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Abstract. We derive a self-consistent equation for the turbulent transport of toroidal
angular momentum in tokamaks in the low flow ordering that only requires solving
gyrokinetic Fokker-Planck and quasineutrality equations correct to second order in
an expansion on the gyroradius over scale length. We also show that according to
our orderings the long wavelength toroidal rotation and the long wavelength radial
electric field satisfy the neoclassical relation that gives the toroidal rotation as a
function of the radial electric field and the radial gradients of pressure and temperature.
Thus, the radial electric field can be solved for once the toroidal rotation is calculated
from the transport of toroidal angular momentum. Unfortunately, even though this
methodology only requires a gyrokinetic model correct to second order in gyroradius
over scale length, current gyrokinetic simulations are only valid to first order. To
overcome this difficulty, we exploit the smallish ratio Bp/B, where B is the total
magnetic field and Bp is its poloidal component. When Bp/B is small, the usual first
order gyrokinetic equation provides solutions that are accurate enough to employ for
our expression for the transport of toroidal angular momentum. We show that current
δf and full f simulations only need small corrections to achieve this accuracy. Full f

simulations, however, are still unable to determine the long wavelength, radial electric
field from the quasineutrality equation.
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1. Introduction

The radial electric field in tokamaks has proven an elusive quantity even in the non-

turbulent neoclassical limit [1, 2]. The radial electric field has been recently found in

the Pfirsch-Schlüter regime [3, 4, 5, 6], and only incomplete results have been obtained

for the banana regime [7, 8, 9]. The radial electric field profile and the toroidal rotation

in the plasma are uniquely related to each other. Due to axisymmetry, the toroidal

rotation is determined exclusively by the radial transport of toroidal angular momentum,

contained in the small off-diagonal components of the viscosity and Reynolds stress.

Obtaining these small terms makes the calculation extremely challenging.

There is a wealth of published work on the transport of toroidal angular momentum

in the high flow ordering [10, 11, 12, 13]. The E×B flow is assumed to be on the order

of the ion thermal velocity, and hence much larger than the magnetic drifts and the

diamagnetic flow. This assumption simplifies the calculation because the transport of

toroidal angular momentum, proportional to the velocity in order of magnitude, becomes

larger. We are not going to adopt this approach because in the core of the tokamak and

in the absence of neutral beam injection, the average ion velocity is often well below

thermal [14, 15]. More importantly, the alternate low flow or drift ordering, in which the

E×B flow is assumed of the same order as the diamagnetic flow, contains more physics,

including the high flow limit. The high flow ordering neglects the effect of pressure and

temperature gradients on the toroidal rotation. The ion velocity has contributions from

the radial gradients of pressure and temperature, but these contributions are small by

ρip/a � 1 in the high flow ordering, with ρip the poloidal ion gyroradius and a the

minor radius of the tokamak. For this reason, in the high flow ordering the toroidal

rotation depends exclusively on the radial electric field. In the absence of sources of

momentum like neutral beams, the toroidal angular momentum will tend to diffuse

out of the system. As a result, the rotation slows down and the radial electric field

decreases. When the radial electric field is small enough that the contributions of

the pressure and temperature gradients to toroidal rotation become important, the

transport of momentum becomes dependent on the radial profile of ion temperature,

sustained by external heating. In this regime, the equilibrium solution will then be

non-zero (or intrinsic) rotation. The high flow assumption orders out the contribution

from temperature and will not permit other solutions than zero rotation in the absence

of sources of momentum. On the other hand, a low flow or drift ordering contains the

contributions of the ion temperature gradient and in addition allows us to explore the

high flow limit by varying the relative ordering between the gradients of pressure and

temperature and the radial electric field, as we shall see.

In this article, we derive an equation for the turbulent transport of toroidal angular

momentum valid in the low flow ordering. The intention is to use it to find the toroidal

rotation and then solve for the radial electric field by employing the neoclassical relation

between the toroidal rotation and the radial electric field [1, 2]. We have already

given arguments in [16] that show that the neoclassical relation for the toroidal flow
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is applicable at long wavelengths even in turbulent plasmas. We will repeat those

arguments in section 2 for completeness.

The transport of toroidal angular momentum is obtained by employing moments

of the full Fokker-Planck equation [17] as is done in drift kinetic theory [1, 18]. This

approach is valid for the long wavelength transport of toroidal angular momentum.

Transport equations obtained from moments of the full Fokker-Planck equation relax

the requirements on the accuracy with which the ion distribution function must be

determined. The radial transport of toroidal angular momentum is given by the estimate

Π = M

〈∫
d3v fiR(v · ζ̂)(v · ∇ψ)

〉

ψ

∼ δ3
i piR|∇ψ| (1)

with ∇ψ the gradient of the poloidal flux variable ψ, R the major radius, ζ̂ the

unit vector in the toroidal direction and 〈. . .〉ψ the flux surface average. To obtain

the order of magnitude of Π we use a simple gyroBohm estimate that gives Π ∼
|∇ψ|DgB × ∇(RniMVi) ∼ δ3

i piR|∇ψ|, with δi = ρi/a � 1 the ratio between the ion

gyroradius ρi and the minor radius a, DgB = δiρivi the gyroBohm diffusion coefficient,

vi =
√

2Ti/M the ion thermal speed and Vi ∼ δivi the ion average velocity in the

drift ordering. According to this order of magnitude estimate, calculating Π by direct

integration of the ion distribution function fi requires that fi be good to order δ3
i !

Fortunately, only the gyrophase dependent piece of fi is really needed, and at long

wavelengths the gyrophase dependent piece of order δ3
i depends only on the gyrophase

independent pieces up to order δ2
i . By using moments of the full Fokker-Planck equation

we make this relation explicit in the following sections.

In our final expression for the transport of toroidal angular momentum, the

neoclassical diffusion is obtained from two integrals of the collision operator, and

the turbulent contribution appears as two nonlinear terms that depend on both the

electric field and the ion distribution function. In the nonlinear turbulent terms, the

short wavelength components of the electric field and the ion distribution function

beat to give the long wavelength transport of momentum that determines the toroidal

rotation. The turbulent pieces of the distribution function and the electric field must

be found employing a gyrokinetic Fokker-Planck equation and a gyrokinetic vorticity

or quasineutrality equation correct to order δ2
i (in the easier high flow ordering a

distribution function good to order δi is enough). Most gyrokinetic formulations

implemented are only valid to order δi. We prove, however, that these formulations

only need small modifications to properly transport momentum in the limit Bp/B � 1,

with Bp the poloidal component of the magnetic field, and B the total magnetic field.

The rest of this article is organized as follows. In section 2, we present our

orderings and assumptions for the turbulence. To simplify the calculation, we only

work with electrostatic turbulence in the gyrokinetic ordering. We carefully study

the steady state turbulence in the limit Bp/B � 1 to show that in this particularly

interesting approximation the first order gyrokinetic equation is enough to obtain the

largest contributions to the second order corrections to the ion distribution function and
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potential, of order (B/Bp)δ
2
i . In section 3, the equation for the transport of toroidal

angular momentum at long wavelengths is derived in detail. This derivation shows

that both the ion distribution and the turbulent electric field must be found to order

(B/Bp)δ
2
i to obtain a physically meaningful result. In section 4, we discuss the minor

modifications that the most common gyrokinetic formulations, correct only to order δi,

need to implement to obtain the ion distribution and the non-axisymmetric piece of

the electric field to order (B/Bp)δ
2
i when Bp/B � 1. We close with the discussion in

section 5.

2. Orderings and assumptions

We follow the orderings and assumptions in [16, 19] for electrostatic gyrokinetics. In

addition, we use the extra expansion parameter Bp/B � 1 to simplify the problem.

Since this expansion requires some careful analysis, we have divided this section into

three subsections. In subsection 2.1, we present our assumptions for a general magnetic

field with Bp/B ∼ 1, and we remind the reader of some of the gyrokinetic results from

[19] that are used in this article. The electrostatic gyrokinetic formalism presented in

[19] was derived with great generality, but in reality the steady state solution is more

restricted [16]. In subsection 2.2 we justify our orderings for steady state turbulence and

we show that the correction to the Maxwellian is small in δi � 1. Moreover, according to

our orderings, the long wavelength, axisymmetric flows remain neoclassical. Then, there

is a well-known relation between the radial electric field and the toroidal rotation that we

can exploit to solve for the radial electric field once the evolution of the toroidal rotation

is calculated. Finally, in subsection 2.3, we show that the short wavelength, turbulent

pieces of the ion distribution function scale differently with Bp/B � 1 than the long

wavelength, neoclassical part. This difference allows us to simplify the calculation of

the turbulent transport of toroidal angular momentum in the low flow or drift ordering

because it implies that the ion distribution function and the turbulent electric field

can be found to order (B/Bp)δ
2
i by employing the usual gyrokinetic equation that is in

principle only correct to order δi.

2.1. Electrostatic gyrokinetics

We assume that the electric field is electrostatic, E = −∇φ. The magnetic field B

is axisymmetric and constant in time, and its typical length of variation is the major

radius R. It can be written as

B = I∇ζ + ∇ζ ×∇ψ, (2)

with ζ the toroidal angle and ψ the poloidal flux coordinate. As the third spatial variable

we use a poloidal angle θ. The gradient ∇ζ = ζ̂/R, where ζ̂ is the unit vector in the

toroidal direction, and R is the radial distance to the axis of symmetry. The function

I = RB · ζ̂ depends only on ψ to zeroth order.
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To zeroth order, we assume that the ion and electron distribution functions fi
and fe are stationary Maxwellians, fMi and fMe, that only depend on ψ. The typical

length of variation of fMi and fMe is the minor radius of the tokamak a. Similarly, the

electrostatic potential φ depends only on ψ to zeroth order, and ∇φ ∼ Te/ea, with Te
the electron temperature and e the electron charge magnitude.

The ion and electron distribution functions fi and fe and the potential φ have short

perpendicular wavelengths due to turbulence. The short wavelength pieces are ordered

as
fi,k
fMi

∼ fe,k
fMe

∼ eφk
Te

∼ 1

k⊥a
<∼1, (3)

with k⊥ρi<∼1. We neglect wavelengths shorter than the ion gyroradius to simplify the

derivations. The orderings in (3) imply that ∇⊥fi,k ∼ k⊥fi,k ∼ fMi/a ∼ ∇⊥fMi,

∇⊥fe,k ∼ fMe/a and ∇⊥φk ∼ Te/ea, making the size of the gradients independent of

the wavelength. The electric field E = −∇φ ∼ Te/ea is in the low flow or drift ordering.

The parallel wavelength k−1
|| is assumed to be much longer than the ion gyroradius.

Under these assumptions, the most convenient formulation to solve for the ion

distribution function is gyrokinetics [20]. For the electrons, since we are neglecting

wavelengths on the order of or smaller than the electron gyroradius, it is enough to

use a drift kinetic equation [18]. For the ions, we employ the higher order gyrokinetic

variables derived in [19]: the gyrocenter position R = r + R1 + R2, the gyrokinetic

kinetic energy E = E0 + E1 + E2, the gyrokinetic magnetic moment µ = µ0 + µ1,

and the gyrokinetic gyrophase ϕ = ϕ0 + ϕ1. The corrections R1, E1, µ1 and ϕ1 are

first order in the ratio δi = ρi/a � 1, and the corrections R2 and E2 are second

order. Here, E0 = v2/2 is the kinetic energy, µ0 = v2
⊥/2B is the lowest order magnetic

moment and ϕ0 is the gyrophase, defined by v⊥ = v⊥(ê1 cosϕ0 + ê2 sinϕ0), with v⊥

and v⊥ = |v⊥| the component of the velocity perpendicular to the magnetic field and

its magnitude, and ê1(r) and ê2(r) two unit vectors perpendicular to each other and to

b̂ satisfying ê1 × ê2 = b̂. Notice that we need not calculate the second order corrections

to the magnetic moment and the gyrophase because the ion distribution function is

a stationary Maxwellian to zeroth order and hence only depends weakly on magnetic

moment and gyrophase. The first order correction to the gyrophase, ϕ1, and the second

order corrections R2 and E2, given in [19], are not needed for the rest of the article.

The first order corrections R1, E1 and µ1, on the other hand, are necessary and we give

them here for completeness;

R1 =
1

Ωi
v × b̂, (4)

E1 =
Zeφ̃

M
(5)

and

µ1 =
Zeφ̃

MB(R)
−
v||v

2
⊥

2BΩi
b̂ · ∇ × b̂ − v2

⊥
2B2Ωi

(v × b̂) · ∇B −
v2
||

BΩi
b̂ · ∇b̂ · (v × b̂)

−
v||

4BΩi

[v⊥(v × b̂) + (v × b̂)v⊥] : ∇b̂, (6)
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with Ze, M and Ωi = ZeB/Mc the ion charge, mass and gyrofrequency, and c the

speed of light. The functions 〈φ〉, φ̃ and Φ̃ are derived from the electrostatic potential

φ. Consequently, they have short wavelength components. Their definitions are

〈φ〉 ≡ 〈φ〉(R, E, µ, t) =
1

2π

∮
dϕφ(r(R, E, µ, ϕ, t), t), (7)

φ̃ ≡ φ̃(R, E, µ, ϕ, t) = φ(r(R, E, µ, ϕ, t), t)− 〈φ〉(R, E, µ, t) (8)

and

Φ̃ ≡ Φ̃(R, E, µ, ϕ, t) =

∫ ϕ

dϕ′ φ̃(R, E, µ, ϕ′, t) (9)

such that 〈Φ̃〉 = 0. Here, 〈. . .〉 is the gyroaverage holding R, E, µ and t fixed. It is

important to discuss the size of the functions 〈φ〉, φ̃ and Φ̃. The function 〈φ〉 is of the

same size as the function φ, i.e., e〈φ〉/Te ∼ (k⊥a)
−1 is large for long wavelengths and

becomes of the next order in δi = ρi/a � 1 for wavelengths comparable to the ion

gyroradius. The functions φ̃ and Φ̃ are small in δi for any wavelength. This ordering is

obvious for short wavelengths since φ is small as well. For long wavelengths, φ is large,

but the wavelength is long compared to the ion gyroradius, giving e[φ(r)−φ(R)]/Te ∼ δi
and hence eφ̃/Te ∼ eΦ̃/Te ∼ δi. Importantly, to the order of interest in this article, the

functions 〈φ〉, φ̃ and Φ̃ do not depend on the gyrokinetic kinetic energy E because the

gyromotion of the particles depends only on R, µ and ϕ to first order.

Employing the definition of the gyrokinetic variables in [19], the ion distribution

function fi(R, E, µ, t) becomes gyrophase independent to order δifMi, and it must satisfy

the gyrokinetic Fokker-Planck equation

∂fi
∂t

∣∣∣∣
R,E,µ

+ Ṙ · ∇Rfi + Ė
∂fi
∂E

= 〈Cii{fi}〉, (10)

where

Ṙ ' 〈Ṙ〉 = ub̂(R) + vd (11)

and

Ė ' 〈Ė〉 = −Ze
M

Ṙ · ∇R〈φ〉. (12)

The gyrocenter velocity Ṙ includes the gyrocenter parallel velocity

u = ±
√

2[E − µB(R)], (13)

and the drifts vd = vM + vE, composed of the gyrokinetic E × B drift

vE = − c

B(R)
∇R〈φ〉 × b̂(R) (14)

and the magnetic drifts

vM =
µ

Ωi(R)
b̂(R) ×∇RB +

u2

Ωi(R)
b̂(R) × κ(R), (15)

with κ = b̂ · ∇b̂ the curvature of the magnetic field lines. Equation (10) is missing

corrections to Ṙ and Ė of order δ2
i vi and δ2

i v
3
i /a, respectively. These corrections can
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be calculated in some simple cases like uniform magnetic fields [27], but for general

magnetic geometries they are very complicated and are not implemented in simulations.

Thus, the O(δ2
i fMi) correction to the ion distribution function is not self-consistently

calculated in general magnetic geometries. We show in subsection 2.3 that the higher

order corrections to Ṙ and Ė are not really necessary in the limit Bp/B � 1. The

gyrophase dependent part of fi,

f̃i ≡ fi − 〈fi〉 = − 1

Ωi

∫ ϕ

dϕ′ (Cii{fi} − 〈Cii{fi}〉) ∼
νii
Ωi
δifMi, (16)

is comparable to the missing corrections of order δ2
i fMi and is negligible in the limit

Bp/B � 1.

In equations (10) and (16), Cii{fi} is the ion-ion collision operator. We neglect

the ion-electron collision operator because it is small by
√
m/M , with m and M the

ion and electron masses. In most of this article we order the ion-ion collision mean

free path λii ∼ vi/νii as comparable to the connection length qR because we want to

keep collisions in the formulation. However, the mean free path is usually much longer,

qRνii/vi � 1, in the plasmas of interest. When necessary we will comment on the

possible effects of small collisionality.

2.2. Steady state solution

In steady state, we expect to find turbulent fluctuations for which the time derivative

scales as the drift wave frequency ∂/∂t ∼ ω∗ ∼ k⊥ρivi/a, and a much slower turbulent

transport across flux surfaces of order ∂/∂t ∼ DgB/a
2 ∼ δ2

i vi/a. Then, according to

our orderings (3), ∂fi/∂t<∼ δifivi/a, and equation (10) becomes v||b̂ · ∇fi = Cii{fi} to

zeroth order, where ∇ is the gradient holding the zeroth order gyrokinetic variables E0,

µ0 and ϕ0 fixed, and we have assumed as usual that b̂ · ∇φ � Te/ea. Here, we have

neglected the higher order corrections to the gyrokinetic variables because we expect

the zeroth order solution to be slowly varying in phase space. The solution to equation

v||b̂ · ∇fi = Cii{fi} is a stationary Maxwellian fMi(ψ,E0) that only depends on ψ,

consistent with our initial assumption. It is important to realize that the condition

b̂ · ∇fMi = 0 does not impose any requirements on the radial gradients of the density

and temperature in fMi, and most probably they will have short wavelengths due to

turbulence. We assume that these short wavelengths are within the orderings in (3),

i.e., ∇⊥ni,k ∼ k⊥ni,k ∼ ni,k→0/a ∼ ∇ni,k→0, ∇⊥Ti,k ∼ k⊥ni,k ∼ Ti,k→0/a ∼ ∇Ti,k→0

and ∇⊥∇⊥fMi,k ∼ k2
⊥fMi,k ∼ k⊥fMi,k→0/a>∼fMi,k→0/a

2. In δf simulations the short

wavelength pieces of the Maxwellian are absorbed into the δf turbulent piece.

Continuing the analysis of the steady state solution, we find that equation (10) gives

the size of the next order correction fi1(R, E, µ, t) = fi(R, E, µ, t) − fMi(ψ(R), E) ∼
δifMi (notice that the Maxwellian distribution function has been written as a function

of the gyrokinetic variables). Importantly, this means that b̂ · ∇Rfi ∼ δifMi/a in

steady state, a property that we will employ continuously; similarly, b̂ ·∇Rfe ∼ δifMe/a

and b̂ · ∇φ ∼ δiTe/ea. Since the average velocity and the gradients along flux
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surfaces are only due to the next order piece fi1, it is useful to think about the

turbulent steady state as is done in δf formulations [21, 22, 23, 24], where the ion

distribution function is composed of a slowly varying Maxwellian and a fluctuating

turbulent correction. The ion flow niVi =
∫
d3vfi1v ∼ δinevi is then in the low

flow or drift ordering, and the gradients along flux surfaces follow a different ordering

than in (3), namely (b̂ × ψ̂) · ∇Rfi ∼ k⊥fi1 ∼ k⊥ρifMi/a<∼ ψ̂ · ∇fi ∼ fMi/a, with

ψ̂ = ∇ψ/|∇ψ|. Similarly, we expect (b̂× ψ̂) · ∇fe ∼ k⊥ρifMe/a<∼ ψ̂ · ∇fe ∼ fMe/a and

(b̂ × ψ̂) · ∇φ ∼ k⊥ρiTe/ea<∼ ψ̂ · ∇φ ∼ Te/ea. Notice that δf simulations include the

short wavelength pieces of the Maxwellian in the δf turbulent correction.

Importantly, our orderings require that the long wavelength, axisymmetric flows

remain neoclassical [16]. To see this, we examine the equation for the first order

correction to the Maxwellian, fi1 ∼ δifMi, given by

∂fi1
∂t

+ [ub̂(R) + vM + vE] · ∇Rfi1 −

〈
C

(`)
ii

{
fi1 −

Zeφ̃

Ti
fMi

}〉
= −vM · ∇RfMi

+
c

B
(∇R〈φ〉 × b̂) · ∇RfMi −

Ze

Ti
fMi[ub̂(R) + vM ] · ∇R〈φ〉, (17)

with C
(`)
ii {fi1} the linearized collision operator. To obtain the long wavelength,

axisymmetric contribution to equation (17), we use the “transport” or coarse grain

average

〈. . .〉T =
1

2π∆t∆ψ

∫

∆t

dt

∫

∆ψ

dψ

∮
dζ (. . .). (18)

Here, the integration is over 0 ≤ ζ < 2π, and several turbulence radial correlation

lengths and correlation times, δi � ∆ψ/aRBp � 1 and δ2
i � ∆t/tE � 1, with

tE ∼ a2/DgB ∼ δ−2
i a/vi the characteristic transport time scale. The “transport” average

gives the equation for the long wavelength, axisymmetric first order neoclassical piece

fnc
i1 (ψ, θ, E0, µ0, t) ≡ 〈fi1(R, E, µ, t)〉T, where we have used that at long wavelengths

fi1(R, E, µ, t) ' fi1(r, E0, µ0, t) to write fnc
i1 as a function of the lowest order gyrokinetic

variables. The neoclassical piece fnc
i1 (ψ, θ, E0, µ0, t) can be found using the “transport”

average of equation (17) to obtain

v||b̂ · ∇fnc
i1 + 〈vtb

E · ∇Rf
tb
i1 〉T − C

(`)
ii {fnc

i1 } = −vM · ∇fMi

−Ze
Ti
fMi(v||b̂ + vM) · ∇(φ0 + φnc

1 ), (19)

where ∇ is the gradient holding E0, µ0, ϕ0 and t fixed, φ0(ψ) and φnc
1 (ψ, θ) are the

zeroth order potential and its first order long wavelength, axisymmetric correction,

and f tb
i1 and vtb

E are the short wavelength, turbulent pieces of the ion distribution

function and the E × B drift. To obtain equation (19), we have neglected the

time derivative due to the time average in 〈. . .〉T, and we have used that at long

wavelengths fi1(R, E, µ, t) ' fi1(r, E0, µ0, t), 〈φ〉 ' φ, φ̃ ' −Ω−1
i (v × b̂) · ∇φ and

〈C(`)
ii {fi1}〉 ' C

(`)
ii {fi1}. The nonlinear term 〈vtb

E · ∇Rf
tb
i1 〉T contains short wavelength

components, but it happens to be negligible [16]. Notice that vtb
E ·∇Rf

tb
i1 can be written
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as −(c/B)b̂ · ∇R × [f tb
i1 ∇R〈φtb〉] ∼ k⊥f

tb
i1 δivi, with k−1

⊥ the perpendicular wavelength

of the total nonlinear contribution (f tb
i1 ∇R〈φtb〉)|k⊥ =

∑
f tb
i1 |k′

⊥
∇R〈φtb〉|k′′

⊥
, where the

summation is for every k′
⊥ and k′′

⊥ such that k′
⊥ + k′′

⊥ = k⊥. Since f tb
i1 /fMi ∼ δi,

〈vtb
E ·∇Rf

tb
i1 〉T is of order δik⊥ρifMivi/a. For wavelengths on the order of the minor radius

of the machine, k⊥a ∼ 1, the nonlinear term 〈vtb
E ·∇f tb

i1 〉T is of order δ2
i fMivi/a and hence

negligible. Then, recalling that b̂ ·∇φ0 = 0 and that vM ·∇φ0 ∼ v||b̂ ·∇φnc
1 � vM ·∇φnc

1 ,

equation (19) can be written as

v||b̂ · ∇hnc
i1 − C

(`)
ii

{
hnc
i1 −

Iv||
Ωi

ME0

T 2
i

∂Ti
∂ψ

fMi

}
= 0, (20)

with

hnc
i1 = fnc

i1 +
Zeφnc

1

Ti
fMi +

Iv||
Ωi

fMi

[
1

pi

∂pi
∂ψ

+
Ze

Ti

∂φ

∂ψ
+

(
ME0

Ti
− 5

2

)
1

Ti

∂Ti
∂ψ

]
. (21)

Equation (20) is the usual neoclassical equation [1, 2] that gives hnc
i1 ∼ (B/Bp)δifMi.

Employing the definition of hnc
i1 from (21), we find that the long wavelength,

axisymmetric flow must be neoclassical, i.e.,

niVi = −cR
Ze
ζ̂

(
∂pi
∂ψ

+ Ze
∂φ

∂ψ

)
+ U(ψ)B, (22)

where U(ψ) =
∫
d3v hnc

i1 (v||/B) ∝ ∂Ti/∂ψ. The correction to the flow in (22) due to

turbulence can be estimated by keeping the turbulent contributions in equation (20).

For low collisionality, ∂hnc
i1 /∂θ = 0 to zeroth order, giving hnc

i1 = hnc
i1 (ψ,E0, µ0). Then,

taking the bounce/transit average 〈. . .〉τ = [
∫
dθ (v||b̂ ·∇θ)−1(. . .)]/[

∫
dθ (v||b̂ ·∇θ)−1] of

equation (19) gives
〈
C

(`)
ii

{
hnc
i1 −

Iv||
Ωi

ME0

T 2
i

∂Ti
∂ψ

fMi

}〉

τ

=
∂fMi

∂t
+
〈〈(

vtb
E · ∇Rf

tb
i1 + . . .

)〉
T

〉
τ
, (23)

where we have not written explicitly possible modifications to the turbulent contribution

from second order corrections to the drifts. We have kept the time derivative

of the Maxwellian because it is of the same order as the turbulent contribution,

∂fMi/∂t ∼ (DgB/a
2)fMi ∼ δ2

i fMivi/a. The correction to the usual neoclassical solution

hnc
i1 ∼ (B/Bp)δifMi due to the turbulence is then of order ∆hnc

i1 ∼ (vi/qRνii)δih
nc
i1
<∼h

nc
i1 .

However, we believe that the correction to the flow is an order smaller in δi, i.e., it

is of order δ2
i vi/qRνii � 1 because only the part of the turbulent correction ∆hnc

i1

that is odd in v|| will contribute to the flows. In an up-down symmetric tokamak, we

do not expect the turbulent contribution 〈〈(vtb
E · ∇Rf

tb
i1 + . . .)〉T〉τ in equation (23) to

depend on the sign of the parallel velocity σ = v||/|v||| because the short wavelength

piece of equation (17) that gives f tb
i1 does not have a preferred parallel direction.

The neoclassical drive, on the other hand, is proportional to (Iv||/Ωi)(∂Ti/∂ψ) and

has a preferred parallel direction given by the drift orbits of the particles and the

temperature gradient. The term vM · ∇RfMi that is the origin of the neoclassical drive

at long wavelengths will not contribute coherently to the turbulence even if fMi has

short wavelength components. At short wavelengths ∂fMi/∂ψ will change sign with a

frequency characteristic of the turbulent processes; a time scale much faster than the
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long times in which hnc
i1 evolves. Thus, we expect the turbulent correction to the flow,

coming from a turbulent contribution dependent on σ = v||/|v|||, to be of the next order

in δi, i.e., O(δ2
i vi/qRνii) � 1. This heuristic argument must be checked with computer

simulations.

2.3. Solution in the limit Bp/B � 1

For the rest of this article it will be important to understand the steady state solution

in the limit Bp/B � 1. In this subsection, we examine the first order solution fi1, and

we show that the turbulent component f tb
i1 ∼ δifMi scales differently with Bp/B �

1 than the long wavelength, axisymmetric neoclassical piece fnc
i1 ∼ (B/Bp)δifMi.

Then, employing this difference, we show that the traditional first order gyrokinetic

equation (10) is all that is required to obtain the ion distribution function up to order

(B/Bp)δ
2
i fMi.

It is interesting to analyze the order of magnitude estimate fnc
i1 ∼ (B/Bp)δifMi in

the low collisionality or banana regime. Neglecting collisions and turbulence in (19), the

size of fnc
i1 seems to be given by the competition between the terms v||b̂·∇fnc

i1 ∼ fnc
i1 vi/qR

and vM · ∇fMi ∼ (ρi/R)vifMi/a, giving fnc
i1 ∼ qδifMi ∼ (B/Bp)εδifMi, with ε = a/R

the inverse aspect ratio and q ∼ aB/RBp the safety factor. This simple order

of magnitude estimate suggests that fnc
i1 is larger than δifMi near the separatrix,

where q ∼ (B/Bp)ε is usually large, but becomes comparable near the magnetic axis

where ε → 0. Importantly, this simple estimate misses the last terms in (21) and

incorrectly predicts the size of the function hnc
i1 that the collision operator ends up

forcing to be hnc
i1 ∼ (B/Bp)δifMi>∼qδifMi. Collisions cause part of the momentum

carried by the trapped particles to be lost to the passing particles, accelerating them.

Trapped particles can only carry toroidal momentum due to the finite radial size of

their drift orbits, ∆t ∼ q(vi/v||)ρi ∼ (q/
√
ε)ρi, giving rise to the diamagnetic flow

Γi||,t ∼ ft∆tv||(∂ni/∂r) ∼ q
√
εδinivi. Here v|| ∼ vi

√
ε is the characteristic parallel

velocity of the trapped particles and ft ∼
√
ε is the fraction of trapped particles. The

passing particles, on the other hand, may have an average parallel velocity Vi||,p due

to the momentum exchange with the trapped. This average velocity is the one that

gives the real size of fnc
i1 /fMi ∼ Vi||,p/vi. To obtain the size of Vi||,p, we balance the

collisional momentum loss of trapped particles with the momentum gain of passing

particles. The characteristic time between collisions that make a trapped particle

become passing is ε/νii since only a small pitch angle change of order
√
ε is needed.

The opposite process, that is, a collision that makes a passing particle trapped, has a

characteristic time 1/(νii
√
ε) because there is only a limited volume of velocity space,

of order
√
ε, where the particles become trapped. Considering these characteristic

times, the momentum balance between passing and trapped is (νii/ε)Γi||,t ∼ νii
√
εniVi||,p,

leading to Vi||,p ∼ (B/Bp)δivi and fnc
i1 ∼ (B/Bp)δifMi.

On the other hand, the time evolution of the short wavelength, turbulent piece

f tb
i1 is described by the short wavelength contribution to equation (17). The self-
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consistent turbulent potential φtb is determined by either a vorticity equation [16]

or a quasineutrality equation [25, 26]. The characteristic size of the turbulent

pieces is determined by the competition between the nonlinear term vtb
E · ∇Rf

tb
i1 =

−(c/B)(∇R〈φtb〉 × b̂) · ∇Rf
tb
i1 , and the linear contributions vM · ∇Rf

tb
i1 and

(c/B)(∇R〈φtb〉 × b̂) · ∇RfMi. Considering that the turbulence usually has wavelengths

comparable to the ion gyroradius, k⊥ρi ∼ 1, and the turbulent potential φtb is usually

of the order f tb
i1 /fMi due to the adiabatic response of the electrons, we find f tb

i1 /fMi ∼ δi
and eφtb/Te ∼ δi. The size of the turbulent contributions does not depend strongly

on Bp/B, and it is smaller in size than the neoclassical piece fnc
i1 ∼ (B/Bp)δifMi for

Bp/B � 1. The ratio Bp/B affects the zonal flow residual [28, 29], and plays a role

in the parallel structure of the linear stage of the instabilities, but it is unlikely that it

increases the size of the turbulent fluctuations.

The difference in size of fnc
i1 ∼ (B/Bp)δifMi and f tb

i1 ∼ δifMi is important because

it simplifies the calculation of the O(δ2
i fMivi/a) gyrokinetic Fokker-Planck equation.

We will only keep the terms that are larger by B/Bp. To identify these terms, we let

fi = fMi + fi1 + fi2 + . . . and then write the gyrokinetic equation for the second order

perturbation as

∂fi2
∂t

+ [ub̂(R) + vd] · ∇Rfi2 − 〈C(2)
ii {fi}〉 = −vd · ∇Rf

nc
i1 − Ṙ(2) · ∇R(fMi + f tb

i1 )

+
Ze

M
[ub̂(R) + vM ] · ∇R〈φ〉

∂fi1
∂E

+ Ė(2)MfMi

Ti
, (24)

with 〈C(2)
ii {fi}〉 = 〈Cii{fi}〉 − 〈C(`)

ii {fMi + fi1}〉, Ṙ(2) = 〈Ṙ〉 − [ub̂(R) + vd] and

Ė(2) = 〈Ė〉+(Ze/M)[ub̂(R)+vM ] ·∇R〈φ〉. Here, 〈Cii{fi}〉, 〈Ė〉 and 〈Ṙ〉 are calculated

to order δ2
i νiifMi, δ

2
i v

3
i /a and δ2

i vi, respectively: an order higher than in equation (10).

Notice that the first order correction fi1 enters differently depending on its nature. The

turbulent short wavelength piece f tb
i1 has large gradients and it is multiplied by the small

quantity Ṙ(2), while the gradient of the neoclassical piece fnc
i1 is small but is multiplied

by the lower order term vd � Ṙ(2).

On the right side of equation (24), the dominant terms are −vd · ∇Rf
nc
i1 and

(Ze/M)[ub̂(R) + vM ] · ∇R〈φ〉(∂fnc
i1 /∂E) because fnc

i1 is larger than all other terms by

a factor of B/Bp. The higher order corrections Ṙ(2) and Ė(2) are finite gyroradius

correction that do not contain any B/Bp factors. Since fnc
i1 determines the parallel

velocity and the parallel heat flow, the term vd · ∇Rf
nc
i1 represents the effect of the

gradient of the parallel velocity and parallel heat flow on turbulence. All the terms

that contain Ṙ(2) and Ė(2) may be neglected, and the resulting equation will give a

solution for fi2 ∼ (B/Bp)δ
2
i fMi. Therefore, equation (10), that does not include the

higher order corrections to Ṙ and Ė, is enough to determine the ion distribution

function up to order (B/Bp)δ
2
i fMi! Moreover, the second order corrections to the

gyrokinetic variables, R2 and E2, are also negligible. When fi(R, E, µ, t) is expanded

about Rg = r + Ω−1
i v × b̂, E0, and µ0, the contributions of R2 and E2, R2 · ∇Rgfi

and E2(∂fi/∂E0), are of order δ2
i fMi and hence negligible compared to the second

order correction fi2 ∼ (B/Bp)δ
2
i fMi. The gyrophase dependent correction from (16)
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is also negligible because f̃i ∼ (νii/Ωi)δifMi<∼δ
2
i fMi � fi2 ∼ (B/Bp)δ

2
i fMi. For all

these estimates to work, we need the turbulence to have reached a steady state, and a

converged solution of the neoclassical contribution fnc
i1 ∼ (B/Bp)δifMi.

Finally, the function fi2 has a turbulent piece f tb
i2 , and a neoclassical piece fnc

i2 .

The turbulent piece is given by the balance between the drifts vd · ∇Rf
tb
i2 ∼ δivik⊥f

tb
i2

and the driving term vd · ∇Rf
nc
i1 ∼ (B/Bp)δ

2
i vifMi/a, giving f tb

i2 ∼ (B/Bp)δ
2
i fMi

for k⊥ρi ∼ 1. The neoclassical piece is a result of a balance between the parallel

streaming term ub̂ · ∇Rf
nc
i2 ∼ (vi/qR)fnc

i2 and the magnetic drift term vM · ∇Rf
nc
i1 ∼

(ρi/R)vi(B/Bp)δifMi/a, leading to fnc
i2 ∼ (B/Bp)

2δ2
i fMi. Here we have ignored possible

factors of ε = a/R that have to be sorted out in the future by correctly evaluating the

effect of the collision operator on fnc
i2 .

3. Transport of toroidal angular momentum

In this section, we obtain a conservation equation for the transport of toroidal angular

momentum that only requires the ion distribution function fi and potential φ correct

to order δ2
i fMi and δ2

i Te/e to calculate the toroidal rotation in the low flow ordering.

Equation (1) indicates that we need Π to order δ3
i piR|∇ψ|, and we keep all the terms

to that order for a general magnetic geometry with Bp/B ∼ 1. We then refine the

estimate of the size of the different terms with the limit Bp/B � 1 in mind. We

finish this section by arguing that in up-down symmetric tokamaks with Bp/B � 1

the transport of toroidal angular momentum is at the gyroBohm level and that in this

case the ion distribution function and the electrostatic potential need only be found to

order (B/Bp)δ
2
i fMi and (B/Bp)δ

2
i Te/e, respectively. Up-down asymmetry complicates

the treatment and is left for future work, but we expect the asymmetry required to

modify the results to be severe.

The total momentum conservation equation is given by

∂

∂t
(niMVi) = −∇ ·

[↔
Pi +pe⊥(

↔
I −b̂b̂) + pe||b̂b̂

]
+

1

c
J × B, (25)

where pe|| =
∫
d3v femv

2
|| and pe⊥ =

∫
d3v femv

2
⊥/2 are the parallel and perpendicular

electron pressures, J = Ze
∫
d3v fiv − e

∫
d3v fev is the current density and

↔
Pi=

M
∫
d3v fivv is the ion stress tensor. Here, we have neglected the electron inertial

terms and the electron gyroviscosity and perpendicular viscosity pieces of the stress

tensor because they are small by m/M . Multiplying equation by Rζ̂ and flux surface

averaging, we find that

∂

∂t
〈RniMVi · ζ̂〉ψ = − 1

V ′
∂

∂ψ
(V ′Π), (26)

with 〈. . .〉ψ = (V ′)−1
∫
dθ dζ (B · ∇θ)−1(. . .) the flux surface average, V ′ =

∫
dθ dζ (B ·

∇θ)−1 the flux surface volume and Π the radial flux of toroidal angular momentum

given in (1). To obtain equation (26) we have used that 〈Rζ̂ · (J × B)〉ψ = 〈J · ∇ψ〉ψ
according to (2). Employing ∇ · J = 0, it is easy to see that 〈J · ∇ψ〉ψ necessarily
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vanishes. Consequently, the Lorentz force c−1J×B does not enter in the determination

of the toroidal rotation.

Equation (26) proves that only Π = M〈
∫
d3v fiR(v · ζ̂)(v · ∇ψ)〉ψ is needed to find

the toroidal rotation. To avoid evaluating the ion viscosity by direct integration of fi,

we propose using moments of the full ion Fokker-Planck equation

dfi
dt

≡ ∂fi
∂t

∣∣∣∣
r,v

+ v · ∇fi +
(
−Ze
M

∇φ+ Ωiv × b̂

)
· ∇vfi = Cii{fi}. (27)

This moment approach is followed in drift kinetics [17] and to formulate a hybrid

gyrokinetic-fluid description [30]. In this section, we use two moments of (27). The

Mvv moment gives a form for Π requiring a less accurate fi. In this new equation

for Π, there is a term that contains a component of the tensor M
∫
d3v fivvv, and the

Mvvv moment of (27) allows us to solve for it.

The transport of toroidal angular momentum Π is evaluated from the Mvv moment

of the full ion Fokker-Planck equation (27), given by

Ωi(
↔
Pi ×b̂ − b̂×

↔
Pi) =

↔
K, (28)

with

↔
K=

∂
↔
Pi

∂t
+ ∇ ·

(
M

∫
d3v fivvv

)
+ Zeni(∇φVi + Vi∇φ) −M

∫
d3v Cii{fi}vv. (29)

From the moment equation (28), the off-diagonal elements of
↔
Pi can be evaluated as a

function of
↔
K. Additionally, equation (28) contains the energy conservation equation,

Trace(
↔
K) = 0, and the parallel pressure equation, b̂·

↔
K ·b̂ = 0.

To solve for the toroidal-radial component Rζ̂·
↔
Pi ·∇ψ, pre-multiply and post-

multiply equation (28) by Rζ̂ to find

Rζ̂·
↔
Pi ·∇ψ =

Mc

2Ze

∂

∂t
(R2ζ̂·

↔
Pi ·ζ̂) +

M2c

2Ze
∇ ·
[∫

d3v vfiR
2(v · ζ̂)2

]

+c
∂φ

∂ζ
RniM(Vi · ζ̂) −

M2c

2Ze

∫
d3v Cii{fi}R2(v · ζ̂)2, (30)

where we use R(b̂× ζ̂) = ∇ψ/B from (2) and ∇(Rζ̂) = (∇R)ζ̂ − ζ̂(∇R). Flux surface

averaging this expression gives

Π =
Mc

2Ze

∂

∂t
〈R2ζ̂·

↔
Pi ·ζ̂〉ψ +

M2c

2Ze

1

V ′
∂

∂ψ
V ′
〈∫

d3v fi(v · ∇ψ)R2(v · ζ̂)2

〉

ψ

+

〈
c
∂φ

∂ζ
RniM(Vi · ζ̂)

〉

ψ

− M2c

2Ze

〈∫
d3v Cii{fi}R2(v · ζ̂)2

〉

ψ

. (31)

In equation (26), we are only interested in the evolution of the long wavelength toroidal

rotation on long transport time scales. Even if we average out the short wavelengths in

(31), there may still be uninteresting fast time scale variations over the long time scale

irreversible transport of momentum. Thus, we must average over both ψ and time,
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like we did in the “transport” or coarse grain averaging 〈. . .〉T from (18). Applying the

“transport” average to (31), we find

〈Π〉T =
Mc

2Ze

∂

∂t
〈R2ζ̂ · 〈

↔
Pi〉T · ζ̂〉ψ +

M2c

2Ze

1

V ′
∂

∂ψ
V ′
〈∫

d3v 〈fi〉T(v · ∇ψ)R2(v · ζ̂)2

〉

ψ

+

〈〈
c
∂φ

∂ζ
RniM(Vi · ζ̂)

〉

ψ

〉

T

− M2c

2Ze

〈∫
d3v 〈Cii{fi}〉TR2(v · ζ̂)2

〉

ψ

. (32)

The first term contains a time derivative. Since the “transport” average 〈. . .〉T includes

a time average over an intermediate time between the very fast turbulence time a/vi
and the slow transport time δ−2

i a/vi, only the slow transport time scale evolution of the

ion pressure is large enough to contribute to (32), giving

Mc

2Ze

∂

∂t
〈R2ζ̂ · 〈

↔
Pi〉T · ζ̂〉ψ ' Mc

2Ze
〈R2〉ψ

∂pi
∂t

∼ δ3
i piR|∇ψ|. (33)

The second term in equation (32) only depends on the gyrophase dependent piece

of the ion distribution function. For this reason, it can be evaluated by employing the

Mvvv moment of the Fokker-Planck equation, given by

Ωi

∫
d3v fiM [(v × b̂)vv + v(v × b̂)v + vv(v × b̂)] =

∂

∂t

(∫
d3v fiMvvv

)

+∇ ·
(∫

d3v fiMvvvv

)
+ Ze

∫
d3v fi(∇φvv + v∇φv + vv∇φ)

−
∫
d3v Cii{fi}Mvvv. (34)

Multiplying every index in this tensor by Rζ̂, employing R(b̂ × ζ̂) = ∇ψ/B, and flux

surface and “transport” averaging gives
〈
M

∫
d3v 〈fi〉T(v · ∇ψ)R2(v · ζ̂)2

〉

ψ

=
M2c

3Ze

∂

∂t

〈∫
d3v 〈fi〉TR3(v · ζ̂)3

〉

ψ

+
M2c

3Ze

1

V ′
∂

∂ψ
V ′
〈∫

d3v 〈fi〉T(v · ∇ψ)R3(v · ζ̂)3

〉

ψ

+

〈〈
c
∂φ

∂ζ
R2(ζ̂·

↔
Pi ·ζ̂)

〉

ψ

〉

T

−M
2c

3Ze

〈∫
d3v 〈Cii{fi}〉TR3(v · ζ̂)3

〉

ψ

. (35)

This equation has to be evaluated to order δ2
i piviR

2|∇ψ| to give terms of order δ3
i piR|∇ψ|

in (32). We prove now that the first two terms are of higher order and hence negligible.

The first term has a time derivative and in addition vvv is composed of terms either

odd in v|| or v⊥. With turbulence that has reached statistical equilibrium and after

“transport” averaging, the time derivative becomes of the order of the transport time

scale, i.e., ∂/∂t ∼ DgB/a
2 ∼ δ2

i vi/a, and the ion distribution function is even in v|| and

v⊥ to lowest order. Consequently the contribution of the first term in (35) is negligible

since fi1 ∼ δifMi gives a term of order δ4
i piviR

2|∇ψ|. In the second term of (35), only

the long wavelength gyrophase dependent piece of the distribution function contributes
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because (v · ∇ψ)(v · ζ̂)3 = 0. Here (. . .) is the gyroaverage holding r, E0, µ0 and t fixed.

To order δifMi, the long wavelength gyrophase dependent piece of fi is given by

〈fi〉T − 〈f i〉T ' 1

Ωi
(v × b̂) ·

[
∇pi
pi

+
Ze

Ti
∇φ+

(
ME0

Ti
− 5

2

)
∇Ti
Ti

]
fMi ∼ δifMi. (36)

The integral over velocity of the first order piece of (〈fi〉T−〈f i〉T)(v·∇ψ)(v·ζ̂)3 vanishes

because it is odd in v. Thus, the second term in (35) is of higher order than δ2
i piviR

2|∇ψ|
and hence negligible. Finally, substituting relations (33) and (35) into equation (32),

and using that the first two terms in (35) are negligible gives

〈Π〉T =

〈〈
c
∂φ

∂ζ
RniM(Vi · ζ̂)

〉

ψ

〉

T

+
Mc2

2Ze

1

V ′
∂

∂ψ
V ′

〈〈
∂φ

∂ζ
R2(ζ̂·

↔
Pi ·ζ̂)

〉

ψ

〉

T

+
Mc

2Ze
〈R2〉ψ

∂pi
∂t

− M2c

2Ze

〈∫
d3v 〈Cii{fi}〉TR2(v · ζ̂)2

〉

ψ

− M3c2

6Z2e2
1

V ′
∂

∂ψ
V ′
〈∫

d3v 〈Cii{fi}〉TR3(v · ζ̂)3

〉

ψ

. (37)

There are five contributions to the transport of toroidal angular momentum in the low

flow or drift ordering. The first and second terms in (37) are turbulent contributions

where the short wavelength, turbulent pieces of the potential and the ion distribution

function beat together to give a long wavelength contribution. The third term

contributes if the energy transport has not reached steady state. In general it must

be kept. The fourth and fifth terms are collisional and account for the neoclassical

transport of momentum.

We now estimate the order of magnitude of the different terms in (37) in the limit

Bp/B � 1. The third term in (37) scales as

Mc

2Ze
〈R2〉ψ

∂pi
∂t

∼ B

Bp
δ3
i piR|∇ψ|, (38)

where we have used |∇ψ| = RBp to obtain the order of magnitude estimate. We

can estimate the size of the neoclassical contributions by employing fnc
i1 = 〈fi1〉T ∼

(B/Bp)δifMi and fnc
i2 = 〈fi2〉T ∼ (B/Bp)

2δ2
i fMi (see subsection 2.3) to find

−M
2c

2Ze

〈∫
d3v 〈Cii{fi}〉TR2(v · ζ̂)2

〉

ψ

∼ B

Bp

qRνii
vi

δ2
i piR|∇ψ| (39)

and

−M3c2

6Z2e2
1

V ′
∂

∂ψ
V ′
〈∫

d3v 〈Cii{fi}〉TR3(v · ζ̂)3

〉

ψ

∼
(
B

Bp

)2
qRνii
vi

δ3
i piR|∇ψ|. (40)

The formal estimate in (39) would seem to indicate that the gyroBohm estimate in (1)

is incorrect. However, the zeroth order contribution to (39) is small by the collision

frequency, and in addition it exactly cancels to order (qRνii/vi)δ
2
i piR|∇ψ| in an up-

down symmetric tokamak (see appendix A). To next order and for Bp/B � 1, we find
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that (39) becomes

−M
2c

2Ze

〈∫
d3v

(
C

(`)
ii {fnc

i2 } + C
(n`)
ii {fnc

i1 , f
nc
i1 }
)
R2(v · ζ̂)2

〉

ψ

∼
(
B

Bp

)2
qRνii
vi

δ3
i piR|∇ψ|, (41)

where C
(n`)
ii is the nonlinear, quadratic collision operator. In equation (41) we

have neglected the second order gyrophase dependent piece, obtained from Taylor

expanding the gyrokinetic solution fi(R, E, µ, t) around r, E0 and µ0. The largest

contribution to the second order gyrophase dependent piece is R1·∇fnc
i1 +E1(∂f

nc
i1 /∂E0)+

µ1(∂f
nc
i1 /∂µ0) ∼ (B/Bp)δ

2
i fMi and thus smaller than fnc

i2 ∼ (B/Bp)
2δ2
i fMi. According to

equations (40) and (41), in an up-down symmetric tokamak the neoclassical transport

of toroidal angular momentum is of order (B/Bp)
2(qRνii/vi)δ

3
i piR|∇ψ|.

The turbulent contribution given by the first and second terms in (37) is more

interesting. Considering that in steady state the pieces of the distribution function that

have ∂/∂ζ 6= 0 are of order δifMi, we find that
〈〈

c
∂φ

∂ζ
RniM(Vi · ζ̂)

〉

ψ

〉

T

∼ δ2
i piR|∇ψ| (42)

and

Mc2

2Ze

1

V ′
∂

∂ψ
V ′

〈〈
∂φ

∂ζ
R2(ζ̂·

↔
Pi ·ζ̂)

〉

ψ

〉

T

∼ B

Bp

δ3
i piR|∇ψ|, (43)

where we have used that (∂φ/∂ζ) = Rζ̂ · ∇φ ∼ Rζ̂ · k⊥φk ∼ R(Bp/B)k⊥φk ∼
(Bp/B)(R/a)(Te/e) because the component of ζ̂ perpendicular to b̂ is |b̂ × ζ̂| =

|∇ψ|/RB = Bp/B. The term (42) is formally larger than the gyroBohm estimate

in (1). It is plausible that the Reynolds stress in (42) averaged over time is almost zero.

If this is the case, the turbulent contribution to order δ2
i piR|∇ψ| does not determine

the evolution of the long wavelength toroidal rotation on transport time scales. This

possibility does not conflict with fast growth and evolution of zonal flow structure, that

happens in relatively short times, but does not transport angular momentum through

large distances.

It is difficult to prove unarguably that the Reynolds stress in (42) must vanish

to order δ2
i piR|∇ψ|. In δf flux tube codes [21, 22, 24], only the gradients of density

and temperature enter the equation for the turbulent correction to the Maxwellian

f tb
i1 . The gradient of the toroidal rotation is ordered out because the average velocity

in the plasma is assumed to be small by δi. If in addition the tokamak is up-down

symmetric, the system does not have a preferred direction and it is unlikely that there

is any transport of angular momentum. Quasilinear calculations suggest that in up-

down symmetric tokamaks, δf flux tube formulations must give zero transport [31]. If

the average velocity is ordered as large as the thermal velocity, the symmetry in the flux

tube is broken and there is a net radial momentum transport [32], but such a description

is not relevant in many tokamaks.
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It seems reasonable to assume that, at least in a time averaged sense, the Reynolds

stress in (42) vanishes to order δ2
i piR|∇ψ|. Consequently, we take

〈〈
c
∂φtb

1

∂ζ

∫
d3v

(
f tb
i1 − Zeφ̃tb

1

Ti
fMi

)
RM(v · ζ̂)

〉

ψ

〉

T

= 0, (44)

with f tb
i1 /fMi ∼ eφtb

1 /Te ∼ δi. To the next order, equation (42) becomes
〈〈

c
∂φtb

1

∂ζ

∫
d3v

[
f tb
i2 − Zeφ̃tb

2

Ti
fMi +

Zeφ̃tb
1

M

(
∂fnc

i1

∂E0
+

1

B

∂fnc
i1

∂µ0

)]
RM(v · ζ̂)

+c
∂φtb

2

∂ζ

∫
d3v

(
f tb
i1 − Zeφ̃tb

1

Ti
fMi

)
RM(v · ζ̂)

〉

ψ

〉

T

∼ B

Bp
δ3
i piR|∇ψ|, (45)

where we have used that according to subsection 2.3 f tb
i2 /fMi ∼ eφtb

2 /Te ∼ (B/Bp)δ
2
i .

Thus, according to (43) and (45), the fast time averaged turbulent contribution to the

transport of toroidal angular momentum in an up-down symmetric tokamak is of order

(B/Bp)δ
3
i piR|∇ψ|. This estimate corresponds to the size of the gyroBohm transport

of toroidal angular momentum. To see this, recall (1) and the discussion below it. To

obtain the correct scaling with B/Bp, notice that the estimate for the toroidal velocity

is Vi · ζ̂ ∼ (B/Bp)δivi instead of Vi · ζ̂ ∼ δivi.

To summarize, equation (37) gives the transport of toroidal angular momentum in

the low flow ordering up to order (B/Bp)δ
3
i piR|∇ψ|. In an up-down symmetric tokamak,

we have shown that the size of the different contributions is given by (38), (40), (41), (43)

and (45), i.e., the transport of toroidal angular momentum is indeed at the gyroBohm

level. To evaluate (37) we need to obtain the ion distribution function and the turbulent

electrostatic potential to order (B/Bp)δ
2
i fMi and (B/Bp)δ

2
i Te/e, respectively. These

small corrections enter in equations (41) and (45). In subsection 2.3 we already showed

that the lower order gyrokinetic equation (10) is good enough to obtain these higher

order corrections if Bp/B � 1. In section 4 we discuss how these corrections can be

obtained in practice.

4. Distribution function and potential to second order

To evaluate (37), the ion distribution function and the potential have to be found to order

(B/Bp)δ
2
i fMi and (B/Bp)δ

2
i Te/e, respectively. In subsection 2.3 we argued that the first

order gyrokinetic equation (10) was enough to obtain the ion distribution function to this

order. In this section, we show that minor modifications to existing δf gyrokinetic codes

[21, 22, 23, 24] provide the necessary higher order corrections to the ion distribution.

We also discuss briefly the implication for full f simulations.

To find the electrostatic potential to high enough order, we can either use a

gyrokinetic quasineutrality equation [25, 26] or employ a vorticity equation [16]. For

δf flux tube simulations both choices should give consistent results since the long

wavelength radial electric field is not retained in the equations for turbulence and can be

independently determined by the equations for transport of toroidal angular momentum
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(26) and (37), and the neoclassical relation (22). For global simulations, however, the

gyrokinetic quasineutrality equation becomes a problem. The long wavelength radial

electric field obtained from the lower order quasineutrality equation differs from the

radial electric field that corresponds to the toroidal rotation. This discrepancy can be

overcome by employing a consistent vorticity equation that ensures that the toroidal

rotation does not change with time at short time scales. Such a vorticity equation

was found in [16], but it was only valid to first order, giving eφtb
1 /Te ∼ δi. In this

section, we extend that calculation to obtain a vorticity equation accurate enough to

give eφtb
2 /Te ∼ (B/Bp)δ

2
i .

The rest of this section is organized as follows. In subsection 4.1, we extend

our conclusions of subsection 2.3 for Bp/B � 1 to write δf equations for the

short wavelength, turbulent pieces of distribution function, and we comment on the

requirements that a full f simulation must satisfy to obtain the ion distribution function

to order (B/Bp)δ
2
i fMi. We also discuss how the high flow limit can be explored in this

formalism. Finally, in subsection 4.2, we obtain two vorticity equations correct to order

(B/Bp)δ
2
i enevi/a. The details of the calculation are relegated to appendices B-F.

4.1. Higher order ion distribution function

In subsection 2.3 we argued that the first order gyrokinetic equation (10) is able to

provide the ion distribution function up to order (B/Bp)δ
2
i fMi. In this subsection we

streamline the procedure for δf simulations and we comment on the implications for

full f codes.

For δf simulations, we modify slightly the arguments employed in subsection 2.3.

The Maxwellian distribution function fMi is now slowly varying in space, and the

axisymmetric, short wavelength structure in density and temperature is absorbed into

the correction to the Maxwellian. This correction is written as δfi = fnc
i1 +f tb

i1 +fnc
i2 +f tb

i2 ,

where f tb
i1 and f tb

i2 contain the axisymmetric, short wavelength corrections to the

Maxwellian. We now proceed to describe how to find the pieces fnc
i1 , f tb

i1 and f tb
i2 .

These are the only pieces needed to obtain the turbulent transport of toroidal angular

momentum, given by the first two terms in (37). The second order correction fnc
i2 is not

necessary for turbulent transport of toroidal angular momentum. An explicit evaluation

requires some care in the low collisionality or banana regime, which we leave for future

work.

The first order neoclassical correction fnc
i1 is determined by equations (20) and

(21), and it depends on the particular collision operator. In the banana regime and for

a momentum-conserving pitch angle scattering operator

C
(`)
ii {fi1} = νii(v)∇v ·

[
(v2

↔
I −vv) · ∇v

(
fi1 −

Mv · ui
Ti

fMi

)]
, (46)

with ui = [
∫
d3v νii(v)vfi1]/[

∫
d3v νii(v)(Mv2/3Ti)fMi], the result may be approximated
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by [2]

fnc
i1 (ψ(R), E, µ) = −Iu

Ωi
fMi

[
1

pi

∂pi
∂ψ

+
Ze

Ti

∂φ

∂ψ
+

(
ME

Ti
− 5

2

)
1

Ti

∂Ti
∂ψ

]

+
IV ||

Ωi0

fMi

(
ME

Ti
− Σ

)
1

Ti

∂Ti
∂ψ

, (47)

where u = ±
√

2[E − µB(R)] is the gyrokinetic parallel velocity, Ωi0 = ZeB0/Mc and

B0 =
√
〈B2〉ψ are some conveniently averaged gyrofrequency and magnetic field, and

Σ =

∫
dv νii(v)(Mv2/2Ti)

3 exp(−Mv2/2Ti)∫
dv νii(v)(Mv2/2Ti)2 exp(−Mv2/2Ti)

(48)

is a constant calculated so that C
(`)
ii {fi1} conserves momentum. The function

V ||(ψ(R), E, µ) = σH(B0/Bmax − µB0/E)

√
E

2

∫ B0/Bmax

µB0/E

dλ

〈
√

1 − λB/B0〉ψ
(49)

goes smoothly from zero for trapped particles, B0/Bmax < µB0/E < B0/Bmin, to

u = ±
√

2[E − µB(R)] for passing particles, 0 < µB0/E < B0/Bmax. In equation (49),

σ = u/|u| is the sign of the parallel velocity, H(x) is the Heaviside step function, and

Bmax and Bmin are the maximum and minimum values of B in a flux surface, located

in the midplane in an up-down symmetric tokamak. Solution (47) is schematic, and

including other collisional effects like energy diffusion will modify the result, but it has

the advantage of showing the main features of the solution, in particular, its dependence

on v||. We use it here as an example.

For δf codes, we write equations for f tb
i1 and f tb

i2 that differ slightly from (17) and

(24). There are two reasons for the differences. On the one hand, we assume that fMi

is slowly varying in space, as already noted. On the other hand, we are going to split

the turbulent potential into two pieces, namely eφtb
1 /Te ∼ δi and eφtb

2 /Te ∼ (B/Bp)δ
2
i .

Taking these differences into consideration, the equation for f tb
i1 is the short wavelength

contribution to (10) up to order δifMivi/a, given by

∂f tb
i1

∂t
+
[
ub̂(R) + vM − c

B
∇R〈φtb

1 〉 × b̂
]
· ∇Rf

tb
i1 −

〈
C

(`)
ii

{
f tb
i1 − Zeφ̃tb

1

Ti
fMi

}〉
=

c

B
(∇R〈φtb

1 〉 × b̂) · ∇RfMi −
Ze

Ti
fMi[ub̂(R) + vM ] · ∇R〈φtb

1 〉. (50)

The equation for f tb
i2 ∼ (B/Bp)δ

2
i fMi can be found from the short wavelength

contribution to equation (10) of order (Bp/B)δ2
i fMivi/a that gives

∂f tb
i2

∂t
+
[
ub̂(R) + vM − c

B
∇R〈φtb

1 〉 × b̂
]
· ∇Rf

tb
i2

−
〈
C

(`)
ii

{
f tb
i2 − Zeφ̃tb

2

Ti
fMi +

Zeφ̃tb
1

M

(
∂fnc

i1

∂E0

+
1

B

∂fnc
i1

∂µ0

)}〉
=

c

B
(∇R〈φtb

1 〉 × b̂) · ∇Rf
nc
i1 +

c

B
(∇R〈φtb

2 〉 × b̂) · ∇RfMi

+
Ze

M
[ub̂(R) + vM ] · ∇R〈φtb

1 〉∂f
nc
i1

∂E
− Ze

Ti
fMi[ub̂(R) + vM ] · ∇R〈φtb

2 〉. (51)
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Here, we have neglected terms like C
(n`)
ii {f tb

i1 , f
nc
i1 } ∼ (qRνii/vi)δ

2
i fMivi/a<∼δ

2
i fMivi/a

because they are smaller than (B/Bp)δ
2
i fMivi/a. In equation (51), the neoclassical

correction fnc
i1 enters in the same place as the density and temperature gradients do in

the first order δf equation (50), and in the linearized collision operator, the φ̃ term from

µ1 in (6) must be retained in the expansion of fi about µ0. The neoclassical solution

(47) is a simplified example of possible input for fnc
i1 . The dependence of fnc

i1 on v||
breaks the symmetry in the parallel velocity.

Splitting the gyrokinetic equation into the two contributions (50) and (51) has

some advantages. Notice that equation (51) is now linear in f tb
i2 , making it easy to

evolve the second order turbulent correction in time. Additionally, we can assume that

the O(δ2
i piR|∇ψ|) contribution to the piece of transport of toroidal angular momentum

given in (44) vanishes, and use directly the expression in (45), of order (B/Bp)δ
3
i piR|∇ψ|.

Equations (50) and (51) are, however, not very flexible because they decouple

f tb
i1 and f tb

i2 . To avoid this, we can add both equations and define Fi = fMi + fnc
i1 ,

f tb
i = f tb

i1 + f tb
i2 and φtb = φtb

1 + φtb
2 to obtain

∂f tb
i

∂t
+
[
ub̂(R) + vM − c

B
∇R〈φtb〉 × b̂

]
· ∇Rf

tb
i

−
〈
C

(`)
ii

{
f tb
i +

Zeφ̃tb

M

(
∂Fi
∂E0

+
1

B

∂Fi
∂µ0

)}〉
=

c

B
(∇R〈φtb〉 × b̂) · ∇RFi +

Ze

M
[ub̂(R) + vM ] · ∇R〈φtb〉∂Fi

∂E
. (52)

Then, to obtain the higher order correction to the ion distribution function in a δf

simulation it is enough to replace fMi by Fi = fMi + fnc
i1 ! The replacement in the

collision operator is probably the most involved, but it is also the least important and

could be ignored in preliminary calculations.

Solving for f tb
i = f tb

i1 + f tb
i2 complicates somewhat the evaluation of the turbulent

transport of toroidal angular momentum. The term (42) is formally of order δ2
i piR|∇ψ|,

much larger than the gyroBohm estimate in (1). In section 3 we argued that the time

average contribution to that order, given by (44), vanishes, and only the higher order

piece (45) is important. However, to evaluate (45) we need to split f tb
i and φtb into their

first and second order pieces. When we use f tb
i to evaluate (42), we must ensure that

the time average is over a period of time that is long enough for (44) to hold. Otherwise,

spurious transport of toroidal angular momentum is introduced. We believe that this

disadvantage of (52) is outweighed by its flexibility.

Importantly, equation (52) allows us to explore the high flow regime. The high

flow limit is characterized by Zeni(∂φ/∂ψ) � ∂pi/∂ψ, ni(∂Ti/∂ψ). Employing this

ordering in equations (20) and (21) (or the particular solution (47)) we find that to

zeroth order fnc
i1 becomes (Mv||V

hf
i|| /Ti)fMi, with V hf

i|| = −(cI/B)(∂φ/∂ψ) the ion parallel

velocity in the high flow limit. We now show that this correction is an adequate

approximation for moderate Mach numbers Mi = Vi/vi ∼ 0.4 in the Bp/B � 1

limit. The derivation of the gyrokinetic equation (10) in [19] is valid if the electric

field satisfies |E| = |∇φ| � Te/eρi. The size of the electric field is estimated from
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Vi|| = −(cI/B)(∂φ/∂ψ), giving E = −∇φ ∼ Vi|||∇ψ|/cR ∼ (Bp/B)Mi||(Te/eρi), with

Mi|| = Vi||/vi the parallel Mach number. Thus, the gyrokinetic equation is valid even for

Mi|| ∼ 1 if Bp/B � 1. The only modification to the gyrokinetic formalism is then that

the zeroth order distribution function is no longer a stationary Maxwellian, but instead

has an average parallel velocity, i.e.,

Fi = ni

(
M

2πTi

)3/2

exp

(
−
M(v − Vi||b̂)2

2Ti

)
'

ni

(
M

2πTi

)3/2

exp

(
−ME

Ti
+
MuVi||
Ti

−
MV 2

i||

2Ti

)
. (53)

In the second equality we have written the Maxwellian as a function of the gyrokinetic

variables. There has been already some work in this high flow limit with Bp/B � 1

[32]. Importantly, the first order term in an expansion in Mi|| in (53) is equal to the

correction obtained by taking the limit Zeni(∂φ/∂ψ) � ∂pi/∂ψ, ni(∂Ti/∂ψ) in fnc
i1 , i.e.,

fnc
i1 ' (Mv||Vi||/Ti)fMi. The next order term, of order M2

i||, is only a 10% correction for

Mi|| = 0.4, and it is irrelevant for the transport of toroidal angular momentum because

it is even in v|| and does not break the symmetry of the parallel velocity. The next

correction odd in v|| is of order M3
i||, clearly negligible for Mi|| = 0.4. Thus, equation

(52) is reasonably good even for moderate parallel Mach numbers in the Bp/B � 1

limit.

Finally, any analysis performed for δf formulations is valid in full f codes. However,

it is important to realize that the collision operator becomes crucial in full f simulations.

It is necessary because it drives the long wavelength piece of the distribution function

towards the solution Fi = fMi+f
nc
i1 . Thus, any full f simulation must run for longer than

the characteristic time for the relaxation to the neoclassical solution, given by 1/(
√
ενii)

[29]. Moreover, it is probably very convenient to initialize the simulation employing Fi
plus some small short wavelength contributions as the initial condition.

4.2. Higher order electrostatic potential

We have already argued in [16] that having a gyrokinetic vorticity equation is desirable.

A vorticity equation shows explicitly the connection between the radial electric field and

the transport of toroidal angular momentum, and unlike the quasineutrality equation,

it can be modified to include higher order terms. In this subsection we construct a

higher order vorticity equation employing a technique similar to the method developed

in [16]. We find that the vorticity equations (77) and (85) of reference [16] become valid

to order (B/Bp)δ
2
i enevi/a by replacing the Maxwellian fMi by the neoclassical solution

Fi = fMi + fnc
i1 and slightly modifying the definition of the polarization density. This

similarity indicates that both vorticity equations have the desired properties, i.e., they

keep the long wavelength toroidal rotation constant for short time scales and could be

extended to higher order in the future.

The rest of the subsection is organized as follows. In section 4.2.1, we write the
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gyrokinetic equation in (10) as a function of the “physical” phase space, i.e., as a function

of the variables r, E0, µ0, ϕ0 and t. In these variables, the real space and the velocity

space are not mixed as they were in the gyrokinetic variables, and we can integrate

in velocity space to obtain moment equations. We write a general equation for the

moment
∫
d3v fiG(r,v, t) in section 4.2.2, and then use it to obtain the conservation of

ion number and ion perpendicular momentum in subsections 4.2.3 and 4.2.4. Finally

combining these equations and the conservation of electron number, we obtain two

equivalent vorticity equations valid up to order (B/Bp)δ
2
i enevi/a in subsection 4.2.5.

4.2.1. Gyrokinetics in “physical” phase space. We write the gyrokinetic equation (10)

as a function of the “physical” phase space variables r, E0, µ0, ϕ0 and t. We loosely

follow the procedure in [16], but we present it in a more convenient form.

The gyrokinetic equation is valid to order (B/Bp)δ
2
i fMivi/a, and the expansions

are performed to that order. We expand fi(R, E, µ, t) around Rg = r + Ω−1
i v × b̂, E0

and µ0 to obtain

fi(R, E, µ, t) = fig + E1
∂Fi
∂E0

+ µ1
∂Fi
∂µ0

+O(δ2
i fMi), (54)

where E1 and µ1 are given in (5) and (6), the function fig ≡ fi(Rg, E0, µ0, t) is

obtained by replacing R, E and µ by Rg, E0 and µ0 in fi, and we have already defined

Fi = fMi + fnc
i1 . Notice that we continue to neglect corrections of order δ2

i fMi as small

compared to f tb
i2 ∼ (B/Bp)δ

2
i fMi. The function fig ≡ fi(Rg, E0, µ0, t) is convenient to

obtain moment equations from the gyrokinetic equation (10). Replacing R, E and µ by

Rg, E0 and µ0 in (10) gives

∂fig
∂t

∣∣∣∣
r,v

+ [ugb̂(Rg) + vMg + vEg] ·
(
∇Rgfig −

Ze

M
∇Rg〈φ〉

∂Fi
∂E0

)
= 〈Cii{fi}〉g. (55)

Here ug, vMg, vEg and 〈Cii{fi}〉g are obtained by replacing R, E and µ by Rg, E0 and

µ0 in u = ±
√

2[E − µB(R)], vM , vE and 〈Cii{fi}〉. Notice that the time derivative

holding Rg, E0, µ0 and ϕ0 fixed is equivalent to the time derivative holding r and v

because the magnetic field is constant in time.

In steady state b̂ · ∇Rgfig ∼ δifMi/a and b̂ · ∇φ ∼ δiTe/ea. This is true even

for the neoclassical piece since b̂ · ∇Rg ∼ 1/qR and fnc
i1 ∼ (B/Bp)δifMi, giving

b̂ · ∇Rgf
nc
i1 ∼ δifMi/a. Using that b̂ · ∇Rgfig ∼ δifMi/a and b̂ · ∇φ ∼ δiTe/ea, we

can show (see appendix B) that equation (55) is to the order of interest

∂fig
∂t

∣∣∣∣
r,v

+ [v||b̂ + vM0 + vE0 + ṽ1] ·
(
∇fig −

Ze

M
∇〈φ〉 ∂Fi

∂E0

)
= 〈Cii{fi}〉g, (56)

with

vM0 =
v2
⊥

2BΩi
b̂ ×∇B +

v2
||

Ωi
b̂ × κ, (57)

vE0 = − c

B
∇〈φ〉 × b̂ (58)
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and

ṽ1 =
v||
Ωi

∇× v⊥. (59)

Here, the gradient ∇ is with respect to r holding E0, µ0, ϕ0 and t fixed.

4.2.2. General gyrokinetic moment equation. The integral over velocity space

{E0, µ0, ϕ0} of equation (56) multiplied by the general function G(r,v, t) will help us

obtain the transport of density and momentum. However, equation (56) must be first

written in conservative form. To do so, we use

∇ ·
(
B

v||
vGK

)
− Ze

M

∂

∂E0

(
B

v||
vGK · ∇〈φ〉

)
= 0, (60)

with

vGK =

(
v|| +

v2
||

Ωi

b̂ · ∇ × b̂

)
b̂ + vM0 + vE0 + ṽ1 =

v||b̂ +
v||
Ωi

∇× (v||b̂) + vE0 + ṽ1. (61)

To obtain the second equality we use ∇ × b̂ = b̂b̂ · ∇ × b̂ + b̂ × κ. With the second

equality of (61) and the fact that ∂〈φ〉/∂E0 = 0, proving (60) becomes trivial.

Equation (60) is useful because equation (56) is to order (B/Bp)δ
2
i vi/a

∂fig
∂t

∣∣∣∣
r,v

+ vGK ·
(
∇fig −

Ze

M
∇〈φ〉 ∂Fi

∂E0

)
= 〈Cii{fi}〉g, (62)

where the contribution of (v2
||/Ωi)b̂b̂ ·∇× b̂ ∼ δivi in (61) is negligible because in steady

state b̂ · ∇fig ∼ δifMi/a and b̂ · ∇〈φ〉 ∼ δiTe/ea. Combining equations (60) and (62)

gives

∂

∂t

∣∣∣∣
r,v

(
B

v||
fig

)
+ ∇ ·

(
B

v||
figvGK

)
− Ze

M

∂

∂E0

(
B

v||
figvGK · ∇〈φ〉

)
=
B

v||
〈Cii{fi}〉g, (63)

where we have employed that ∂fig/∂E0 ' ∂Fi/∂E0.

Equation (63) is in conservative form and can be used to obtain moment equations.

Multiplying by a general function G(r,v, t) and integrating in velocity space gives

∂

∂t

(∫
d3v figG

)
+ ∇ ·

(∫
d3v figvGKG

)
=

∫
d3v figK{G} +

∫
d3v G〈Cii{fi}〉g, (64)

where

K{G} =
∂G

∂t

∣∣∣∣
r,v

+ vGK ·
(
∇G− Ze

M
∇〈φ〉 ∂G

∂E0

)
. (65)
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4.2.3. Gyrokinetic conservation of number. In this section, we find the time derivatives

of the ion and electron densities up to order (B/Bp)δ
2
i nevi/a. In section 4.2.5, we will

use these derivatives to calculate ∂(Zni − ne)/∂t, and by imposing that this derivative

vanishes we find the turbulent, short wavelength piece of the electric field.

The electrons are drift kinetic in our model and the electron number conservation

can be written as
∂ne
∂t

+ ∇ ·
(
neVe||b̂ + neVed −

cne
B

∇φ× b̂
)

= 0, (66)

where the parallel flow is neVe|| =
∫
d3v fev||, and the magnetic drifts give

neVed = −cpe⊥
eB

b̂b̂ · ∇ × b̂ − cpe⊥
eB2

b̂ ×∇B −
cpe||
B

b̂ × κ. (67)

To obtain these expressions, we have kept the electron pressure anisotropy pe|| −
pe⊥ ∼ (B/Bp)δepe ∼ (B/Bp)

√
m/Mδipe because it gives a contribution of order

(B/Bp)δ
2
i nevi/a for

√
m/M ∼ δi.

For the ion number conservation equation, we use equation (64) with G = 1 up to

order (B/Bp)δ
2
i nevi/a (see appendix C) to find

∂

∂t
(ni − nip) + ∇ · (niVig||b̂ + niVigd + niVigE + niṼi + niViC) = 0, (68)

where the ion polarization density is given by

nip =

∫
d3v

(
E1

∂Fi
∂E0

+ µ1
∂Fi
∂µ0

)
'
∫
d3v

Zeφ̃

M

(
∂Fi
∂E0

+
1

B

∂Fi
∂µ0

)
, (69)

the ion gyrokinetic parallel flow is

niVig|| =

∫
d3v figv||, (70)

finite gyroradius effects lead to the flow

niṼi =

∫
d3v figṽ1 =

∫
d3v fig

v||
Ωi

∇× v⊥, (71)

and the E× B and magnetic drifts give the flows

niVigE =

∫
d3v figvE0 = − c

B

∫
d3v fig∇〈φ〉 × b̂. (72)

and

niVigd =

∫
d3v fig

(
v2
||

Ωi
b̂b̂ · ∇ × b̂ + vM0

)
'

cpig⊥
ZeB

b̂b̂ · ∇ × b̂ +
cpig⊥
ZeB2

b̂ ×∇B +
cpig||
ZeB

b̂ × κ (73)

Here, pig⊥ =
∫
d3v figMv2

⊥/2 and pig|| =
∫
d3v figMv2

||. The flow niViC is due to finite

gyroradius effects on ion-ion collisions. It is calculated in appendix D to be

niViC = −γii
Ωi

∫
d3v

(
〈Γii〉 × b̂ − 1

v2
⊥
〈Γii · v⊥〉v × b̂

)
, (74)

with γii = 2πZ4e4 lnΛ/M2 and

Γii =

∫
d3v′ ∇g∇gg · (f ′

i∇vfi − fi∇v′f
′
i). (75)

Here, fi = fi(v), f ′
i = fi(v

′), g = v − v′, g = |g| and ∇g∇gg = (g2
↔
I −gg)/g3.
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4.2.4. Gyrokinetic conservation of momentum. Employing G = Mv⊥ in equation (64)

and using appendix E, we find that the conservation of ion perpendicular momentum

is, up to order (B/Bp)δ
2
i pi/a,

∂

∂t
(niMVig⊥) + ∇· ↔

πig×= Fnc
iB⊥ + Ftb

iB⊥ + FiC⊥, (76)

where niVig⊥ =
∫
d3v figv⊥ is the perpendicular gyrocenter flow; the tensor

↔
πig× gives

the transport of perpendicular momentum due to the parallel velocity and the drifts,

↔
πig×=

∫
d3v fig(v||b̂ + vM0 + vE0 + ṽ1)Mv⊥; (77)

the vectors Fnc
iB⊥ and Ftb

iB⊥ account for the change in perpendicular velocity as the

particle drifts in a spatially varying magnetic field,

Fnc
iB⊥ = M

∫
d3v Fiṽ1 · ∇v⊥ (78)

and

Ftb
iB⊥ = M

∫
d3v fig(v||b̂ + vE0) · ∇v⊥; (79)

and the force FiC⊥ is due to finite gyroradius effects on the ion-ion collisions. It is

calculated in appendix D and is given by

FiC⊥ = −Mγii

∫
d3v

1

v2
⊥
v⊥〈Γii · v⊥〉

+∇ ·
{
Mγii
Ωi

∫
d3v

[
〈Γii〉 × b̂ − 1

v2
⊥

(v × b̂)〈Γii · v⊥〉
]
v⊥

}
. (80)

4.2.5. Gyrokinetic vorticity equations. Finally, we use equations (66), (68) and (76) to

obtain two equivalent vorticity equations. These vorticity equations are the extension

to order (B/Bp)δ
2
i enevi/a of the equations found in [16].

The first vorticity equation is obtained by subtracting (66) from Z times (68) to

find

∂

∂t
(Zenip) = ∇ · (Jg||b̂ + Jgd + J̃p + ZeniṼi + ZeniViC) = 0, (81)

with nip the polarization density given in (69), niṼi the finite gyroradius correction in

(71), and niViC the collisional drift from (74). The parallel gyrocenter current is

Jg|| = ZeniVig|| − eneVe|| = Ze

∫
d3v figv|| − e

∫
d3v fev||; (82)

the current due to the magnetic drifts is

Jgd = ZeniVigd − eneVed =
cpg⊥
B

b̂b̂ · ∇ × b̂ +
cpg⊥
B2

b̂ ×∇B +
cpg||
B

b̂ × κ; (83)

with pg⊥ = pig⊥ + pe⊥ and pg|| = pig|| + pe||; and finally, there is a polarization current

density due to the difference between the E × B drifts of ions and electrons given by

J̃p =
Zec

B

∫
d3v

[
fi(∇φ× b̂) − fig(∇〈φ〉 × b̂)

]
. (84)
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The second vorticity equation can be found by adding ∇·[(c/B)b̂×(equation (76))]

to equation (81). Since equation (76) is zero for any solution of (10), the new vorticity

equation is equivalent to (81). Adding ∇ · [(c/B)b̂ × (equation (76))] to equation (81)

gives

∂$G

∂t
= ∇ ·

[
Jg||b̂ + Jgd + J̃φ +

c

B
b̂ × (∇· ↔

πiG) + ZeniViC − c

B
b̂ × FiC

]
, (85)

where we have neglected (c/B)b̂×Fnc
iB⊥, and combined J̃p, ZeniṼi, (c/B)b̂× (∇· ↔

πig×)

and (c/B)b̂×Ftb
iB⊥ to obtain J̃φ, (c/B)b̂×(∇· ↔

πiG) and a term with vanishing divergence.

The details of the derivation are in appendix F. We have defined a new gyrokinetic

vorticity

$G = Zenip + ∇ ·
(
Ze

Ωi
niVig × b̂

)
, (86)

a new polarization current

J̃φ = J̃p −
Ze

Ωi

b̂ ×
(∫

d3v FivE0 · ∇v⊥

)
(87)

and a new viscosity

↔
πiG=

↔
πig× +M

∫
d3v figv⊥v||b̂ =

M

∫
d3v fig[v||(b̂v⊥ + v⊥b̂) + (vM0 + vE0 + ṽ1)v⊥]. (88)

Notice that the vorticity equations (81) and (85) are very similar to their lower

order versions, equations (77) and (85) of reference [16]. The differences are that fMi

has been replaced by Fi = fMi+fnc
i1 , and that the polarization density, nip, is now given

by the higher order expression (69), and not by −
∫
d3v (Zeφ̃/Ti)fMi. The similarities

between the new vorticity equations (81) and (85), and the lower order equations (77)

and (85) of reference [16] make obvious that the same properties hold for both of them.

Moreover, these equations are equivalent to each other to order δienevi/a. In particular,

it is possible to prove, as was done in [16], that the flux surface averages of both (81)

and (85) give, at long wavelengths, ∂〈RniMVi · ζ̂〉ψ/∂t ∼ δik⊥ρipi, and consequently the

time derivative of the toroidal rotation becomes smaller as we go to longer wavelengths.

Thus, for the typical short time scales of turbulence, equations (81) and (85) keep the

global toroidal rotation constant. The physical evolution of the long wavelength toroidal

rotation can only be obtained from (26).

Finally, equation (85) is a perfect candidate to be extended to even higher order to

retain the long wavelength terms of (37). It is written in a form that makes the relation

with the transport of momentum more transparent than the gyrokinetic quasineutrality

or the vorticity equation (81). Thus, one could employ the transport of toroidal angular

momentum given in (37), accurate enough to calculate the radial electric field, substitute

it into the exact vorticity equation (22) of reference [16], and compare the result with

the long wavelength limit of (85). Then, the differences between both equations are the

higher order terms that equation (85) is missing to obtain the long wavelength radial

electric field. As a result, it is possible that we could correct for these differences.
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5. Discussion

We have obtained expression (37) for the transport of toroidal angular momentum. This

expression is valid up to order (B/Bp)δ
3
i piR|∇ψ|, and it only requires the ion distribution

function and the non-axisymmetric piece of the electric field up to order (B/Bp)δ
2
i fMi

and (B/Bp)δ
2
i Te/ea, respectively. Equation (37) is then enough to self-consistently

calculate the toroidal rotation profile in the low flow ordering if the turbulent, short

wavelength piece of the ion distribution function is obtained from the ion gyrokinetic

Fokker-Planck equation (10) (or its δf version (52)), and the turbulent, short wavelength

piece of the electrostatic potential is calculated using either one of the vorticity equations

(81) and (85) (in flux tube δf simulations, it is also acceptable to use the gyrokinetic

quasineutrality equation to solve for the short wavelength pieces of the potential). Once

the toroidal rotation profile is obtained, the long wavelength, radial electric field is solved

from the neoclassical relation (22) that we have shown to hold at long wavelengths in

our ordering.

The other options to calculate the long wavelength, radial electric field are direct

integration of the lower order expression for the toroidal angular momentum (1) or

solving directly for the radial electric field using quasineutrality. Integrating (1) requires

a third order ion distribution function. On the other hand, using the quasineutrality

condition to obtain the radial electric field is equivalent to forcing the radial current to

vanish. Multiplying equation (25) by Rζ̂ and flux surface averaging, we find that the

radial current is

〈J · ∇ψ〉ψ = c

[
∂

∂t
〈RniMVi · ζ̂〉ψ +

1

V ′
∂

∂ψ
(V ′Π)

]
. (89)

(Notice that we have used this equation and 〈J ·∇ψ〉ψ = 0 to obtain (26)). This relation

implies that for transport time scales, the average radial current density 〈J ·∇ψ〉ψ/|∇ψ|
is identically zero up to order c(∂Π/∂ψ)/|∇ψ| ∼ (B/Bp)

2δ4
i enevi. Then, the current

density must be obtained self-consistently to that order, and we would need a gyrokinetic

equation good to fourth order! Using equations (26) and (37) to obtain the toroidal

rotation and (22) to solve for the radial electric field is clearly the most convenient

method because it requires the lowest order gyrokinetic equation.

We have exploited the extra expansion parameter Bp/B � 1 because by doing so

the lowest order gyrokinetic equation (10) is able to provide the ion distribution function

up to order (B/Bp)δ
2
i fMi. In subsection 4.1 we explain how current δf codes should be

modified to achieve the higher accuracy, and we propose a simple δf equation (52) in

which the long wavelength, background Maxwellian fMi is replaced by the distribution

function Fi = fMi + fnc
i1 that contains the first order neoclassical correction. This

modification should be relatively simple to implement, and in a first approach to the

problem the simplified neoclassical solution in (47) is probably enough. Importantly,

equation (52) allows us to explore the high flow limit even for Mach numbers around

0.4.

Finally, to determine the non-axisymmetric pieces of the potential we need to
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solve for it from either a vorticity equation or the quasineutrality condition. The

quasineutrality condition works for local, flux tube codes in which the problematic

long wavelength components of the potential are intentionally ignored. In global

simulation, however, the long wavelength components of the potential are included in the

simulation. In [16, 19] we argued that the long wavelength radial electric field cannot be

determined self-consistently from the lower order quasineutrality equations typically

used in gyrokinetic simulations. A promising alternative is a gyrokinetic vorticity

equation. We presented two of them in [16] and we proved that they have very desirable

properties, namely they keep the toroidal rotation constant at short time scales and they

could be extended to higher order. Here, we have extended both gyrokinetic vorticity

equations to order (B/Bp)δ
2
i enevi/a to obtain the short wavelength, turbulent potential

up to order (B/Bp)δ
2
i Te/e self-consistently. The new higher order vorticity equations

are given in (81) and (85). They are obviously equivalent to the equations found in

[16] to order δienevi/a and they have the same properties. Both of these vorticity

equations can be used in global simulations for short time scales. The transport time

scale evolution of the radial electric field must be obtained from the transport of toroidal

angular momentum given by (26) and (37). It might be possible to extend equation (85)

to even higher order to obtain the physical long wavelength radial electric field.
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Appendix A. Collisional contribution (39) in up-down symmetric tokamaks

The pieces of order (B/Bp)(qRνii/vi)δ
2
i piR|∇ψ| and (qRνii/vi)δ

2
i piR|∇ψ| of integral

(39) vanish for up-down symmetric tokamaks. To lowest order, the long wavelength,

axisymmetric piece of the distribution function is fi ' fMi + fnc
i1 + (〈fi〉T − 〈f i〉T), with

fnc
i1 ∼ (B/Bp)δifMi and 〈fi〉T − 〈f i〉T ∼ δifMi given in (36). The Maxwellian piece

fMi does not contribute because makes the collision operator vanish. The gyrophase

dependent piece 〈fi〉T − 〈f i〉T also vanishes because the integrand of (39) becomes a

summation of terms that are either odd in v|| or v⊥. Employing the function hnc
i1 ,

related to the first order neoclassical piece fnc
i1 by equation (21), we find that the

difference fnc
i1 − hnc

i1 vanishes because some of the terms make the collision operator

zero and others are odd in v||. Thus, equation (39) becomes

−M
2c

2Ze

〈∫
d3v Cii{fi}R2(v · ζ̂)2

〉

ψ

=
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− M

2BΩi

〈∫
d3v C

(`)
ii {hnc

i1}
(
|∇ψ|2v

2
⊥
2

+ I2v2
||

)〉

ψ

, (A.1)

where we have used the gyroaverage vv = (v2
⊥/2)(

↔
I −b̂b̂) + v2

||b̂b̂.

Finally, to prove that integral (A.1) vanishes, we employ the neoclassical drift

kinetic equation (20) for hnc
i1 . In equation (20), replacing θ by −θ, v|| by −v|| and hnc

i1 by

−hnc
i1 does not change the equation since b̂ ·∇θ does not change sign. Thus, hnc

i1 changes

sign if both θ and v|| do. Due to this property, the collisional integral in (A.1) vanishes.

In the contributions to this integral, the piece of the distribution function with positive

v|| in the upper half (θ > 0) of the tokamak cancels the piece of the distribution function

with negative v|| in the lower half (θ < 0). Similarly, the piece with negative v|| in the

upper half cancels the piece with positive v|| in the lower half.

Appendix B. Gyrokinetic equation in “physical” phase space

In this appendix we explain how to obtain equation (56) from equation (55). To do so,

we neglect terms that are of order δ2
i fMivi/a in equation (56) because it is enough to

obtain the equation up to order (B/Bp)δ
2
i fMivi/a.

In equation (55), the magnetic and E × B drifts vMg and vEg are to lowest order

vMg = vM0 + O(δ2
i vi) and vEg = vE0 + O(δ2

i vi), with vM0 and vE0 given in (57) and

(58). Since any term of order δ2
i fMivi/a is negligible, the drifts can be approximated

by vMg ' vM0 and vEg ' vE0. Moreover, considering that in steady state the

parallel gradients of fig and 〈φ〉 must be of order δifMi/a and δiTe/ea, the difference

ug − v|| = O(δivi) is also neglected, giving

∂fig
∂t

∣∣∣∣
r,v

+ [v||b̂(Rg) + vM0 + vE0] · ∇Rgr ·
(
∇fig −

Ze

M
∇〈φ〉 ∂Fi

∂E0

)
= 〈Cii{fi}〉g, (B.1)

where we have also used that ∇Rgfig = ∇Rgr · ∇fig and ∇Rg〈φ〉 = ∇Rgr · ∇〈φ〉.
Employing that ∇Rgr =

↔
I −∇Rg(Ω

−1
i v × b̂) =

↔
I −∇(Ω−1

i v × b̂) +O(δ2
i ), we can write

v||b̂(Rg) · ∇Rgr ' v||b̂ +
v||
Ωi

(v × b̂) · ∇b̂ − v||b̂ · ∇
(

1

Ωi

v × b̂

)
=

[
v|| −

v||
Ωi

∇ · (v × b̂)

]
b̂ +

v||
Ωi

∇× v⊥, (B.2)

where we have neglected terms of order δ2
i vi and we have used (v× b̂) · ∇b̂ = ∇ · [(v ×

b̂)b̂]−[∇·(v×b̂)]b̂, b̂·∇(Ω−1
i v×b̂) = Ω−1

i ∇·[b̂(v×b̂)] and ∇·[(v×b̂)b̂]−∇·[b̂(v×b̂)] =

∇× [b̂× (v× b̂)] = ∇×v⊥. Substituting relation (B.2) into (B.1) and neglecting terms

of order δ2
i fMivi/a finally gives (56).

Appendix C. Gyrokinetic conservation of ion number

In this appendix, we show how to obtain (68) from (64) with G = 1. The integral∫
d3v 〈Cii{fi}〉g gives −∇ · (niViC), as show in appendix D. The rest of the terms are

almost trivial.
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We have to comment on two terms in which we have neglected terms of order

δ2
i nevi/a as small compared to terms of order (B/Bp)δ

2
i nevi/a. First we treat the ion

polarization density, given by

nip = ni −
∫
d3v fig =

∫
d3v

(
E1

∂Fi
∂E0

+ µ1
∂Fi
∂µ0

)
, (C.1)

where we have employed equation (54). In equation (C.1), several terms in µ1 from (6)

gyroaverage to zero, giving

nip '
∫
d3v

Zeφ̃

M

(
∂Fi
∂E0

+
1

B

∂Fi
∂µ0

)
−
∫
d3v

v||v
2
⊥

2BΩi
b̂ · ∇ × b̂

∂Fi
∂µ0

. (C.2)

The last term in (C.2) is also small. The integral over the neoclassical piece fnc
i1 ∼

(B/Bp)δifMi would seem to be large enough to contribute, but nip only enters through

its time derivative, and the time derivative can only be of order ∂fnc
i1 /∂t ∼ vM ·∇fMi ∼

δifMivi/a, making the time derivative of the last term in (C.2) of order δ2
i nevi/a and

hence negligible.

The other term that needs some explanation is the parallel flow
∫
d3v fig(v

2
||/Ωi)b̂b̂ ·

∇ × b̂ in ∇ · (
∫
d3v figvGK), with vGK from (61). We find that the divergence of this

parallel flow is

∇ ·

(∫
d3v fig

v2
||

Ωi
b̂b̂ · ∇ × b̂

)
' ∇ ·

(∫
d3v fMi

v2
||

Ωi
b̂b̂ · ∇ × b̂

)
, (C.3)

where we have neglected the integrals over fnc
i1 and f tb

i1 because they are of order δ2
i nevi/a.

For the integral over fnc
i1 ∼ (B/Bp)δifMi it is important to realize that b̂ · ∇ ∼ 1/qR ∼

(Bp/B)(1/a), giving ∇ · [
∫
d3v fnc

i1 (v2
||/Ωi)b̂b̂ · ∇ × b̂] ∼ δ2

i nevi/a. Since the integral in

(C.3) is over the stationary Maxwellian fMi we have that pi|| = pi = pi⊥ ' pig⊥. We

choose to write it as pig⊥ so that it is similar to the more familiar form of the parallel

drift [16].

Appendix D. Gyrokinetic collision operator

In this appendix we extend the work on the gyrokinetic collision operator presented in

appendix D of [16]. The gyroaveraged collision operator is now calculated up to order

(B/Bp)(qRνii/vi)δ
2
i fMivi/a in the Bp/B � 1 limit.

The ion-ion collision operator is

Cii{fi} = γii∇v · Γii, (D.1)

where γii = 2πZ4e4 ln Λ/M2 and Γii is given by (75). In appendix D of [16] we used the

usual expression for the divergence in a new reference system {yj},

∇x · Γ =
1

Jy

∑

j

∂

∂yj
(JyΓ · ∇xyj) =

1

Jy

∑

j

∂

∂yj
(JyΓyj

), (D.2)
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with ∇x the gradient in the reference system {xi}, Jy = ∂(xi)/∂(yj) the Jacobian of

the transformation between {xi} and {yj}, and Γyj
= Γ · ∇xyj. Employing (D.2), we

showed that the gyroaveraged of Cii{fi} holding R, E, µ and t fixed is

〈Cii{fi}〉 =
γii
J

[
∂

∂E
(J〈Γii · ∇vE〉) +

∂

∂µ
(J〈Γii · ∇vµ〉) + ∇R · (J〈Γii · ∇vR〉)

]
, (D.3)

where J = ∂(r,v)/∂(R, E, µ, ϕ) is the Jacobian of the gyrokinetic transformation. To

write (D.3) in “physical” phase space, we use rule (D.2) to transform divergences from

one reference system {yj} to another {zk}, given by

1

Jy

∑

j

∂

∂yj

(
JyΓyj

)
=

1

Jz

∑

k

∂

∂zk

(
Jz
∑

j

Γyj

∂zk
∂yj

)
, (D.4)

with Jz = ∂(xi)/∂(zk) the Jacobian of the transformation between {xi} and {zk}. Using

this relation, equation (D.3) becomes

〈Cii{fi}〉 = γii
v||
B

[
∂

∂E0

(
B

v||
ΓE0

)
+

∂

∂µ0

(
B

v||
Γµ0

)
+

∂

∂ϕ0

(
B

v||
Γϕ0

)
+∇·

(
B

v||
Γr

)]
.(D.5)

where B/v|| = ∂(v)/∂(E0, µ0, ϕ0),

ΓE0 = 〈Γii · ∇vE〉
∂E0

∂E
+ 〈Γii · ∇vµ〉

∂E0

∂µ
+ 〈Γii · ∇vR〉 · ∇RE0, (D.6)

Γµ0 = 〈Γii · ∇vE〉
∂µ0

∂E
+ 〈Γii · ∇vµ〉

∂µ0

∂µ
+ 〈Γii · ∇vR〉 · ∇Rµ0, (D.7)

Γϕ0 = 〈Γii · ∇vE〉
∂ϕ0

∂E
+ 〈Γii · ∇vµ〉

∂ϕ0

∂µ
+ 〈Γii · ∇vR〉 · ∇Rϕ0. (D.8)

and

Γr = 〈Γii · ∇vE〉
∂r

∂E
+ 〈Γii · ∇vµ〉

∂r

∂µ
+ 〈Γii · ∇vR〉 · ∇Rr. (D.9)

To zeroth order, we can use E ' E0, µ ' µ0, ϕ ' ϕ0 and R ' r + Ω−1
i v × b̂ to find

that the functions (D.6), (D.7), (D.8) and (D.9) are

ΓE0 ' 〈Γii · v〉, (D.10)

Γµ0 '
1

B
〈Γii · v⊥〉, (D.11)

Γϕ0 ' 0. (D.12)

and

Γr ' − 1

v2
⊥Ωi

(v × b̂)〈Γii · v⊥〉 +
1

Ωi

〈Γii〉 × b̂, (D.13)

where to obtain (D.13) we have used ∇vR ' ∇vR1 = Ω−1
i

↔
I ×b̂ and ∂r/∂µ '

−∂R1/∂µ0 = −(2µ0Ωi)
−1v × b̂. Notice that we have kept the higher order correction

R1 only in (D.13) because the large perpendicular gradients make this small correction

important.
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The zeroth order functions (D.10), (D.11), (D.12) and (D.13) are of the order of

the largest term in (D.5), given by 〈C(`)
ii {fnc

i1 }〉 ∼ (qRνii/vi)δifMivi/a. The next order

corrections to this term have two origins. On the one hand, we must keep higher order

corrections to fi in Γii in (75), finding linear and nonlinear terms like 〈C(`)
ii {fnc

i2 }〉 or

〈C(n`)
ii {fnc

i1 , f
nc
i1 }〉, both of order (B/Bp)(qRνii/vi)δ

2
i fMivi/a. On the other hand, we must

consider the higher order corrections to the gyrokinetic variables R = r+Ω−1
i v×b̂+ . . .,

E = E0 + . . ., µ = µ0 + . . . and ϕ = ϕ0 + . . .. According to (D.6), (D.7), (D.8) and

(D.9), these corrections give contributions of order (qRνii/vi)δ
2
i fMivi/a, and hence, are

negligible for us. Then, we can use the lower order expressions (D.10), (D.11), (D.12)

and (D.13), but inside Γii we must keep the higher order corrections to the distribution

function.

In the main text there are two integrals of the gyroaveraged collision

operator, namely ∇ · (niViC) = −
∫
d3v 〈Cii{fi}〉g, given in (74), and FiC⊥ =

M
∫
d3v v⊥〈Cii{fi}〉g, given in (80). To obtain the final expressions in equations (74)

and (80), we use (D.5) and the lower order results (D.10), (D.11), (D.12) and (D.13). In

addition, in equation (80) we employ ∂v⊥/∂E0 = 0 and ∂v⊥/∂µ0 = (B/v2
⊥)v⊥, and we

neglect Mγii
∫
d3vΓr · ∇v⊥ ∼ (qRνii/vi)δ

2
i pi/a� (B/Bp)(qRνii/vi)δ

2
i pi/a. Notice that

in ∇·(niViC) = −
∫
d3v 〈Cii{fi}〉g and FiC⊥ = M

∫
d3v v⊥〈Cii{fi}〉g, we have neglected

the difference between 〈Cii{fi}〉 and 〈Cii{fi}〉g, where the subindex g indicates that the

gyrokinetic variables R, E and µ have been replaced by Rg, E0 and µ0. Since we have

shown that to order (B/Bp)(qRνii/vi)δ
2
i fMivi/a the difference due to replacing R, E

and µ by Rg, E0 and µ0 is negligible, we can safely use 〈Cii{fi}〉g ' 〈Cii{fi}〉.

Appendix E. Gyrokinetic conservation of ion momentum

In this appendix we show how to obtain equation (76) from (64) with G = Mv⊥.

We only keep terms up to order (B/Bp)δ
2
i pi/a. The term FiC⊥ is obtained from

M
∫
d3v v⊥〈Cii{fi}〉g as show in appendix D. Equation (64) becomes

∂

∂t
(niMVig⊥) + ∇· ↔

πig×= M

∫
d3v fig(v||b̂ + vM0 + vE0 + ṽ1) · ∇v⊥, (E.1)

where the integrals ∇·[M
∫
d3v fig(v

2
||/Ωi)(b̂·∇×b̂)b̂v⊥] and M

∫
d3v fig(v

2
||/Ωi)(b̂ ·∇×

b̂)b̂ · ∇v⊥ have been neglected because the integrals over the gyrophase independent

piece Fi = fMi + fnc
i1 vanish, leaving only the contribution of f tb

i1 , of order δ2
i pi/a

and hence negligible. To obtain (76) from (E.1), we use the definitions Ftb
iB⊥ =

M
∫
d3v fig(v||b̂ + vE0) · ∇v⊥ and Fnc

iB⊥ = M
∫
d3v fig(vM0 + ṽ1) · ∇v⊥. The integral

Fnc
iB⊥ = M

∫
d3v fig(vM0+ṽ1)·∇v⊥ gives the result in (78) because only the neoclassical

piece of the distribution function fnc
i1 is large enough to be important. Since fnc

i1

is gyrophase independent to the requisite order, the integral in velocity space of

FivM0 · ∇v⊥ vanishes and Fnc
iB⊥ 'M

∫
d3v Fiṽ1 · ∇v⊥.
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Appendix F. Gyrokinetic vorticity equation (85)

In this appendix we show how to obtain (85) by adding ∇ · [(c/B)b̂ × (equation (76))]

to equation (81). This operation gives

∂$G

∂t
= ∇ ·

[
Jg||b̂ + Jgd + J̃p + ZeniṼi +

c

B
b̂ × (∇· ↔

πig×) − c

B
b̂ × Fnc

iB⊥

− c

B
b̂ × Ftb

iB⊥ + ZeniViC − c

B
b̂ × FiC

]
, (F.1)

In this equation we will only keep terms up to order (B/Bp)δ
2
i enevi/a. The term

∇ · [(c/B)b̂×Fnc
iB⊥] is of order (B/Bp)δ

3
i enevi/a because the function Fnc

iB⊥ from (78) is

slowly varying in space and its gradient is of order 1/a.

To simplify equation (F.1) we employ the same procedure as in appendix F of

[16]. We combine J̃p, ZeniṼi, (c/B)b̂ × (∇· ↔
πig×) and (c/B)b̂ × Ftb

iB⊥ to obtain J̃φ,

(c/B)b̂ × (∇· ↔
πiG) and a term with vanishing divergence. First, we rewrite in the

perpendicular component of ZeniṼi in a convenient form. Using that (∇× v⊥) × b̂ =

b̂ ·∇v⊥−∇v⊥ · b̂ and ∇v⊥ · b̂ = −∇b̂ ·v⊥ = −v⊥ ·∇b̂−v⊥×(∇× b̂), the perpendicular

component of ṽ1 from (59) is written as

ṽ1⊥ =
v||
Ωi

b̂ × [(∇× v⊥) × b̂] =
v||
Ωi

b̂ × (b̂ · ∇v⊥ + v⊥ · ∇b̂) +
v||
Ωi

v⊥(b̂ · ∇ × b̂), (F.2)

where we have used b̂ × [v⊥ × (∇× b̂)] = v⊥(b̂ · ∇ × b̂). Integrating in velocity space

gives the perpendicular component of ZeniṼi,

ZeniṼi⊥ =
Mc

B
b̂ ×

(∫
d3v figv||b̂ · ∇v⊥ +

∫
d3v figv||v⊥ · ∇b̂

)

+
Mc

B
b̂ · ∇ × b̂

∫
d3v figv||v⊥. (F.3)

One of the terms in this expression cancels one of the terms in (c/B)b̂ × Ftb
iB⊥, with

Ftb
iB⊥ given by (79). Then, we obtain

ZeniṼi⊥ − c

B
b̂ × Ftb

iB⊥ =
Mc

B
b̂ ×

(∫
d3v figv||v⊥ · ∇b̂ −

∫
d3v FivE0 · ∇v⊥

)

+
Mc

B
b̂ · ∇ × b̂

∫
d3v figv||v⊥. (F.4)

The integral (Mc/B)b̂ × (
∫
d3v FivE0 · ∇v⊥) is included in the definition of J̃φ, given

by (87). Moreover, we can write (Mc/B)b̂ × (
∫
d3v figv||v⊥ · ∇b̂) as (c/B)b̂ × ∇ ·

(M
∫
d3v figv⊥v||b̂), where M

∫
d3v figv⊥v||b̂ is part of the definition of

↔
πiG in (88).

Considering this, we add J̃p and (c/B)b̂ × (∇· ↔
πig×) to equation (F.4) to obtain

ZeniṼi⊥ + J̃p +
c

B
b̂ ×

(
∇· ↔
πig× −Ftb

iB⊥

)
= J̃φ +

c

B
b̂ × (∇· ↔

πiG)

+
Mc

B
b̂ · ∇ × b̂

∫
d3v figv||v⊥. (F.5)

Substituting this expression into (F.1) we recover (85). It is important to realize

that the divergence of the flows ZeniṼi||b̂ and (Mc/B)b̂ · ∇ × b̂
∫
d3v figv||v⊥ vanish
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to the order of interest. The divergence of ZeniṼi||b̂ is negligible because the

integral over the gyrophase independent piece Fi = fMi + fnc
i1 vanishes and only f tb

i1

contributes, giving ∇ · (ZeniṼi||b̂) ∼ δ2
i enevi/a � (B/Bp)δ

2
i enevi/a. The divergence of

(Mc/B)b̂ · ∇ × b̂
∫
d3v figv||v⊥ is given by

∇ ·
(
Mc

B
b̂ · ∇ × b̂

∫
d3v figv||v⊥

)
=
Mc

B
b̂ · ∇ × b̂

∫
d3v figv||v⊥ · ∇fig

+
Mc

B

∫
d3v figv||∇ · [v⊥(b̂ · ∇ × b̂)]. (F.6)

The only contribution that could give a term of order (B/Bp)δ
2
i enevi/a in the second

term of (F.6) is the integral over the neoclassical piece fnc
i1 , but this integral vanishes

because fnc
i1 is gyrophase independent. The first integral in (F.6) vanishes because the

only gyrophase dependence of fig is through Rg, giving v⊥ · ∇fig = v⊥ · ∇Rgfig +

O(δ2
i fMi) = Ωi(∂fig/∂ϕ0) + O(δ2

i fMi). Using this form for v⊥ · ∇fig, it is obvious that

the first term in (F.6) vanishes to the order of interest due to the integration over

gyrophase.
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