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A new set of numerical simulations of turbulent plane Couette flow in a large box of
dimension (20πh, 2h, 6πh) at Reτ = 125, 180, 250 and 550 is described and compared
with simulations at lower Reynolds numbers, Poiseuille flows, and experiments. The
simulations present a logarithmic near-wall layer and presently used to verify and revise
previously known results. It was confirmed that fluctuation intensities in the streamwise
and spanwise directions do not scale well in wall units. The scaling failure happens both
near and away from the wall. On the contrary, the wall-normal intensity scales in inner
units in the near-wall region and in outer units in the core region. The spectral ridge
found in Hoyas & Jiménez [Scaling of the velocity fluctuations in turbulent channels
up to Reτ = 2003, Physics of Fluids, 011702] for the turbulent Poiseuille flow can be
also seen in the present flow. Away from the wall, very large scale motions are found
spanning through all the length of the channel. The statistics of these simulations can
be downloaded from the webpage of the Chair of Fluid Dynamics.

1. Introduction

Direct numerical simulation (DNS) has been a fundamental tool for the study of wall
turbulence since the seminal work of Kim et al. (1987). For a detailed reference on
the state of the art on this fascinating topic, see for instance the recent work of Jiménez
(2013). Focusing on channel flow geometry and in particular on Poiseuille flows, moderate
Reynolds numbers up to Reτ = 2003 have been reached (Hoyas & Jimenez 2006), but
considerably less attention has been paid to plane Couette flows. The main issues are
the long and wide structures existing in turbulent Couette flow, as it has been stated
experimentally (Tillmark 1995; Kitoh et al. 2005; Kitoh & Umeki 2008) and numerically
(Bech et al. 1995; Komminaho et al. 1996; Tsukahara et al. 2006; Pirozzoli et al. 2011;
Bernardini et al. 2013). The necessity of large boxes to capture these structures makes
the study of this flow much more computationally expensive than turbulent Poiseuille
flow.
In this work, a new set of DNSs of a plane turbulent Couette flow has been performed

within a computational box of Lx = 20πh, Ly = 2h and Lz = 6πh, with spanwise
and streamwise periodicities and at Reynolds numbers of Reτ = 125, 180, 250 and 550,
based on the friction velocity uτ and on the channel half-width h. The simulations for
the low Re numbers are thus comparable to other, most recent simulations made by
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Bernardini et al. (2013), Tsukahara et al. (2006) and the Poiseuille flow at Reτ = 550
of Jiménez’s group (del Álamo & Jiménez 2003; Jimenez & Hoyas 2008). Due to the
well known box size issues that are related to the largest structures which form in the
core region of the Couette flow it is important to mention that Bernardini et al. (2013)
performed DNS at Reτ = 167 in a box (12πh × 2h × 4πh), while Tsukahara et al.

(2006) performed DNS at Reτ = 126 in several boxes up to (40πh × 2h × 4πh). The
method employed to obtain the flow evolution is similar to the one used by Kim et al.

(1987) and Hoyas & Jimenez (2006). The streamwise, wall-normal, spanwise coordinates
are x, y, and z and the corresponding velocity components are u, v andw. The governing
equations of the system are transformed into an equation for wall-normal vorticity ωy

and for the Laplacian of the wall-normal velocity φ = ∇2v. The spatial discretization
uses dealiased Fourier expansions in x and z, and seven-point compact finite differences
in y, with fourth-order consistency and extended spectral-like resolution (Lele 1992).
The temporal discretization is a third-order semi-implicit Runge-Kutta scheme (Spalart
1991). Initial fields were taken from previously calculated Poiseuille flows, imposing the
new boundary conditions. The code was validated with the results of Tsukahara et al.

(2006), i.e. we performed simulation with exactly same parameters in similar box. Due
to the simplicity of the obtained verification results they are not included in the present
paper. Table 1 summarizes the parameters of the present simulations. The wall-normal
grid spacing is adjusted to keep the resolution, ∆y = 1.5η, approximately constant in
terms of the local isotropic Kolmogorov scale η = (ν3/ǫ)1/4 for the Reτ = 550 case. In
wall units, ∆y+ varies from 0.92 at the wall up to ∆y+ ≃ 5.9 at the centerline. In order
to facilitate the comparison of structures in outer variables we used the same grid in
wall-normal direction for all Reτ = 180− 550 cases. The running times are given both in
terms of turnover periods for eddies of size h and of velocity uτ , and flow-troughs. For
the present box the former are approximately 2.5 bigger than the latter. Transitions until
statistically steady state is reached are no contemplated in Table 1. One of the tools used
to asses that the statistically steady state has been reached is to compute the total shear
stress, which should be one in Couette flows (See figure 1b). In the present study we
restrict ourselves to describe the new data coming from these simulations and compare
them with the results obtained for the pure Poiseuille flows. For a complete description
of transition from Couette to Poiseuille flow the reader is referred to the work of Pirozzoli
et al. (2011).

2. Statistics

The mean velocity profiles are shown in figure 1a scaled in outer and inner units. The
new profiles agree well with the simulations of Tsukahara et al. (2006) and Bernardini
et al. (2013) at Reτ = 125−250. In figure 1a the log law U+ = 1/κ log(y+)+B has been
plotted for κ = 0.41 and B = 5.1. Unlike the results of Kitoh et al. (2005) and Tsukahara
et al. (2006) we do not see any dependency of B on the friction Reynolds number in the
range Reτ = 125− 550. This may be an indication that the Reynolds numbers at which
the flow was studied in the past was not sufficiently high to investigate the near-wall
log-law.
In order to analyze the inverse of the Kármán constant the log-indicator function

y∂yU
+ has been plotted in figures 2a and 2b in outer and inner variables respectively.

All curves, including the Poiseuille flow at Reτ = 550 of del Álamo & Jiménez (2003),
collapse well up to their first minimum, at y+ ≃ 60. As was suggested in Hoyas & Jimenez
(2006) this value can be taken as a lower limit for the logarithmic layer. After this point,
Couette and Poiseuille flows differ significantly. It appears that the curve in the log-
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Figure 1: Color online. (a) Mean velocity profile scaled in outer (top-left, UW , h) and
inner (bottom-right, uτ ,

+) scales. Lines as in Table 1. Circles from Tsukahara et al.

(2006); squares from Bernardini et al. (2013). Blue thin solid line corresponds to viscous
sublayer linear scaling law; red thin solid line represents near-wall classical logarithmic
scaling law. (b) Total shear and Reynolds stresses in inner and outer scales.

Case Line Reτ ReUw
Lx/h Lz/h ∆x+ ∆z+ Nx Ny Nz uτT/h UclT/Lx

C125 · · · · · · 125 4500 20π 6π 13.7 6.18 864 151 576 27.1 7.4
C180 – – – – 180 6300 20π 6π 13.1 6.6 1296 251 768 34 9.6
C250 —·— 250 9000 20π 6π 10.2 6.1 2304 251 1152 53 15.5
C550 550 22500 20π 6π 13.3 6.7 3888 251 2304 57 15.2

Table 1: Parameters of the simulations. ReUw
is the Reynolds number based on the

velocity at the top wall and h. Lx and Lz are the periodic streamwise and spanwise
dimensions of the numerical box, and h is the channel half width. ∆x+ and ∆z+ are the
resolutions in terms of Fourier modes. Nx, Ny, Nz are the numbers of collocation points.
The last two columns are the time span. Line shapes given in the second column have
been used in figures 1a-6 and 8.

indicator function is flatter for Reτ = 125, 180 and 250 than for Reτ = 550 case and, in
fact, it is much flatter than the one obtained for Poiseuille channel flow at Reτ = 550.
This may be an indication that in the Couette flow the slope constant κ is less sensitive
to the high Reynolds number effects than in the Poiseuille flow. Since with increasing
Reynolds number log-region should become larger, the highest Reynolds number result
shown on figure 2 may be not fully correct. We believe that the wavy behavior of the
black thick solid curve is caused by the size of the box, which is large enough for the low
Reynolds number simulations, but need to be investigated if is too small for Reτ = 550
case.
An open question in Couette flows is the value of the non-dimensional velocity gradient

at the channel centerline sometimes named slope parameter, defined as

Ψ =
h

Uw

dU

dy

∣

∣

∣

∣

CL

. (2.1)

This value has been discussed in several works. Busse (1970), employing variational
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Figure 2: Color online. Log-indicator function, (a, b) inverse Kármán constant in outer
(a) and wall (b) units. The dashed straight line has a constant value of 1/0.41. Lines
as in Table 1. Blue thin solid line corresponds to the Poiseuille flow DNS at Reτ = 550
(Jimenez & Hoyas 2008).
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Figure 3: Color online. Velocity fluctuation intensities (rms) in outer (a) and wall (b)
units. u′+, w′+, v′+ from top to the bottom. Lines as in Table 1. Circles from Tsukahara
et al. (2006); squares from Bernardini et al. (2013); thin blue lines, Poiseuille flow at
Reτ = 550 from del Álamo & Jiménez (2003).

method and using experimental results of Reichardt (1959), determined a value of Ψ =
0.25 at infinite Reynolds number, while Lund & Bush (1980), performed an asymptotic
analysis and concluded that it approaches zero as Re → ∞. Several other DNS and exper-
iments obtained values close to the range 0.18−0.2, though all at low Reynolds numbers
or very small boxes (Komminaho et al. 1996; Tillmark 1995; Tsukahara et al. 2006). In
our case a clear decrease is found for this parameter, with Ψ = 0.18, 0.16, 0.14, and 0.1
for Reτ = 125, 180, 250, and 550 reflected in figure 2a. Apparently this trend exhibits a
rather slow convergence rate and it is inconclusive if in the limit Reτ = ∞ it will be zero
or a small positive value.

The rms velocity fluctuation profiles are shown in figure 3. Varying the Reynolds
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Figure 4: Color online. Budgets for the four nonzero Reynolds stresses. (a) Buu; (b) Buv;
(c) Bvv; (d) Bww. Production �, dissipation ♦, viscous diffusion ◦, pressure strain ▽,
pressure diffusion △, turbulent diffusion ∗. Lines as in Table 1.

number, neither u′+ nor w′+ collapses exactly in wall units. The peak of the u′+ intensity
at 15+ is higher than the corresponding one in Poiseuille flows, as was also found in
Bernardini et al. (2013). Thus, taking into account the result of Tsukahara et al. (2006)
that this value does not seem to be caused by the length of the box, we can conclude
that even in the buffer layer, where this off-wall streamwise intensity peak is located,
there is a difference between turbulent Couette and Poiseuille flows. Apart from this
discrepancy in the value of the streamwise intensity maximum, the value of this peak
follows the general tendency of wall bounded flows, increasing steadily with the Reynolds
numbers. Away from the wall there is a clear tendency for u′+ to increase with increasing
Reynolds numbers, most noticeably at the center of the channel. This effect seems to be
more important than the one in turbulent Poiseuille flows for the same range of Reynolds
numbers, as was shown in Moser et al. (1999). In the case of v′+ and w′+ there is a less
clear tendency to decrease. The almost perfect scaling of v′+ both close and far away
from the wall is remarkable.
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Figure 5: Bvv adimensionalized by u3
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Legends as in figure 4

3. Turbulent budgets

The budget equation for the component 〈uiuj〉 of the Reynolds-stress tensor , where
(u1, u2, u3) = (u, v, w),is given by Mansour et al. (1988); Hoyas & Jiménez (2008)

Bij ≡
D〈uiuj〉

Dt
= Pij + εij + Tij +Πs

ij +Πd
ij + Vij , (3.1)

where, D/Dt is the mean substantial derivative and 〈〉 stands for averaging over the two
homogeneous directions and time. The different terms in the right hand side are referred
to as production, dissipation, turbulent diffusion, pressure-strain, pressure diffusion, and
viscous diffusion. They are given as

Pij = 〈uiuk〉Uj,k − 〈ujuk〉Ui,k, (3.2)

εij = −2ν〈ui,kuj,k〉, (3.3)

Tij = 〈uiujuk〉,k, (3.4)

Πs
ij = 〈p(ui,j + uj,i)〉, (3.5)

Πd
ij = −[〈pui〉δjk + 〈puj〉δik],k, (3.6)

Vij = ν〈uiuj〉,kk, (3.7)

where δij is Kronecker’s delta, the subscripts (·),j represent derivation with respect to
xj , and repeated subscripts imply summation over 1,2 and 3. These budgets are shown
in figure 4, non-dimensionalized by ν/u4

τ . The maximum value of the residual is below
10−4 for all cases. As we can see the collapsing is perfect for Buu and Bww except for the
dissipation and viscous diffusion. In the case of Buv and Bvv the scaling is not perfect,
mainly between 10 and 100 wall units. This is more remarkable in the pressure related
terms, and it has been studied previously for Couette flows in Hoyas & Jiménez (2008).
The same conclusions obtained in that work applies here and are no repeated in sake of
brevity. Note also the scaling failure near the centerline of Bvv, whose terms do not tend
to zero there. This scaling failure is because the correct scale in the outer layer at a fixed
distance to the wall is u3

τ/h. Figure 5 shows Bvv/u
3
τ premultiplied by the distance to the

wall to show the y−1 expected behavior of Bvv(Hoyas & Jiménez 2008). Note that this
behaviour holds relatively well up to y = 0.7/h, considerably longer than in Poiseuille
flows.
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Figure 6: Color online. Spectral energy densities at y+ ≃ 15, in terms of the wavelengths
λ = 2π/k, (a) φuu, (b) φww. Spectra are normalized in wall units, and the two contours
for each spectrum are 0.125 and 0.625 times the maximum of the spectrum for the highest
Reynolds number.

Figure 7: Color online. Coherent structures obtained from the ensemble average of the
flow field spanning through all the channel and isosurfaces of 10% of the maximum
vorticity in spanwise direction for Reτ = 125.

4. Structures

In order to attain further structural information on the flow we consider two-dimensional
spectral energy densities φ = kxkzE(kx, kz) at approximately y+ = 15, the height of the
near-wall kinetic-energy maximum, as shown in figure 6. As in Hoyas & Jimenez (2006),
two isolines are given for each case, representing the high-intensity core of the spectrum,
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Figure 8: Color online. Two-point autocorrelation coefficient Ruu of velocity fluctuations
at the centerline, y/h = 0.5. (a) Streamwise, (b) Spanwise. Circles from Tsukahara et al.

(2006). △ simulation for Reτ = 125, (20πh×2h×12πh); ▽, Reτ = 125, (40πh×2h×6πh).

and its outer border. As it happens in Poiseuille flows, the core isolines scale well in wall
units, and the scaling failure appears for u and w in the upper right-hand corner, where
a spectral ridge appears. The eddies in this ridge are inactive in the sense of Townsend
(1976); Hoyas & Jimenez (2006), as these structures do not appear in v spectra or uv
cospectra. Far from the wall Couette and Poiseuille flows presents the same structure,
but for the presence of a secondary peak in the Poiseuille flows spectra. This peak has
been reported earlier (Tsukahara et al. 2006; Kitoh & Umeki 2008) and corresponds to
very long and wide turbulent patterns. These structures remain in the flow for a very
long time, and their form can be recovered by an ensemble averaging in time, where
x − z plane averaging has been deactivated. The longest structures of the flow appear
organized in counter-rotating pairs of rolls with high vorticity in their boundaries. An
example is shown in figure 7 for Reτ = 125, where we have isolated a pair of counter-
rotating rolls surrounded by iso-surfaces of vorticity in their boundaries. The position of
these vortices in the channel is shown in the upper right corner of figure 7. This subplot
shows the velocity diagram of the mean in x of the assembled average of ten turnovers
of the Reτ = 125 simulation. The presence of these footprints is a remarkable difference
to Poiseuille flows, as in the latter they should be zero. Due to a quasi-periodic process
(Hamilton et al. 1995) in the core region of the turbulent plane Couette flow low-speed
velocity streaks generate large-scale vortices. The existence of such regeneration mech-
anism in the core region was confirmed experimentally by Kitoh & Umeki (2008) and
numerically by Pirozzoli et al. (2011) and Bernardini et al. (2013). This process does
not occur in a turbulent Poiseuille flows. Recently, Melnikov et al. (2014) investigated
the stability of the long-wavelength instabilities and find that they are the result of the
multiple small scale bifurcations that occur in the core region of the Couette flow.

These structures seems to be responsible for the long correlation length observed for
Couette flows. The two-point autocorrelation coefficient Ruu(∆z), is shown in figure 8b.
The maxima are all at the same point for all Reynolds numbers studied when Lz = 6πh.
In order to see if these structures are dependent of the box, we have made two more
simulations for the Reτ = 125 case, in boxes of size (40πh× 2h× 6πh) and (20πh× 2h×
12πh). The same structures and correlations appear in both geometries. Although it can
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be seen that the intensity of the autocorrelation Ruu(∆z) is considerably reduced after
10∆z/h, it still present a clear sinusoidal pattern, with a difference between extrema
of around 1.6πh, i.e., 0.8πh per structure. This size agrees with the one given by other
authors Tsukahara et al. (2006).

With reference to the length of these structures, Tsukahara et al. (2006) stated that
up to Reτ = 126 their length is (40− 65)h, with a spanwise length of (4− 5)h, later this
result was confirmed by Kitoh & Umeki (2008). In our simulations the autocorrelation
coefficient Ruu(∆x) does not present a secondary maximum below 60h, as it is shown
in figure 8a. This result is obtained only for the lowest Reynolds number simulation
(Reτ = 125) studied in the present paper. Thus, in order to capture the longest structures
in the higher Reynolds numbers simulations the size of the box must be much larger.

5. Conclusion

We have presented a new set of turbulent plane Couette flow simulations. The main
importance of the present paper lays in the investigation of the near-wall region of the
flow. The computations at high Reynolds numbers Reτ = 180− 550 present an evidence
of the presence of the logarithmic layer in turbulent Couette flow. It was found that
the slope constant is equal to 0.41 and that the log-region in Couette flows is much
longer than the one that can be found in turbulent Poiseuille flow at similar Reynolds
numbers. Apart from that it was found that an additive constant B does not depend
on the Reynolds number and, most probably, this dependency, which was reported in
Kitoh et al. (2005) and Tsukahara et al. (2006) is a low Reynolds number effect. Some of
the other results found in the literature at lower Reynolds numbers are revised, such as
the slope parameter Ψ which is found to decrease to a small, though yet unknown limit.
Differences and similitude with Poiseuille flows have been also revised. It is noteworthy to
mention the failing in the scaling in wall units of the streamwise component of intensities,
while their off-wall peak maximum is higher than in Poiseuille flows. As in the latter, the
scaling failure also appears in the spectra of u and w, the reason being that the eddies in
this ridge are inactive in the sense of Townsend (1976); Hoyas & Jimenez (2006). It was
also found that away from the wall, most noticeably at the center of the channel, u′+ is
increasing with Reynolds number.

Far from the wall, long and wide structures, similar to those previously reported in
the literature, and shown explicitly for the first time, are found. Their spanwise length
does not depend on the size of the box. In order to decide the streamwise length of these
structures, more simulations at very large boxes are needed.

This work was partially supported by the German Science Foundation (DFG) under
the grant number KH 257/2-1 (2010). The computations of the new simulations were
made possible by a generous grant of computer time from the FUCHS cluster at the
University of Frankfurt-am-Main, the SuperMUC Petascale System at Leibniz Super-
computing Centre (LRZ) and the supercomputation center of the Universitat Politècnica
de València. We are grateful to Messrs. Tsukuhara, Kawamura, Shingai, Bernardini,
Pirozzoli and Orlandi for providing us with copies of their original data and to Mr. Pau
Raga for his help in the preparation of figure 7. S. Hoyas is in debt with J. Jiménez.
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