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Abstract. A weakly dispersive range (WDR) of kinetic

Alfvén turbulence is identified and investigated for the first

time in the context of the MHD/kinetic turbulence transi-

tion. We find perpendicular wavenumber spectra ∝ k−3
⊥ and

∝ k−4
⊥ formed in WDR by strong and weak turbulence of ki-

netic Alfvén waves (KAWs), respectively. These steep WDR

spectra connect shallower spectra in the MHD and strongly

dispersive KAW ranges, which results in a specific double-

kink (2-k) pattern often seen in observed turbulent spectra.

The first kink occurs where MHD turbulence transforms into

weakly dispersive KAW turbulence; the second one is be-

tween weakly and strongly dispersive KAW ranges. Our

analysis suggests that partial turbulence dissipation due to

amplitude-dependent non-adiabatic ion heating may occur

in the vicinity of the first spectral kink. The threshold-like

nature of this process results in a conditional selective dis-

sipation that affects only the largest over-threshold ampli-

tudes and that decreases the intermittency in the range be-

low the first spectral kink. Several recent counter-intuitive

observational findings can be explained by the coupling be-

tween such a selective dissipation and the nonlinear interac-

tion among weakly dispersive KAWs.

1 Introduction

Kinetic Alfvén waves (KAWs) are an extension of MHD

Alfvén waves in the range of high perpendicular wavenum-

bers k⊥ in the plane ⊥ B0, where linear and nonlinear effects

due to finite values of k⊥ρp become significant (B0 ‖ z is the

background magnetic field, ρp = VTp/�p is the proton gy-

roradius as we consider a hydrogen plasma) (Hasegawa and
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Chen, 1976; Voitenko, 1998a). There are numerous obser-

vational and theoretical indications that MHD Alfvén turbu-

lence in the solar wind cascades towards high k⊥ and even-

tually reaches the KAW wavenumber range at the proton gy-

roradius scales, k⊥ρp ∼ 1 (Leamon et al., 1999; Bale et al.,

2005; Alexandrova et al., 2008a; Sahraoui et al., 2009, 2010).

It is not yet certain what happens next with these KAWs: do

they dissipate by heating the plasma (Leamon et al., 1999),

or do they interact nonlinearly among themselves and cas-

cade further towards higher k⊥, ultimately reaching electron

scales (Sahraoui et al., 2009, 2010; Alexandrova et al., 2009).

Spectra up to electron scales with Cluster were first studied in

the Earth’s magnetosheath (Mangeney et al., 2006; Alexan-

drova et al., 2008b).

If the dissipation at ion scales is strong, the cascade

should terminate in the vicinity of the spectral break

k⊥b ∼ ρ−1
p and cannot reach electron scales, as was ar-

gued by Leamon et al. (1999), Howes et al. (2008), and

Podesta (2009) using Landau damping estimates for KAWs.

However, observations of power law spectra at k⊥ρp ≫ 1

(Sahraoui et al., 2009, 2010; Alexandrova et al., 2009; Kiyani

et al., 2009) suggest a continuation of the cascade that is

consistent with the theoretical picture of KAWs (Bale et al.,

2005; Schekochihin et al., 2009; Sahraoui et al., 2010). It

has been envisaged that the nonlinear evolution and related

wavenumber spectra in the range below k⊥b are dominated

by MHD-type nonlinear interactions among Alfvén waves,

and that the spectra for k⊥ > k⊥b are determined by KAW

properties (Schekochihin et al., 2009).

One should note that the identification of the observed

small-scale turbulence as KAWs is not unique. In particular,

observations based on the k-filtering technique are controver-

sial: Sahraoui et al. (2010) have shown that the properties of

observed fluctuations are compatible with the KAW disper-

sion relation, whereas Narita et al. (2011) did not find KAWs.

Relaxing the assumption of plane waves, Chen et al. (2010)
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found that the turbulence between the ion and electron scales

is not a pure KAW turbulence. Based on simulations, (Saito

et al., 2010) concluded that not only KAW turbulence but

also whistler turbulence may explain the very steep spectra

observed recently at electron scales.

From an observational point of view, the nature of the tur-

bulence changes at the spectral breaks fb that separate shal-

lower MHD spectra ∝ f −5/3 for f < fb from steeper ki-

netic spectra with power indexes ranging from −2 to −4

for f > fb. Such breaks are observed in the solar wind by

satellites (f is the frequency in the satellite frame). Because

the solar wind velocity VSW is much larger than the Alfvén

velocity VA, the Alfvénic time variation ωA ∼ kzVA (kz is

the wavenumber parallel to B0) is usually much slower than

the Doppler frequencies in the satellite frame ωd = k ·VSW.

Then the satellite-frame frequency spectra are dominated by

the Doppler frequency, 2πf = |kzVA −k ·VSW| ∼ |k ·VSW|,
representing wave-number spectra (Taylor hypothesis). As

has been first shown by Matthaeus et al. (1990), followed

by many others (see e.g. recent papers by Osman and Hor-

bury (2009), Sahraoui et al. (2010), Luo and Wu (2010), and

references therein), solar wind turbulence is dominated by

large perpendicular wavenumbers k⊥ ≫ kz. In these con-

ditions, satellites measure perpendicular wavenumber spec-

tra, f ∝ k⊥, except for rare cases of B0 ‖ VSW, where fre-

quency measures parallel wavenumber, f ∝ kz. The spectral

break fb is often associated with one of the proton kinetic

scales, the proton gyroradius ρp or the proton inertial length

δp = VA/�p, such that the observed frequency of the break is

2πfb ≃ VSW/ρp or VSW/δp (Leamon et al., 1999; Bale et al.,

2005; Alexandrova et al., 2010; Sahraoui et al., 2010). Perri

et al. (2010) show, however, that the break position is not

sensitive to the radial dependence of the ion scales, whereas

Markovskii et al. (2008) argue that the break position de-

pends upon a combination of the scale and the turbulent am-

plitudes at that scale.

Because of the complex interplay between linear and non-

linear KAW dynamics, the theoretical interpretation of tur-

bulence in the KAW range, its dissipation, and the related

spectra, is still incomplete. In particular, a recent theoreti-

cal analysis by Podesta et al. (2010) argues that the KAW

cascade is subject to collisionless Landau damping and can-

not reach electron scales in solar wind conditions. How-

ever, using Cluster data, Sahraoui et al. (2009, 2010) and

Alexandrova et al. (2009, 2010) have shown that the spec-

tra extend to electron scales, with spectral slopes −1.7 and

−2.8 in the MHD range and in the range between ion and

electron scales, respectively. Between these k−1.7
⊥ and k−2.8

⊥
spectra, Sahraoui et al. (2010) also noticed much steeper

∝ k−4
⊥ spectra due to weakly/mildly dispersive KAWs with

0.6 < k⊥ρp < 2 (see their Figs. 2, 3, and 6), and suggested

that the KAW turbulence extends further down to electron

scales. The same spectral form in the MHD/kinetic transi-

tion range, containing two spectral kinks with steeper spec-

tra in between, can be seen in other recent studies (see e.g.

Chen et al. (2010), Fig. 1, and Smith et al. (2006), Fig. 1).

Alexandrova et al. (2009, 2010) have demonstrated the uni-

versal character of the MHD k−1.7
⊥ and kinetic k−2.8

⊥ spectra

and analyzed the non-universal transition between them. Ki-

netic spectrum ends up with a curved spectrum at electron

scales, indicating dissipation.

Steep variable spectra in the same wavenumber range were

observed before (Leamon et al., 1999), but without connec-

tion to shallower higher-wavenumber (higher-frequency in

the satellite frame) spectra as these were unavailable. Such

steep spectra were called “dissipation range” spectra and

were associated with dissipation, mainly via kinetic ion-

cyclotron and Landau damping. However, the nature of the

“dissipation range” and its spectra is not so clear. For ex-

ample, recent observations of reduced magnetic helicity im-

ply the presence of counter-streaming KAWs surviving the

“dissipation range” rather than ion-cyclotron damping in it

(Carbone et al., 2010).

Analyzing ACE spacecraft data, Smith et al. (2006) have

found that larger spectral fluxes (as measured at 0.01 Hz) are

followed by steeper spectra in the “dissipation range” above

the spectral break fb ∼ 0.3 Hz. This counterintuitive obser-

vational fact is difficult to explain by ion-cyclotron and Lan-

dau damping. Smith et al. (2006) did not find any regular de-

pendence of fb on the cascade rate. Markovskii et al. (2008)

studied the statistics and scaling of spectral breaks and con-

cluded that their positions are determined by a combination

of their scales and the turbulent amplitudes at that scales,

which suggests a non-linear dissipation mechanism for the

solar wind turbulence. Again, kinetic ion-cyclotron and Lan-

dau damping mechanisms would not lead to such behavior in

the dissipation range.

Motivated by these findings, the present paper analyzes the

wavenumber range that corresponds to the transition from

MHD to KAW turbulence, with the focus on the properties

of nonlinear KAW. We demonstrate that the observed spec-

tral forms and steep spectra in the “dissipation range” can

be explained by the nonlinear interaction of weakly disper-

sive KAWs without involving kinetic ion-cyclotron and Lan-

dau dissipation mechanisms. We will distinguish weak and

strong turbulence by comparing linear and nonlinear time

scales (or associated wave frequency ωk and nonlinear in-

teraction rate γ NL
k ) at the given scale k−1. If the linear time

scale τL
k (τL

k ∼ 1/ωk) is shorter than the nonlinear one τNL
k

(τNL
k ∼ 1/γ NL

k ), the perturbations have enough time to set

up linear dispersion and polarization relations. In this case

the energy exchange among perturbations is relatively slow,

and the turbulence is weak. Since γ NL
k increases with in-

creasing amplitudes and ωk increases with increasing kz, the

weak turbulence regime can be realized for sufficiently small

amplitudes and sufficiently short parallel wavelengths. For

larger amplitudes and/or longer wavelengths τNL
k and τL

k be-

come comparable, and the so-called strong turbulence in the

critical balance regime is realized: τL
k ≃ τNL

k (Goldreich and
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Sridhar, 1995). Observations of intermittency in the iner-

tial MHD range (Sorriso-Valvo et al., 1999; Salem et al.,

2009) and in the range above the ion break (Alexandrova

et al., 2008a) suggest the presence of a strongly turbulent

fraction of fluctuations, but do not exclude the simultaneous

presence of a weakly turbulent fraction, in particular in the

MHD/kinetic transition range.

2 Weakly dispersive k⊥ρp < 1 range of KAW turbulence

The rate of nonlinear interaction among highly oblique kz ≪
k⊥ KAWs has been calculated by maximizing the matrix el-

ement of the 3-wave KAW interaction (Voitenko, 1998a,b).

In WDR, k2
⊥ρ2

p ≪ 1, for co-propagating KAWs

γ NL
k↑↑ ≃ 0.4�p

VA

VTp

(

k⊥ρp

)3 Bk

B0
, (1)

where Bk is the KAW amplitude at the (anisotropic) length

scales λz = 2π/kz and λ⊥ = 2π/k⊥, where kz and k⊥ are

parallel and perpendicular KAW wavenumbers. We ac-

count for the plasma compressibility, but neglected magnetic

compressibility. Also, for simplicity we put Te‖/Tp⊥ = 1.

This temperature ratio reflects the relative importance of the

parallel electron pressure and the perpendicular ion pres-

sure/gyroradius effects in KAWs. With increasing Te‖/Tp⊥
one would obtain higher interaction rates.

The nonlinear interaction rate for counter-propagating

k⊥ρp ≪ 1 KAWs is (Voitenko, 1998a,b)

γ NL
k↑↓ ≃ 0.3�p

VA

VTp

(

k⊥ρp

)2 Bk

B0
, (2)

which is larger than γ NL
k↑↑ in WDR.

There is no explicit kz-dependence of the KAW inter-

action rates Eqs. (1–2). The nonlinear KAW dynamics is

thus driven by the energy exchange among short cross-field

length scales, whereas the parallel scales follow the perpen-

dicular ones kinematically in the weak turbulence regime

(Voitenko, 1998a,b) or via critical balance in the strong tur-

bulence regime (Schekochihin et al., 2009). The perturbation

amplitude Bk can be related to the omnidirectional spectral

energy density Wk⊥ by Bk =
√

k⊥Wk⊥ (Wk⊥ is defined such

that
∫ ∞

0 dk⊥Wk⊥ = total fluctuation energy per unit volume).

2.1 Weak KAW turbulence

The nonlinear interaction among co-propagating KAWs can

be considered weak if their nonlinear rate Eq. (1) is less

than the dispersive part of frequency: γ NL
k↑↑ < kzVA

(

k⊥ρp

)2

in isothermal plasmas. In this case, the conservation law for

the generalized enstrophy (dispersive part of energy) applies,

and the nonlinear interaction among co-propagating KAWs

Eq. (1) establishes the perpendicular wavenumber spectra

(Voitenko, 1998b):

Wk ∝ k−5
⊥ (direct enstrophy cascade); (3)

Wk ∝ k−4
⊥ (inverse energy cascade). (4)

For axially symmetric turbulence in the cross-field plane

we can define a reduced omnidirectional spectral power Wk⊥
= 2πk⊥

∫

dkzB
2
k , such that W =

∫

dk⊥Wk⊥. The energy ex-

change among different k⊥ does not depend on kz (Voitenko,

1998a, Eqs. 6.1 and 6.2). Hence the reduced omnidirectional

weakly turbulent 3-D power spectra Eqs. (3–4) behave as

Wk⊥ ∝ k−4
⊥ (direct enstrophy cascade), (5)

Wk⊥ ∝ k−3
⊥ (inverse energy cascade). (6)

The omnidirectional wavenumber spectra are those measured

in the solar wind by satellites as 1-D Doppler frequency spec-

tra if the solar wind velocity VSW ∦ B0. When the turbulence

spectrum is not axisymmetric around B0 (see e.g. Sahraoui

et al., 2010, and references therein), the measured 1-D spec-

trum may have a larger power index, approaching Wk⊥ ∝ k−5
⊥

in the extreme case of 1-D turbulence in the cross-field plane,

∝ k−5
x , if x ∦ VSW. This follows from polar angle averag-

ing in the cross-field wavenumber plane. Accounting for this

possibility, the steepest spectra produced by weakly disper-

sive KAW turbulence are

Wk⊥ ∝ k−4
⊥ ÷k−5

⊥ . (7)

Nonlinear interaction among counter-propagating KAWs

in the weakly turbulent regime, at a rate given by Eq. (2),

produces omnidirectional spectra

Wk⊥ ∝ k−2
⊥ (direct enstrophy cascade), (8)

Wk⊥ ∝ k−1
⊥ (inverse energy cascade) (9)

that follow from 3-D spectra given by Voitenko (1998b).

Therefore, counter-propagating KAW interactions cannot

produce the steep spectra observed in the transition range.

At first sight, since γ NL
k↑↓ ≫ γ NL

k↑↑ in WDR, nonlinear in-

teraction among counter-propagating KAWs appears to be

a more efficient means of spectral transport than that due

to co-propagating KAWs. However, the short (linear) cor-

relation times among counter-propagating KAWs, τL
c↑↓ ∼

λz/VA, can reduce their interaction strength as compared to

the co-propagating KAWs that remain in phase for a longer

time: τL
c↑↑ ∼

(

k⊥ρp

)−2
λz/VA ≫ τL

c↑↓ for k⊥ρp ≪ 1. In such

cases the nonlinear interaction among co-propagating KAWs

will be dominant and the steepest omnidirectional spectra

Eq. (7) are formed, as described above. When both co- and

counter-propagating interactions are efficient, the resulting

spectrum lies between the counter-propagating (∝ k−2
⊥ ) and

co-propagating (∝ k−4
⊥ ) spectra. The relative importance of

co- and counter-propagating KAW interactions, and the re-

sulting spectral slope, will depend on what fraction of the

MHD turbulent cascade will arrive at the MHD/KAW break

with parallel wavelengths satisfying the condition of linear
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decorrelation, τL
c↑↓ ∼ λz/VA < 1/γ NL

k↑↓. The larger this frac-

tion, the steeper will be the resulting KAW spectrum.

The kz spectra of weak KAW turbulence are determined by

the kinematics of three-wave resonant interactions (Voitenko,

1998b):

Wk‖ ∝ k
−1/2
z . (10)

However, some non-kinematic factors, like finite resonance

width, can make the parallel spectrum significantly different

from Eq. (10). This point needs further investigation.

2.2 Strong KAW turbulence

In the strongly turbulent regime the nonlinear evolution time,

τNL
k ∼ 1/γ NL

k , becomes equal to or shorter than the linear

one, τL
k ∼ 1/

(

kzVAk2
⊥ρ2

p

)

. The enstrophy (dispersive part

of energy) is not conserved any more because the nonlin-

ear interaction does its job before the dispersive time mis-

match comes into play. The k⊥-spectrum can be found from

the condition that the energy flux is constant (independent of

k⊥):

ε ∼ B2
k /τNL

k = const. (11)

The nonlinear evolution time for co-propagating KAWs can

be estimated as τNL
k↑↑ ≃ 1/γ NL

k↑↑, where γ NL
k↑↑ is given by

Eq. (1). From Eq. (11) we find the scaling for the fluctuating

magnetic amplitude Bk ∝ k−1
⊥ , which results in the omnidi-

rectional energy spectrum

Wk⊥ ∼
B2

k

k⊥
∝ k−3

⊥ . (12)

Again, one can observe steeper spectra ∝
(

k−3
⊥ ÷k−4

⊥

)

if

the strong KAW turbulence is not exactly axially symmetric

around B0.

Since γ NL
k↑↑ depends on kz only through Bk , the kz-

dependence can appear via any functional form with the ar-

gument involving any combination of kz and k⊥. Additional

assumptions linking kz and k⊥, such as the critical balance

hypothesis, will be studied in another paper.

The strongly turbulent spectra of weakly dispersive

counter-propagating KAWs can be found from Eq. (11) with

1/τNL
k ∼ γ NL

k↑↓ given by Eq. (2):

Wk⊥ ∼
B2

k

k⊥
∝ k

−7/3
⊥ (13)

3 Strongly dispersive k⊥ρp > 1 range of

KAW turbulence

In the strongly dispersive range of KAWs, where k⊥ρp > 1,

and which has been named the “KAW range” in the literature

(see Schekochihin et al., 2009, and references therein), the

rate of nonlinear interaction among co-propagating KAWs is

(Voitenko, 1998a,b)

γ NL
k↑↑ ≃ 0.3�p

VA

VTp

(

k⊥ρp

)2 Bk

B0
. (14)

For counter-propagating KAWs, the nonlinear interaction

rate is almost the same,

γ NL
k↑↓ ≃ 0.2�p

VA

VTp

(

k⊥ρp

)2 Bk

B0
.

3.1 Weak turbulence (γ NL
k

≪ ωk)

The weakly turbulent perpendicular wavenumber spectra of

co-propagating KAWs behave as (Voitenko, 1998b):

B2
k ∝ k

−7/2
⊥ (direct energy cascade), (15)

B2
k ∝ k−3

⊥ (inverse enstrophy cascade).

Again, the nonlinear interaction amongcounter-propagating

KAWs can be less efficient than that among co-propagating

KAWs because of their shorter linear correlation times.

Therefore, the omnidirectional spectra

Wk⊥ ∝ k
−5/2
⊥ (direct energy cascade), (16)

Wk⊥ ∝ k−2
⊥ (inverse enstrophy cascade) (17)

can be produced by strongly dispersive KAWs in the weakly

turbulent regime. Among these, the ∝ k
−5/2
⊥ spectrum

formed by the direct energy cascade is preferable, because

the source is at largest scales. With local deviations from ax-

ial symmetry, one can expect steeper spectra ∝ k−2.5
⊥ ÷k−3

⊥ .

3.2 Strong turbulence (ωk ∼ γ NL
k

)

In the strong turbulence regime of co-propagating KAWs, the

scaling of the magnetic field amplitude Bk with k⊥ is found

from the condition Eq. (11) where τNL
k ≃ 1/γ NL

k↑↑ with γ NL
k↑↑

given by (Eq. 14):

Bk ∝ k
−2/3
⊥ .

This results in the familiar omnidirectional power spectrum

in k⊥:

Wk⊥ ∼
B2

k

k⊥
∝ k

−7/3
⊥ . (18)

The “parallel” kz ‖ B0 spectrum

Wk‖ ∝ k−2
z (19)

follows from the critical balance condition.
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4 MHD/kinetic Alfvén wave transition

4.1 Spectral kinks

In the (Goldreich and Sridhar, 1995) MHD model, the non-

linear interaction rate at scale λ⊥ in the plane ⊥ B0 can be

written as

γ GS
k ≃

vλ⊥
λ⊥

≃
1

2π
k⊥VA

Bk

B0
, (20)

where vλ⊥ is the velocity and Bk is the magnetic field am-

plitude at the scale λ⊥ = 2π/k⊥. The corresponding MHD

spectrum B2
k ∝ k

−2/3
⊥ follows from the independence of the

energy flux through k. The omnidirectional spectrum Wk ∼
B2

k /k⊥ ∝ k
−5/3
⊥ is seen by satellites in the MHD range as the

1-D Doppler frequency spectrum.

As the MHD and WDR ranges have very different slopes,

the first spectral kink should appear at the wavenumber

where their respective nonlinear interaction rates are equal.

Comparing the nonlinear rates, γ GS
k = γ NL

k↑↓, we obtain the

spectral kink wavenumber k⊥1ρp ≃ 0.5, at which the 1-D

spectrum should change from −(3/2÷5/3) to −(3÷4).

The transition wavenumber for the γ GS
k = γ NL

k↑↑ transition is

practically the same, k⊥1ρp ≃ 0.6.

However, the above estimations did not take into account

the weakening of the MHD nonlinear interactions by the dy-

namic alignment between velocity and magnetic perturba-

tions (Boldyrev, 2005) and/or by the nonlocal decorrelation

mechanism proposed by Gogoberidze (2007). In general, the

interaction rate can be written as a reduced GS rate (RGS)

γ RGS
k ≃ Rλ⊥γ GS

k (21)

with the scale-dependent reducing coefficient Rk⊥. Both

Boldyrev’s and Gogoberidze’s phenomenologies give the

same scaling for Rk⊥,

Rk⊥ ≃
vλ⊥
VN

∝ λ
1/4
⊥ ,

but with different normalization velocities VN, such that the

Boldyrev/Gogoberidze ratio = vL/VA, where vL is the ve-

locity amplitude at the driving scale L (wavenumber kL).

Bearing in mind that the dynamic alignment saturates when

approaching small scales, the actual value of the Gogob-

eridze coefficient can be larger even in the case vL < VA.

The reduced interaction rate proposed by Gogoberidze can

be written as

γ RGS
k ≃ Rλ⊥

(

vλ⊥
λ⊥

)

≃
(

k⊥
kL

)−1/4(

1

2π
k⊥VA

Bk

B0

)

. (22)

Given the typical width of the MHD inertial range in the so-

lar wind kb⊥/kL ∼ 103, we find that the interaction rate is

reduced considerably in the vicinity of the spectral break,

γ RGS
k ≃ 0.25γ GS

k .

As the nonlocal decorrelation mechanism implies counter-

propagating MHD waves, the counter-propagating KAWs

should undergo the same decorrelation. But co-propagating

KAWs do not suffer from such decorrelation, and therefore

we consider here the MHD/kinetic transition dominated by

the co-propagating KAWs. In addition, the co-propagating

KAWs can keep in phase much longer than the counter-

propagating KAWs. We therefore use Eq. (1) for the ki-

netic and Eq. (21) for the MHD interaction rate, and es-

timate the first spectral kink between shallow MHD spec-

tra −(3/2÷5/3) and steep weakly dispersive KAW spectra

−(3÷5) to be at

k⊥1ρp ≃ 0.6
√

Rk⊥. (23)

With Gogoberidze’s rate Eq. (22) k⊥1ρp ≃ 0.2. But one

should bear in mind that there are a number of factors, in-

cluding a partial turbulence dissipation, which contribute to

Rk⊥ and can make it smaller or larger than the Gogoberidze’s

value.

The second kink should appear between weakly

(k2
⊥ρ2

p ≪ 1) and strongly (k2
⊥ρ2

p ≫ 1) dispersive regimes of

the KAW turbulence at

k⊥2ρp & 1, (24)

where we allow for a possible build-up of the steeper slope

just above k⊥ρp = 1 if the MHD/KAW transition is not yet

completed at k⊥ = ρ−1
p . The spectral slope above k⊥2 is

−(2.5÷3), which is significantly shallower than in WDR.

4.2 Spectral forms

The steepness of the spectra in WDR depends on what kind

of KAW turbulence picks up the turbulent cascade at k⊥ρp ≃
0.2, weak or strong. If the critical balance condition holds

at k⊥ρp ≃ k⊥1ρp, then the turbulence of weakly dispersive

KAWs is strong above k⊥1. In this case, strong KAW tur-

bulence develops a steep energy spectrum ∝ k−3
⊥ in WDR,

connecting shallower MHD (∝ k
−5/3
⊥ ) and strongly disper-

sive KAW (∝ k
−7/3
⊥ ) spectra. Significantly steeper spectra in

both KAW ranges can be produced by the weak KAW turbu-

lence and by local deviations from the azimuthal symmetry

of the turbulence (up to about ∝ k−4.5
⊥ in WDR, and ∝ k−3

⊥ in

the strongly dispersive range).

The transition to the weak turbulence regime may be fa-

cilitated by a partial wave dissipation via non-adiabatic ion

acceleration/stochastic heating. Such partial dissipation is

independent of kz, but it does depend on k⊥, and it reduces

larger amplitudes at k⊥ > k⊥thr. In such a way, the critical

balance between linear and nonlinear time scales is violated

in favor of the weak turbulence regime. A weak turbulence

cascade of KAWs develops above k⊥thr and establishes the

steepest KAW spectra.

In both weak and strong turbulence regimes, the resulting

spectra have two kinks, down and up, with the steepest slopes

in between them in the weakly/mildly dispersive range. In
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Fig. 1. Turbulent Alfvénic spectrum extending over three ranges,

with the steepest slope in the weakly/mildly dispersive KAW range

(interpretation of the spectrum shown in Fig. 1 by Chen et al., 2010).

general, the “non-dissipative” scenario is as follows: the tur-

bulence, driven at a large MHD scale L (kL = 2π/L), devel-

ops the shallowest ∝ k
−3/2
⊥ ÷k

−5/3
⊥ spectra in the MHD range

kL < k⊥ < k⊥1, then it proceeds as KAW turbulence with

steep ∝ k−3
⊥ ÷k−4.5

⊥ spectra in WDR k⊥1 < k⊥ . k⊥2, and be-

yond k⊥2 it proceeds as KAW turbulence with ∝ k
−7/3
⊥ ÷k−3

⊥
spectrum in the strongly dispersive range k⊥2 < k⊥ . k⊥de.

This last range may extend to the dissipative wavenumber

k⊥de at the electron length scale (Sahraoui et al., 2010). The

turbulence spectrum measured by Chen et al. (2010) can be

explained by the combination of above spectra, as is shown

in Fig. 1.

Consequently, the Alfvénic turbulence spectrum in the

MHD/kinetic transition range has a universal double-kink

form (2-k pattern). This 2-k spectral pattern is shown

schematically in Fig. 2 for the case of a purely nonlinear

non-dissipative transition. The (variable) slope of the weakly

dispersive KAW spectrum depends on the ratio of turbulent

energies cascading in strong and weak turbulent regimes,

which can differ from case to case. The local slope should

in principle lie between −3 and −4. But the shallower > −3

spectra can be produced by a fraction of counter-propagating

KAWs, and the steeper < −4 spectra can be produced by de-

viations from axial symmetry of the turbulence in the cross-

field plane.

A similar 2-k pattern can in principle also occur for the dis-

sipative transition, considered by many previous authors, but

the conditions required for that are rather special. Namely,

the relative dissipation rate (as compared to the nonlinear in-

teraction rate) should be much stronger in the range k⊥1 <

k⊥ < k⊥2 than in the range k⊥ > k⊥2. The presence of a

high-wavenumber cascade and turbulence at k⊥ > k⊥2 im-

plies a nonlinear transfer and a spectral flux across the range

Fig. 2. Double-kink pattern produced by the MHD/WDR/strongly

dispersive turbulence transitions. Kinetic Alfvén wave spectra are

given for the case of a weakly turbulent regime. In the case of a

strongly turbulent regime, spectral indices −4 and −2.5 should be

replaced by −3 and −7/3, respectively.

k⊥1 < k⊥ . k⊥2 as well, which means that nonlinear KAW

interactions should be taken into account in any case.

The 2-k pattern described above can be noticed in many

high-resolution high-frequency Cluster measurements (as re-

ported by Kiyani et al., 2009; Sahraoui et al., 2010; Chen et

al., 2010) and can also be noticed in some previous measure-

ments where the frequency range extended to 1 Hz or a lit-

tle higher (see e.g. ACE data reported by Smith et al., 2006,

Fig. 1).

The relative importance of the effects due to dissipa-

tion versus weak turbulence versus strong turbulence in the

MHD/kinetic transition can be different from case to case.

The actual wavenumber range where non-adiabatic ion ac-

celeration and related wave damping come into play is also

variable. If the non-adiabatic ion acceleration and partial

wave damping are active well below the apparent spectral

kink, then the flatness should follow the trends as in Fig. 3

by Alexandrova et al. (2008a) for Cluster data. The threshold

behavior suggests that it comes into play earlier for stronger

spectral fluxes; it then weakens the MHD turbulence facilitat-

ing its transition to the weak KAW turbulence with its steeper

spectra. This can explain a counter-intuitive observation by

Smith et al. (2006) that the stronger fluxes are followed by

the steeper spectra in the “dissipation range”.

5 Dissipation of KAWs

In this section we discuss several pros and cons of basic dis-

sipation mechanisms for KAWs, but their detailed investiga-

tion is postponed to the future.
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Wu and Yang (2007) considered self-consistent velocities

of minor ion species in KAW solitons and found them dis-

tributed proportionally to the ion mass-to-charge ratio. How-

ever, these velocities cannot be interpreted as thermal ones

(increasing temperature) because they contribute to the non-

thermal line broadening rather than thermal line width. A

non-adiabatic disconnection from the wave fields is needed

for the ions to gain some additional energy after the wave

has passed by. Such a process has been considered by

Voitenko and Goossens (2004), who showed that ions can

undergo strong non-adiabatic acceleration in the presence of

KAWs. This acceleration requires a certain threshold-like

amplitude/wavelength relation for KAWs (see a weakly dis-

persive example in Sect. 5.2), above which the ions get accel-

erated and the KAW dissipation is switched on. On the other

hand, the acceleration is fast: it completes within a short time

scale comparable to the ion gyroperiod and does not require a

long stochastic walk for the ions to significantly gain energy

(Voitenko and Goossens, 2004, 2006).

Chandran et al. (2010) have shown that another process

related to non-adiabaticity (stochastic plasma heating) can

absorb up to half of the turbulent cascade flux at k⊥ρp ∼ 1.

Chandran et al. assume the MHD nonlinear rate, which may

be incorrect at k⊥ρp ∼ 1 where the KAW nonlinear interac-

tion is faster and can pass more energy to the high-k⊥ range.

Yet another nonlinear interaction of the broadband

Alfvénic turbulence with ions, via nonlinear Landau damp-

ing, was studied by Nariyuki et al. (2010), who showed that

ion heating proceeds both along and across the background

magnetic field and produces asymmetric ion velocity dis-

tributions. On the other hand, because of the quasi-linear

plateau formation in velocity distribution functions, classic

Landau damping can be highly reduced in the weakly colli-

sional solar wind (Voitenko and Goossens, 2006; Rudakov et

al., 2011).

5.1 Landau damping

The parallel components of the KAW electric Ezk and mag-

netic Bzk fields make the KAWs efficient in Cherenkov in-

teraction with plasma species via the kinetic mechanisms

of Landau and transit-time damping. Landau damping as-

suming Maxwellian distribution functions of plasma species

that have been commonly used for estimating KAW dissi-

pation. However, these mechanisms are based on resonant

wave-particle interactions that depend strongly on the local

parallel slopes of the particle velocity distributions Fs(Vz),

at parallel velocities Vz equal to the wave phase velocity

ωk/kz. In particular, quasi-linear diffusion smoothes reso-

nant slopes and reduces Landau damping of KAWs by the

factor (1+τC/τKAW)−1 (Voitenko, 2006):

γL =
∑

s

γ M
L

(

1+
τC

τKAW

)−1

, (25)

where γ M
L is the Maxwellian Landau damping rate, and τKAW

and τC are the characteristic diffusion times of particles due

to KAWs and Coulomb collisions, respectively. The sum-

mation in Eq. (25) is over plasma species s. KAWs tend to

flatten Fs(Vz), while Coulomb collisions restore it back to

Maxwellian; the balance between both results in Eq. (25).

The detailed analysis of Eq. (25) as a function of k⊥ is

quite complex (subject of a separate study). Our estimates,

similar to those by Voitenko and Goossens (2006), show that

for typical fluctuation levels Wf ∼ 10−1 nT2/Hz at k⊥ρp ∼ 1

in the solar wind, τC/τKAW ≫ 1 for both electrons and pro-

tons. Landau damping is thus highly reduced. The con-

clusion by Podesta (2009) that the KAW turbulence cannot

reach electron scales in the solar wind, which was based on

Maxwellian Landau damping, should therefore be reconsid-

ered.

5.2 Non-adiabatic threshold for turbulent dissipation

The rate of the non-adiabatic cross-field acceleration of the

ions “i” by oblique Alfvén waves is (Voitenko and Goossens,

2004):

γ 2
n−a = �2

i

[

VA

�i

(

c

VA

E⊥
B⊥

−
Viz

VA

)

∂

∂x

B⊥
B0

−1

]

, (26)

where Viz is the parallel ion velocity, �i is the ion-cyclotron

frequency, and E⊥ and B⊥ are the Alfvénic electric and mag-

netic fluctuations, E⊥ ⊥ B⊥.

Using E⊥/B⊥ ≃ VA/c in WDR, and ignoring a possible

field-aligned streaming of ions, the threshold-like condition

for this kind of wave-particle interaction, γ 2
n−a > 0, can be

written in the form

ηk = k⊥δp
Bk

B0
> νi, (27)

where νi = �i/�p is the threshold value for the non-

adiabatic factor ηk above which the particular ion species

i is heated non-adiabatically. This condition applies to any

particular ion species, but the related wave dissipation de-

pends on all ion species and their parameters, like their abun-

dances, temperatures, etc. Nevertheless, a condition for effi-

cient wave dissipation can still be written in the form Eq. (27)

with a non-adiabatic factor ηk in the left hand side, but with

a different threshold νw in the right hand side, which is not

easy to find. One can guess that the wave threshold should

be close to the acceleration threshold for the dominant ion

species νw ∼ νi . Anyway, even without knowing the exact

threshold value νw, it is possible to derive several useful scal-

ings that can be tested observationally. So, for a power law

scaling of magnetic amplitudes, B2
k ∝ B2

k1(k⊥/k⊥1)
−q , we

obtain the spectral dependence of ηk:

ηk = ηk1

(

k⊥
k⊥1

)1−q/2

> νw, (28)

where ηk1 is the non-adiabatic factor at the reference

wavenumber k⊥ = k⊥1. For the sake of convenience we
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Fig. 3. Typical Alfvénic turbulent spectrum (solid line) in the

weakly/mildly dispersive KAW range and a “threshold” turbulent

spectrum (dashed line) required for non-adiabatic ion acceleration.

Non-adiabatic acceleration is possible around the first spectral kink,

where the turbulent spectral power rises above the threshold spectral

power.

choose the reference wavenumber equal to the wavenumber

of the first spectral kink k⊥1.

Since q ≃ 2/3 in the MHD range, ηk ∝ k
2/3
⊥ grows with

k⊥ as long as k⊥ < k⊥1. But the situation is reversed in

WDR, k⊥ > k⊥1, where q ≃ 3 and ηk decreases with k⊥ as

ηk ∝ k
−1/2
⊥ . Such spectral k⊥-dependence of ηk indicates that

the most favorable conditions for non-adiabatic ion accelera-

tion and related wave dissipation are achieved in the vicinity

of the first spectral kink, k⊥ ≃ k⊥1. This is shown schemat-

ically in Fig. 3, where we used the omnidirectional spectral

representation Wk ∝ B2
k /k⊥ ∝ k

−p
⊥ with p = q +1 for KAW

spectra. The “threshold” spectrum

Wthr ∝
B2

thr

k⊥
∝ k−3

⊥ , (29)

follows from the non-adiabatic condition Eq. (28), and has

the same slope in both weakly and strongly dispersive ranges.

But the measured spectrum has a variable slope: it is usu-

ally flatter (p < 2) in the MHD range, and steeper (p > 3)

in WDR. The condition for the non-adiabatic ion accelera-

tion by Alfvénic fluctuations is satisfied in the wavenumber

range where the observed fluctuations’ spectrum rises above

the threshold one. As is seen from Fig. 3, with sufficient tur-

bulence power, the non-adiabatic condition in spectral form,

Wk > Wthr, can be satisfied around the first spectral kink.

Once the threshold ηk = νi is exceeded in some wavenum-

ber range for some ion species, these ions enter a regime of

strong acceleration. In turn, because of its threshold-like

character, the non-adiabatic ion heating provides a highly

selective dissipation mechanism for waves, affecting only

the strongest fluctuations with over-threshold amplitudes. In

principle, the ability of turbulence to produce intermittent

large-amplitude fluctuations increases the value of the driven

parameter Eq. (28), where one should use the spectrum and

amplitudes of the intermittent fluctuations instead of the reg-

ular turbulence spectrum. The eventual rate of the plasma

heating and turbulence dissipation should follow from the

balance between two processes: (i) production of the over-

threshold intermittent fluctuations by the turbulence, and (ii)

accommodation of turbulence energy by accelerated ions and

its further redistribution into the bulk plasma. Helios ob-

servations have shown that the flatness (a measure of inter-

mittency) increases with wavenumber (Alexandrova et al.,

2008a), which progressively raises the non-adiabatic param-

eter above the value given by Eq. (28). Then, at some large

enough wavenumber, the level of intermittent fluctuations

can reach the non-adiabatic threshold, even if the regular tur-

bulent level remains below it.

Dissipation due to non-adiabatic heating/acceleration

tends to reduce the over-threshold fluctuations at every scale

to the corresponding threshold value given by Eq. (27). Then,

in accordance to Eq. (27), the upper bound for the reduced

intermittent amplitudes scales as B2
thr ∝ k−2

⊥ , and since the

magnetic power spectrum in this range has shallower scal-

ing B2
k ∝ k

−2/3
⊥ , the flatness (and higher order normalized

structure functions as well) should decrease with wavenum-

ber in the MHD range below the first spectral kink. This

can explain another interesting feature, the local decrease of

the flatness in the spacecraft frequency range 0.02÷0.2 Hz

(which is still below the apparent spectral kink) found by

Alexandrova et al. (2008a) using Cluster data. We suggest

that such behavior of the flatness may indicate a partial dissi-

pation of Alfvén waves via non-adiabatic ion acceleration in

the wavenumber range where Wk > Wthr, illustrated in Fig. 3.

In turn, highly anisotropic ion distributions are produced

by non-adiabatic acceleration (Voitenko and Goossens,

2004), which can drive anisotropic ion-cyclotron instabili-

ties redistributing energy further. Since non-adiabatic ion ac-

celeration happens very fast, within a fraction of the corre-

sponding ion gyroperiod, the quasi-stationary rate of turbu-

lent dissipation will be determined by the ion-cyclotron in-

stability increment. The situation is thus more complex here

and opposite to that observed in hydrodynamics, where vis-

cosity washes out the smallest amplitudes when approaching

the dissipation range while large-amplitude fluctuations sur-

vive increasing intermittency. The behavior of the intermit-

tency found by Alexandrova et al. (2008a) is not typical for

linear Landau damping as well.

After the relative perpendicular/parallel power in the spec-

trum and the strength of the MHD interaction are reduced,

the transition to weak KAW turbulence is made possible

and leads to the steepest spectra in WDR. In the strongly

dispersive range, Kiyani et al. (2009) found a monofractal

(but still non-Gaussian) statistical behavior and suggested

a “global scale-invariant dissipation”. On the other hand,
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the turbulence is multifractal in the MHD range (see e.g.

Marsch and Tu, 1997, about fractal scalings in the solar wind

turbulence). The question is where and why the turbulence

transforms from the multifractal state in the MHD range

to the monofractal state in the kinetic range. To this end,

it would be interesting to analyze intermittency and fractal

properties in the weakly dispersive KAW range by means of

Rank-Ordered Multifractal Analysis (ROMA) (see Chang et

al., 2010, and references therein).

6 Summary and discussion

For the first time, a weakly dispersive range of the KAW

turbulence is distinguished and studied in the context of

the MHD/kinetic turbulence transition. We show that the

KAW turbulence and its spectra in WDR differ significantly

not only from conventional MHD Alfvénic turbulence, but

also from strongly dispersive KAW turbulence. Namely, the

nonlinear interaction of weakly dispersive KAWs is capa-

ble of producing steep spectra ∝ k−3
⊥ ÷k−5

⊥ in the wavenum-

ber range k⊥1 < k⊥ < ρ−1
p , connecting shallow MHD spectra

∝ k
−3/2
⊥ ÷k

−5/3
⊥ below the first spectral kink, k⊥ < k⊥1, and

rather shallow ∝ k
−7/3
⊥ ÷ k−3

⊥ spectra of strongly dispersive

KAWs above the second spectral kink, k⊥ > ρ−1
p .

The universal spectral form resulting from such spectral

dynamics in the transition range, the 2-k pattern, is shown

schematically in Fig. 2. Turbulent spectra observed recently

by the Cluster spacecraft often exhibit such a 2-k pattern in

the transition wavenumber range (see for example Fig. 1). It

is still not certain what role Landau damping plays in produc-

ing such a steep spectral kink at k⊥ρp . 1. Any kind of ki-

netic dissipation in the weakly collisional solar wind should

be self-consistently saturated at a reduced level by the lo-

cal plateau formation in the velocity distribution functions of

the plasma species (Voitenko and Goossens, 2006; Rudakov

et al., 2011). At least a quasi-linear theory is needed to ac-

count for the particles’ feedback on the energy input from

the waves, and numerous previous estimations based on the

Maxwellian Landau damping rate should be re-evaluated.

Podesta (2009) reported a significant flattening of the high-

frequency parallel spectra and suggested this may be due to

a plasma instability injecting a fraction of parallel propagat-

ing waves. On the other hand, this flattening can be pro-

duced by a transition to weak KAW turbulence, possessing

(in an ideal case) a very shallow spectrum Eq. (10). How-

ever, because of many interfering factors, it is not certain if

the parallel wavenumber spectrum Eq. (10) can be realized

in the solar wind. The perpendicular wavenumber spectra

are determined by the nonlinear interaction among perpen-

dicular length scales and are thus quite robust. But the cor-

responding parallel wavenumber dynamics and spectra fol-

low the perpendicular wavenumber dynamics and are often

defined from a suitable functional form linking them to the

perpendicular ones. This functional form may depend on a

number of factors, including strength of the turbulence, par-

tial turbulence dissipation, etc. In the extreme cases of weak

and strong turbulence, the parallel dynamics is fixed, respec-

tively, by the perpendicular one kinematically (via resonant

conditions) and by adjusting linear and nonlinear time scales

(via the critical balance condition).

One can expect a high variability of spectral slopes in

WDR, resulting from a mixture of several “clean” spectra

that can be produced by KAWs in this range. In addition, our

analysis suggests that non-adiabatic and/or stochastic cross-

field acceleration of solar wind ions are feasible mechanisms

for a partial dissipation of KAWs operating in the vicinity of

the first spectral kink. Both these mechanisms share the same

non-adiabatic threshold and imply a selective dissipation of

the over-threshold fluctuations with the largest amplitudes.

This kind of dissipation reduces high-amplitude intermittent

fluctuations and should therefore produce a local decrease of

the flatness of the amplitude distribution of the fluctuations

in the dissipation range. Although there are observational

indications for such a behavior of the flatness (Alexandrova

et al., 2008a, Fig. 3), this point needs further observational

support.

It seems that the synergetic action of selective wave dis-

sipation and weak turbulence of KAWs influences both the

spectral kink positions and the spectral slopes, making them

dependent of the turbulence level. Namely, ηk , product of

the turbulent amplitude and corresponding wavenumber, is

the parameter facilitating transition to weak KAW turbulence

with its steeper spectra. As the spectral flux ∼ η3
k , the larger

spectral fluxes imply larger ηk , which in turn imply steeper

spectra in the weakly dissipative range. Such a counter-

intuitive trend was found by Smith et al. (2006).

On the other hand, in the vicinity of spectral kinks the non-

adiabatic wave-particle interaction tends to reduce ηk to a

near-threshold value, which results in the scaling Bk1 ∼ k−1
⊥1 .

This scaling offers an explanation for the observed spectral

kink wavenumbers, which were found to be inversely pro-

portional to the fluctuation amplitudes at the spectral kink

positions (Markovskii et al., 2008).

Contrary to MHD Alfvén waves, the dispersion law of

KAWs, even weakly dispersive, is not degenerate with re-

spect to k⊥. This makes 3-wave interactions possible with

all 3 waves residing on the KAW branch, and there is no

need for a zero-k‖, k⊥ 6= 0 mode mediating the MHD turbu-

lent cascade. Consequently, an additional spectrum of KAW

turbulence can be created by the cascading enstrophy (disper-

sive part of energy). The energy and the enstrophy cascade

in opposite directions from the injection wavenumber. As the

turbulence of KAWs in the solar wind is driven at the largest

MHD length scales, it naturally proceeds to smaller scales

following a direct cascade route. In other environments, and

with different positions of the driving scale, one may observe

inverse (e.g. Lui et al., 2008) or dual spectral cascade. How-

ever, these are not easy to discriminate and describe in terms
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of cascades because of the non-local contaminations and

scale mixing in a finite-size and highly variable environment,

like in the Earth’s plasma sheet (see Vörös et al., 2010).

Again, contrary to MHD Alfvén wave turbulence, KAW

turbulence does not require pre-existing counter-propagating

waves for efficient cascading. Nonlinear interaction among

co-propagating KAWs is strong enough to establish a co-

propagating (completely imbalanced) KAW turbulence with-

out involving the counter-propagating KAWs. If the co-

propagating KAW turbulence develops in some wavenum-

ber range (e.g. at k⊥1 < k⊥ < ρ−1
p ), then the ratio of

sunward/anti-sunward Poynting fluxes should be frozen and

remain approximately constant at these wavenumbers. This

would provide another observational benchmark for KAW

turbulence, but we are not aware of such observations at

k⊥ ≃ ρ−1
p so far.
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