter-rotating vortices arranged as shown in figure 4. This latter
arrangement is unstable, and therefore small perturbations after reshock would result in
the dislocation of the vortices. Thus, in the post-reshock case, mixing is probably
driven both by vortex-induced fluid motion and by the motion of the vortices
themselves, resulting in a faster transition to a turbulent state when compared to
the singly shocked case.

3.3. First shock and reshock wave properties

The propagation velocities of the first shock and reshock waves were independently
measured in the present experiments using pressure transducers installed in the walls
of the shock tube. Based on these data, the incident shock Mach number was
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FIGURE 3. Time-series PLIF images showing transition of the RM unstable fluid layer after
reshock at t = 600 µs (t∗ = 17.2).

calculated to be 1.21. One-dimensional gas dynamics calculations, after accounting
for the transmission and reflection of the shock wave through a perturbation-free
air–SF6–air interface, yielded a reflected shock Mach number of 1.14. In a non-porous
wall, the particle velocity behind the reshock wave is expected to be zero. However,
we observe a non-zero velocity behind the reshock wave, potentially due to leakages
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FIGURE 4. Simultaneous PIV–PLIF field showing multiple interacting vortices immediately
after reshock.

around the reshock wall. It should be noted that the incident shock wave incurs
losses during its reflection from the fluid layer interfaces and due to the suction
manifold. Shock wave distortions also occur upon its passage through the convoluted
light–heavy–light fluid layer interface. In the present experiments, the value of the
reflected shock speed was verified to be consistent with pressure trace measurements
from pressure transducers to within ±10 %. The ambient pressure in the shock tube is
measured to be 78 kPa and must be accounted for in numerical simulations.

3.4. Mean propagation velocity of the fluid layer’s centre of mass

The mean propagation velocity of the fluid layer is strongly dependent upon the
distribution of the baroclinic vorticity in the layer after its interactions with the shock
wave. In a flat fluid layer with no perturbations, the first shock impacting the initial
condition accelerates the curtain to the particle velocity of the transmitted shock and
no baroclinic vorticity is generated. However, the presence of baroclinic vorticity in
a corrugated fluid layer modifies the translation velocity of the fluid layer and may
cause a deviation from the particle velocity of the shock due to self-induction. Thus,
accurately capturing the centre-of-mass variation with time is one indicator of the
ability of a simulation to capture the baroclinic vorticity deposition accurately.

Displacement of the centre of mass of the fluid layer at various times after the
shock wave, calculated from the density fields measured from the PLIF diagnostic,
is shown in figure 5. Linear curve fits to the centre-of-mass location yielded mean
translation velocities of 103.3 and 30.0 m s−1 before and after reshock, respectively.
The post-reshock velocity of the fluid layer does not reduce to zero because the
interface and the transmitted shock are perturbed.
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linear curve fits to the data and yield a mean convection velocity of 103.3 m s−1 before
reshock (�) and 30.9 m s−1 after reshock (�).

3.5. Ensemble-averaged mean velocity statistics

The instantaneous velocity fields that drive the mixing were directly measured using

PIV. The mean streamwise and wall-normal velocity variations of the reshocked

structure in the streamwise direction at t∗ = 22.9 are shown in figure 6(a). The

mean velocities were calculated as the spanwise average of the ensemble-averaged

velocity fields. The spanwise mean velocity approaches zero, as is expected from the

symmetry of the initial conditions. The mean streamwise velocity varies between 25

and 30 m s−1 across the layer, with the downstream edge (with respect to the direction

of the first shock) moving faster than the upstream edge. This variation is consistent

with a reshocked structure that is increasing in width over time.

Figure 6(b) plots the area histograms of the instantaneous spanwise and streamwise

velocities along with their least-squares Gaussian fits. The histograms are generated

using the velocity fields from all nine of the valid instantaneous PIV realizations. Both

the spanwise and streamwise velocities show approximately symmetric distributions

about their mean values (−0.31 and 27.2 m s−1, respectively). Based on the Gaussian

fits, the streamwise velocity shows a slightly larger standard deviation (10.1 m s−1)

in comparison to the spanwise velocity (8.2 m s−1). In both cases, the velocity

fluctuations are significant in comparison to the mean velocity and are larger than

the previously measured values at an earlier time (Balakumar et al. 2008), indicating

turbulence production long after the shock wave has passed through the fluid layer,

presumably due to variable-density turbulence effects. It should be noted that the

histograms and velocity statistics presented in this paper are derived from seeding

only the heavy gas, owing to difficulties associated with seeding the surrounding light

gas. The measurement bias introduced by this selective seeding is not expected to be

significant at the present measurement time because of the strongly mixed state of the

fluid layer after reshock.
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FIGURE 6. (a) Variation of the mean streamwise (△) and spanwise (�) velocity across the
fluid layer after reshock (t∗ = 22.9). (b) Area histograms of the instantaneous streamwise (△)
and spanwise (�) velocities within the fluid layer (t∗ = 22.9).

3.6. Turbulence statistics: velocity fluctuations

The streamwise and spanwise velocity variances across the fluid layer after reshock
(t∗ = 22.9) are plotted in figure 7(a). These variances are calculated as the spanwise
averages of ensemble statistics. It is clear that the streamwise and spanwise velocity
variances are approximately equal in magnitude throughout the fluid layer (within
statistical convergence errors), indicating that any anisotropy in the velocity field along
the direction of shock propagation is less than the statistical measurement errors.
The r.m.s. streamwise velocity fluctuation reaches a peak value of 30 % of the mean
velocity at the centreline and reduces to ∼20 % on either edge of the fluid layer.
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FIGURE 7. (a) Variances of the velocity fluctuations across the fluid layer at t∗ = 22.9.

(b) Area histograms of u′2
1 , u′2

2 and u′
1u′

2 statistics at the same time. For both panels: △, u′2
1 ;

N, u′2
2 ; �, u′

1u′
2.

The cross-correlation component (u′
1u′

2, where 1 and 2 represent the streamwise and
spanwise directions, respectively), related to the generalized Reynolds shear stress, is
smaller than the streamwise and spanwise velocity variances by more than an order of
magnitude throughout the fluid layer. This behaviour is typical of a well-mixed fluid
layer that is homogeneous in the spanwise direction, since a given streamwise velocity
fluctuation is equally likely to produce a spanwise fluctuation in either direction.
However, the spanwise average of 〈u′

1u′
2〉 will also vanish for a fluid layer that is

reflectionally symmetric (but not homogeneous) in the spanwise direction, since equal
and opposite signs of correlations occur on either side of the axis of symmetry. Since
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the present varicose curtain shows a reflectional symmetry, the vanishing nature of the
cross-correlation cannot be interpreted as an indicator of mixing homogeneity at the
measurement time (t∗ = 22.9). This issue will be revisited in a subsequent section on
Reynolds shear stresses.

Figure 7(b) plots histograms of the variance of the velocity fluctuations and the
instantaneous cross-velocity correlation (u′

1u′
2). The histograms are computed based

on fluctuating velocities in all of the instantaneous realizations prior to taking the
ensemble averages. The symmetric nature of the cross-velocity correlation is consistent
with the vanishing nature of this correlation observed earlier. In addition, in an
area-averaged sense, the streamwise and spanwise velocity variances appear nearly
identical.

The dependence of the turbulent velocity statistics on the PIV interrogation window
size was investigated by interrogating the PIV images with multiple window sizes. It
was found that a 24 × 24 pixel interrogation window captured the statistics better than
larger windows. A 32×32 pixel interrogation window (corresponding to a resolution of
242 µm at 50 % overlap) underestimated the σu and σv statistics by 5–10 % compared
to a 24 × 24 pixel window (resolution of 182 µm). The size of the window was
observed to have a negligible influence on the mean velocity statistics.

3.7. Mean density and density probability density function

The mean density profile of the gas curtain before (t∗ = 15.4) and after (t∗ = 22.9)
reshock are shown in figure 8. The mean densities were calculated as the spanwise
average of the ensemble-averaged density field. These profiles were calculated after
correcting for small centre-of-mass variations between the shots. The uneven pattern
of the mean density profile before reshock is a direct consequence of the mass
distribution induced by the growing RM instability. The disorderly mixing induced by
the reshock reduces these uneven variations and results in a more evenly distributed
density profile. The peak density occurs on the downstream side of the curtain after
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reshock. The gradient on the downstream side is also steeper than on the upstream
side, resulting in a small offset between the location of the peak density and the centre
of mass of the fluid layer. The higher mean density after reshock is consistent with the
presence of a compressive shock.

The differences between the mixing that occurs on the upstream and downstream
sides of the centre of mass of the curtain are investigated by plotting the probability
density functions (p.d.f.) of the absolute density on either side of the centre of mass,
as shown in figure 9. Both before and after reshock, the asymmetry of the density
distributions on either side of the centre of mass imply that the density gradients carry
an imprint of the direction of the shock wave.

At t∗ = 15.4 (before reshock), a larger fraction of the heavier-density clumps occur
in the upstream side and are located closer to the centre of mass when compared to
the lighter clumps. On the other hand, after reshock, a larger fraction of the heavier
clumps occur in the downstream side and are located further from the centre of mass
compared to the lighter material. After reshock, a peak in the p.d.f. occurs at a density
of ∼2.15 kg m−3 on the downstream side. This peak is absent in the pre-reshocked
density p.d.f. and is created by the rapid mixing between the air and SF6 after reshock.

3.8. Density self-correlation: dependence on the method of averaging

Several types of averages can be constructed from an ensemble of realizations,
including spatial averages out of single realizations (Cook et al. 2004) and true
ensemble averages. Since the computationally intensive nature of high-resolution
numerical simulations often allows only the calculation of averages from a single
realization, an examination of the differences between spatial averages and ensemble
averages becomes critical, especially when ensemble-averaged experimental data are
used to validate simulations. Here, we examine the differences observed in the
density self-correlation (DSC) profiles between spatially averaged statistics from a
single realization, and ensemble averages calculated from multiple realizations of the
instantaneous density field. The DSC (denoted by b) is an indicator of the state of
fluid mixing, and occurs unclosed in variable-density turbulent flows as a multiplier in
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the production term of the mass flux equation. Thus, the DSC is an important quantity
that mediates turbulent mass flux and material mixing in variable-density flows. The
DSC can be defined using both the mean density and the fluctuating density fields as
follows (Besnard et al. 1992):

b = −ρ ′
(

1

ρ

)′

= ρ

(
1

ρ

)
− 1. (3.1)

Note that the DSC is non-negative by definition and can be calculated using only
mean density and mean specific volume measurements in a turbulent flow field. Also,
the definition of DSC does not involve velocities and is therefore a convenient quantity
to measure experimentally using only density measurement diagnostics (e.g. PLIF).

In the present work, the DSCs from single realizations are calculated using the mean
density and mean specific volume averages in the spanwise direction. The pointwise
DSC field is then averaged in the spanwise direction for convergence. The following
equations represent the averaging process used for computing the DSC from single
realizations (where overbars represent spatial averages, and subscripts x and y denote
averaging in the streamwise and spanwise directions, respectively):

ρ(x) = ρ(x, y)
y
, (3.2)

ρ ′(x, y) = ρ(x, y) − ρ(x), (3.3)

b(x) = −ρ ′(x, y)

(
1

ρ

)′ y

. (3.4)

The ensemble-averaged DSC profiles are calculated using the mean density and
specific volume ensemble averages. The pointwise DSC fields are then averaged in
the spanwise direction as shown below (where 〈· · ·〉 denotes an ensemble average, and
subscript i denotes the ith instantaneous realization):

ρ(x, y) = 〈ρi (x, y)〉, (3.5)

ρ ′
i(x, y) = ρi(x, y) − ρ(x), (3.6)

b(x, y) = −
〈

ρ ′
i(x, y)

(
1

ρi

)′〉
, (3.7)

b(x) = b(x, y)
y
. (3.8)

Figure 10 shows the DSC variation calculated using both the methods before
and after reshock. Significant differences between the ensemble-averaged and single
realization statistics are observed. In general, single realizations yield larger values
when compared to ensemble statistics. This is particularly true near the edges,
which are sensitive to initial conditions. Here, the presence of high-density material
projectiles (Zabusky 1999) that are sensitive to small variations in the experimental
conditions result in large contributions to the fluctuating quantities and affect the
DSC. Throughout the fluid layer, the DSC varies by a factor of 2–3 between the two
methods (single realization and ensemble averaging).

3.9. Turbulent mass flux estimates

The turbulent mass flux velocities (ai) through the fluid layer are given by

ai = ρ ′u′
i/ρ. (3.9)

The mass fluxes due to turbulent fluctuations are calculated directly in the present
flow from the simultaneous PIV–PLIF measurements. In order to obtain convergent
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FIGURE 11. Turbulent mass flux and density variations across the fluid layer after reshock
(t∗ = 22.9). The zero-crossing location of the streamwise turbulent mass flux coincides with
the peak in the density profile.

statistics, ensemble averages followed by spanwise averages have been calculated on
the measured instantaneous fields. The variation of the turbulent mass flux in the fluid
layer after reshock, along with the density profile variation in the streamwise direction,
is shown in figure 11. The turbulent mass flux plots shown here have been smoothed
with a five-point moving average filter prior to plotting.

The streamwise turbulent mass flux (ρ ′u′
1) is generally negative in the upstream

direction (with respect to the first shock) and positive in the downstream direction,
with the zero crossing occurring at a streamwise location coincident with the density
peak. This behaviour is closely related to the variation of the mean density profile and
can be explained using an argument similar to that used to determine the sign of the
Reynolds shear stress term in incompressible, single-fluid turbulent flows. Upstream
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FIGURE 13. Streamwise variation of the Reynolds stresses across the fluid layer after
reshock (t∗ = 22.9).

of the centreline, a fluid parcel subjected to positive streamwise velocity fluctuation
is transported to a region of higher density, causing a negative ρ ′u′

1 correlation.
Downstream of the centreline, a positive velocity fluctuation causes the transport of
heavier fluid into a lighter fluid region (i.e. positive density fluctuation), resulting in a
positive ρ ′u′

1 correlation. Thus, the sign of ρ ′u′
1 is determined by the gradient of the

density field.
In a fully mixed state, where spanwise inhomogeneities are absent, the spanwise

turbulent mass flux (ρ ′u′
2) should vanish by symmetry. However, the spanwise

turbulent mass flux in the present case is measured to be non-zero, giving rise to
the possibility that the flow might not be fully mixed at the observation time. Although
this is not readily seen in the density fields, a strong spanwise variation in the
flow field is observed in a plot of the streamwise velocity contours (figure 12). The
spanwise spacing between the contour peaks is nearly 3.6 mm, corresponding to the
initial wavelength of the instability. Thus, the mixing zone has not yet attained a state
of spanwise homogeneity in the present case at t∗ = 22.9.
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The generalized mass-weighted Reynolds stresses, Rij = ρu′′
i u′′

j , where u′′
i is the Favre

velocity fluctuation, determine the turbulent transport of momentum in variable-density
flows. In the present case, three of the six independent components of this tensor
can be directly measured. Figure 13 shows the streamwise variation of the Reynolds
stresses R11, R22 and R12. As expected from the values of the turbulent fluctuations, the
self-correlation terms R11 and R22 are similar in magnitude, and the cross-correlation
term R12 is significantly smaller. More interestingly, the Reynolds stresses can also be
written as

Rij = ρu′
iu

′
j︸︷︷︸

term 1

− ρaiaj︸︷︷︸
term 2

+ ρ ′u′
iu

′
j︸ ︷︷ ︸

term 3

(3.10)

The various terms in this equation are shown in figure 14. Although shown only
for R11, the trends are similar for R22 and R12, and the ensuing discussion pertains
to these terms also. It is clear that, at the measurement location, the Reynolds

stresses are dominated by the ρ u′
iu

′
j term (term 1), with the other two terms being

substantially smaller. In particular, the mass flux term (term 2) is ∼10 times smaller
than the triple correlation term (term 3), which, in turn, is ∼100 times smaller
than the dominant term (term 1). Thus, from a modelling perspective, the mean
density–velocity correlation terms are the most dominant terms that contribute to the
Reynolds stresses.

4. Summary

The statistics of turbulent mixing in an RM unstable, variable-density fluid
layer were measured using high-resolution, simultaneous velocity–density diagnostics
(PIV–PLIF) in a varicose fluid layer after reshock. Such detailed, multi-point statistical
measurements of the turbulent density–velocity fields, performed in RM flows for the
first time, offer several new insights into RM material mixing in the turbulent mixing
regime.
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At low Mach numbers (Ma = 1.21) and moderate Atwood numbers (At = 0.67),

we observe that a single shock does not induce a transition to turbulence within the

times observed (t∗ = tU/λ < 23.4). However, an immediate transition to a turbulent

mixing state accompanied by strong mixing occurs within t∗ = 2.9 of impact by a

reshock wave at t∗ = 17.2. Unlike the singly shocked case, where the mixing is

driven only by the vortex-induced fluid motion generated by a stable arrangement

of vortices, after reshock, the mixing appears more chaotic and is associated with

clear vortical motions inside the mixing layer, resulting in a faster transition to a

turbulent state. These motions are associated with strong streamwise and spanwise

velocity fluctuations (up to 30 % of the mean convection velocity of the fluid layer)

at t∗ = 22.9. These fluctuation magnitudes were larger than the measurements at an

earlier time (Balakumar et al. 2008), indicating turbulence production long after shock

passage, possibly due to variable-density effects. The r.m.s. streamwise and spanwise

velocity fluctuations were measured to be approximately equal (within experimental

errors) across the fluid layer. One implication of this observation is the possibility

that the three-dimensional mixing after reshock acts to reduce any shock-induced

anisotropy.

Mean density profiles across the curtain showed asymmetric distributions about

the centreline after reshock. Despite the symmetry of the initial conditions, the

downstream side of the fluid layer carried larger density gradients compared to the

upstream side. This observation is consistent with a small offset between the location

of the density peak and the centre of mass. The p.d.f.s of the instantaneous density

fields after reshock showed a peak at a density of 2.15 kg m−3, presumably created by

the rapid mixing between the light and heavy fluids to create an intermediate mixed

fluid.

A comparison of the DSC, calculated both from instantaneous spanwise averages

and from ensemble averages, showed significant differences between the two methods

(up to ±55 % variation near the peak). Computations that often rely on single

realizations must take this observation into consideration prior to a comparison with

experimental data. The instantaneous spanwise-averaged statistics of the DSC, obtained

from single realizations of the experiment, were observed to be within a factor of 2–3

of the ensemble statistics. This provides a bound for comparison of simulations to

experiments.

The measured streamwise turbulent mass flux (ρ ′u′
1) showed opposite signs on

either side of the density peak within the curtain. This behaviour was explained

by examining the events that generate turbulent mass fluxes inside RM curtains.

Considering the portion of the fluid layer on the upstream side of the density

peak, a positive streamwise velocity fluctuation (i.e. a velocity surplus along the

downstream direction with respect to the first shock) transports lower-density fluid into

the measurement point. Conversely, a negative velocity fluctuation transports higher-

density fluid present closer to the density peak to the measurement location. Hence, a

strong negative correlation between the density and velocity fluctuations is established,

resulting in a negative turbulent mass flux. Based on this observation, the turbulent

transport of material within RM curtains depends on the gradient of the density. At the

measurement location (t∗ = 22.9), a lack of homogeneous mixing (and consequently

evidence for the presence of an imprint of the initial conditions) is observed in the

spanwise periodicity of the streamwise velocity contours, consistent with the non-zero

value of the spanwise turbulent mass flux.
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Using two-dimensional velocity–density measurements, three of the six independent

components of the general Reynolds stress tensor (ρu′′
i u′′

j ) were directly measured.
The self-correlation terms (R11 and R22) were similar in magnitude, while the cross-
correlation term (R12) was observed to be much smaller. When the Reynolds stress

term is written as Rij = ρ u′
iu

′
j − ρaiaj + ρ ′u′

iu
′
j, in all the three measured terms

(R11, R22, R12) the Reynolds stresses are dominated by the ρ u′
iu

′
j term, with the

remaining terms being at least one order of magnitude smaller.
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