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Turbulized Rotating Chemical Waves 
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From the numerical study of a simple nonlinear kinetics with scalar diffusion, it is shown 
that rotating waves easily transform to turbulence. The turbulence here is triggered by a single 
phaseless point, and spreads over the entire system through the endless production of phaseless 
points in pairs. A possible turbulence· inducing mechanism is interpreted. 

Rotating spiral waves are an intriguing 
mode of spatio-temporal organization in non

linear dissipative media with oscillatory or 
excitable local kinetics. The existence of 
such waves has most clearly been demon
strated ') for the Belousov-Zhabotinskii reac
tion, where even the geometrical structure of 
their three-dimensional version, viz. scroll 
waves, has been analyzed in detaiL 2

) Similar 
wave phenomena are also met in life pro
cesses.") For instance, the circus movement 
of electrical activities was shown to occur in 
rabbit heart tissue:) and this kind of circulat
ing activity has long been speculated to have 
a connection with some forms of high fre
quency irregularity of heart beat. 5) Another 
well-studied biological system associated 
with the spiral wave pattern is the aggrega
tion of slime mold amoebae. 6

) 

Rotating spiral waves have a topologi
cally interesting feature. The small pivotal 
region round which the waves circulate con
tains a phaseless point, and if one makes a 
tour along a closed path encircling this core 
region, the net phase increment experienced 
is ± 2JL In this respect, such waves have 
much in common with the vortex excitations 
in two-component (or complex) fields such 
as superfiuid helium and XY spin systems. 

One of the most important questions 
about spiral wave patterns is their stability. 
As far as the experiments to date are con
cerned, they seem to rotate almost steadily 

round a spatially fixed core, whereas closer 
observations revealed that in some cases the 
core position is not really fixed but seems to 
rotate rather irregularly. 1) The analog-com
puter simulation by Gul'ko and Petrov,7l and 
the digital-computer simulation by Rossler 
and Kahlert8

) seem to support the idea that 
such core meandering actually occurs espec
ially for the kinetics with slow manifolds. 
There exists a view that the core meandering 
may be a form of chemical turbulence. 

In the present short communication, we 
report some results of our numerical simula
tion, together with their qualitative interpre
tation, showing that the transition of spiral 
wave patterns to turbulence easily occurs and 
that the turbulent motion there is much more 
violent than the mere core meandering. All 
these conclusions are, however, restricted to 
the media with smoothly oscillating local 
kinetics. Although the possibility of "diffu
sion-induced chemical turbulence" has been 
pointed out for a number of cases:) the pre
sent type of chemical turbulence differs from 
the preceding types in the respect that the 
diffusion need not be non-scalar. 

The kinetic model we will adopt is a simple 
two-component system known as the A-W 
system 'O) including scalar diffusion. Let the 

field amplitudes be X and Y. In terms of the 
complex field W defined by W = X + iY, the 
model equation is conveniently expressed as 
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3tW=(,.1(R)+iw(R»W+ 17 2 W, (1) 

where ,1 and ware some functions of the 
amplitude R == I W I. Of particular impor
tance is the case: ,.1(R)=c-aR2

, w(R)=wo 

-bR 2 (10, a>O), or 

3tW=(c+iwo)W 

In fact every n-component reaction-diffusion 
system with scalar diffusion is known to 
reduce to system (2) whenever each local 
system (viz. the system without diffusion) lies 
near and above the threshold of the super
critical Hopf bifurcation. lll By suitably re
scaling the field amplitude Wand the space
time coordinates, Eq. (2) takes an even sim
pler form: 

3tW=W-(l+i,8)IWI2 w+ 17 2 W, (3) 

where,8= a-lb. We have put Wo=O (or elim
inated Wo from Eq. (2) by the transformation 
W ~ W exp( iwo t). Except that ,8 is non
vanishing, Eq. (3) is identical to the time
dependent Ginzburg-Landau equation. The 
existence of the ,8-term, which is crucial to 
the discussion below, retains a characteristic 
of nonequilibrium open systems even after a 
drastic contraction of the dynamical equa
tions as the above has been made. Taking 
the complex conjugate of Eq. (3) and chang
ing the sign before ,8 together keep the equa
tion of motion invariant. Thus the only 
essential parameter is the absolute value of ,8. 
One should also note that 1,81 becomes in
definitely large if the system approaches the 
borderline between supercritical and sub
critical bifurcations across which the param
eter a changes sign. A number of kinetic 
models including the FitzHugh-Nagumo 
equation have a parameter region of this 
kind. The fact that assuming 1,81 to be very 
large is not necessarily unphysical turns out 
important in connection with the discussion 

later. 

We will now be interested in the solution of 
Eq. (3) for a two-dimensional medium. It 
may easily be checked that the homogeneous
ly oscillating state, W = exp( - i,8t), is linearly 
stable irrespective of the value of,8. The 
stability of rotating wave solutions, on the 
other hand, seems to depend crucially on ,8, 
although no analytic proofs for this exist. 

A rotating wave may be initiated from the 
condition that the "concentration isobars" X 
= a and Y = a intersect deeply enough. Once a 
well isolated phaseless point (the point at 
which X= Y=O) has been established in this 
way, the system becomes unable to come 
back to the state of homogeneous oscillation. 
Instead, a rotating wave having the phaseless 
point at its end appears_ For relatively 
small 1,81, the wave then develops into a stead
ily rotating spiral pattern such as illustrated 
in Fig. 1. If the boundary effects are negli
gible, such a steady solution is expected to 
have a perfectly symmetric form 

W( r, B)=R( r)exp[i(Qt-B+S( r))] 

(4) 

in polar coordinates ( r, B). It is known that 
the quantities Rand S have the following 
properties: 12) 

Fig. 1. Steadily and stably rotating spiral wave 
pattern. 1'/=1.0. System size: 35.0x35.0. 
Mesh size :0.35. Zero-flux boundary condition 
is assumed. The shaded part shows the 
region of positive X. The other two dotted 
contour lines indicate Y = O. 
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Fig. 2. Field amplitude R of steadily rotating 
waves as a function of the distance from the 
phaseless center. (3 = 0.5, 1.0 and 1.5 for cur
ves with the largest, middle and smallest am
plitudes, respectively. 

R(O)=O, 

R( r)~const< 1, 

dS( r)/dr~const 
} as r~CO . (5) 

Figure 2 shows numerically calculated R( r) 

for different values of /3, for each of which the 
steady solution (4) is stable. Note that the 
curve R( r) is rather insensitive of /3. 

We have found numerically that the solu
tion of the form (4) becomes unstable for 
larger \/3\. The consequence of this in
stability is turbulence as far as the case of 
relatively large \/3\ is concerned. Detailed 
analysis on the onset of turbulence has not 
been carried out yet, and the following results 
are only for /3 = 3.5. Figure 3 shown how our 
turbulence develops from an initially perfect 
spiral wave. The starting wave pattern at t 
= l.50 is almost identical to that of Fig. 1 viz. 
a steadily rotating pattern appropriate for 
/3= 1.0. The initial position of the core had 
been displaced slightly from the center of 
symmetry so that axially asymmetric distur
bances might be ready to grow whenever the 
pattern loses stability. We now increase /3 
suddenly to the value 3.5, and the temporal 
development thereafter up to t = 12.00 is 
shown in the same figure. The rotating pat
tern is apparently unable to adapt smoothly 
to the new parameter condition by readjust
ing its rotation period and wavelength. It 
becomes increasingly distorted until here and 
there the contour lines X = 0 and Y = 0 come 

into contact with each other tangentially, 
whereby new pairs of phaseless points are 
created. Some of such phaseless points may 
soon be pair-annihilated, while the others 
survive for a long time. Since the very ex
istence of a single phaseless point at the 
initial time has turned out to be the cause of 
the instability, the newly born phase less 
points could as well be the sources of sub
sequent instabilities, thus producing a number 
of phase less points again. Repeated applica
tions of the same reasoning ad infinitum lead 
to the picture that the turbulence here is not 
confined within a finite spatial region but 
spreads until it comes to dominate the entire 
system. Without initial phase singularity, in 
contrast, nothing would happen other than 
completely homogeneous oscillations. 

We now consider the reason for the 
occurrence of the instability for larger \/3\. 
Equation (3) written in the form of Eq. (1) 

with ;1 = 1 - R2 and w = - /3R2 permits us to 
interpret /3 as the measure of how strongly 
the local frequency w depends on the local 
amplitude R. For the steadily rotating 
waves, one may understand qualitatively how 
w depends on the radial coordinate r with the 
help of Fig. 2 showing the r-dependence of R. 
Thus our system looks something like an 
array of radially coupled oscillators with a 
nonuniform distribution of the native fre
quency w( r). It is obvious that increasing 
\/3\ makes the spatial gradient of w( r) steeper 
in some region near the core, so that the 
oscillators will find it increasingly difficult to 
maintain synchrony among themselves over 
the entire system. The resulting breakdown 
of the synchronized motion will accompany 
the creation of pairs of phaseless points, and 
the rotating waves induced round such points 
will also be bound to experience a similar 
kind of instabilities. 

The present study has been confined to 
perfectly smooth oscillatory kinetics. It 
would be of great interest to explore the 
possibility of obtaining turbulence for relaxa· 
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T= 1.50 T=3.00 T=4.50 

T=6.00 T=7.50 T=9.00 

Fig. 3. Temporal development of 
"spiral wave turbulence". (3 

= 3.5. System size, mesh size 
and boundary condition are the 
same as for Fig. 1. 

T=10.50 T=12.00 

tion oscillations and excitable kinetics due to 
the mechanisms similar to the above. Such a 
study seems important because unsmooth 
kinetics rather than smooth one is much more 
commonly met in physiological, chemical and 
biochemical contexts. A turbulized excit· 
able medium with spontaneously excited 
many rotors might possibly be realized, and 
such a system would look much like a fibril· 
lating heart tissue. In this connection, a 
possible desynchronization mechanism as 
proposed by Rossler and KahlerC) for sys· 

terns of stiff oscillators seems quite sugges· 
tive. 
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