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On Computational Complexity 

and the Nature of Computer Science 

| n scientific work, the  r ecogn i t i on  by o n e ' s  pee r s  

is one  o f  the  greates t  rewards.  In  par t icular ,  an 

official r ecogn i t i on  by the scientific communi ty ,  

as R icha rd  Stearns  a n d  I a re  h o n o r e d  by the 1993 

ACM Tur ing  Award,  is very satisfying a n d  deep ly  

apprec ia t ed .  ~ Science is a g rea t  in te l lec tua l  adven tu re  

a n d  o n e  o f  h u m a n k i n d ' s  g rea tes t  ach ievements .  

F u r t h e r m o r e ,  a research  ca ree r  can be  an exci t ing,  

r e w a r d i n g  a n d  e n n o b l i n g  activity, pa r t i cu la r ly  so if  

o n e  is f o r t u n a t e  to pa r t i c ipa t e  in the  c r ea t i on  o f  a 

c o m p l e t e l y  new a n d  very i m p o r t a n t  sc ience ,  as 

m a n y  scientis ts  are.  My r o a d  to c o m p u t e r  sc ience  

was n o t  a d i r ec t  one .  Actua l ly  it looks  m o r e  like a 

r a n d o m  walk, in re t rospect ,  with the  r igh t  intel lectu-  

al s tops to p r e p a r e  m e  for  work  in c o m p u t e r  science.  
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L E C T U R E  

I was born in Latvia, which lost its independence dur-  

ing World War II and f iom which we had to flee because 

of  heavy fighting at the end of World War lI .  After the war 

as a D.P. (displaced person) in Germany, I finished a su- 

perb Latvian high school in a D.P. camp staffed by elite 

refugee academics who conveyed their enthusiasm for 

knowledge, scholarship and particularly fbr science. I 

studied physics at the Philips University in Marburg and 

waited for a chance to emigrate to the United States. This 

chance came after about two-and-a-half years of studies. 

In the U.S. our  sponsors were in Kansas City, and, after 

arriving there, I proceeded to the University of Kansas 

City (now part  of  the University of  Missouri system). My 

two-plus years of study were judged  to be the equivalent 

of a bachelor 's  degree,  and I was accepted for graduate 

work and very generously awarded a fellowship. Since 

there was no graduate  program in physics, I was advised 

(or told) to study mathematics, which had a graduate pro- 

gram. A year later l emerged with a master 's degree in 

mathematics and with a fhr better appreciation of the 

power and beauty of  mathematics. The California Insti- 

tute of Technology accepted me for graduate work and 

from my record decided that I looked like "an applied 

mathematician" (which is probably what you get if you 

mix two years of European physics with a year of  Kansas 

City mathematics, though I had never taken a course in 

appl ied mathematics). Since there was at that time no pro- 

gram in applied mathematics at Cal Tech, I was advised 

1 would be perfectly happy studying pure  mathematics. 

This was good advice, and foul" years later, after one of  

the most stilnulating intellectual periods in my life, I had 

earned my Ph.D. in mathematics with a dissertation in 

lattice theory and a minor  in physics. Though I loved 

pure  mathematics and was impressed by the beauty and 

power of  mathematical abstractions, I felt some intellec- 

tual restlessness and a hope to find research problems 

with a more direct link to the world around us. Still, 1 

followed nay advisor's recommendat ion and accepted a 

faculty position in lnathematics at Cornell University. 

During the second year at Cornell I was offered and ac- 

cepted a summer job at General  Electric Research Labora- 

tory in Schenectady, N.Y., in their new information stud- 

ies section headed by Dr. Richard Shuey. That  summer was 

a sharp turning point in my scientific interests. At the GE 

Research Laboratory, I was caught up in the excitement 

about participating in the creation of a new science about 

information and computing. Computer  science offered me 

the hoped-for research area with the right motivation, 

scope and excitement. One academic year later l jo ined the 

GE Research Laboratory as a research scientist. The follow- 

ing year Richard Stearns, a mathematics graduate student 

at Princeton, spent a sulnmer at the Laboratory where we 

started our collaboration. After completing his Ph.D. at 

Princeton with a dissertation in game theory, Dick jo ined 

the Laboratory_ and we intensified our collaboration. 

Our  views of what kind of  computer  science we wanted 

to do were influenced by our  backgrounds and the inten- 

sive study of  the relevant l i terature we could find. We de- 

IThe Tur ing  Award Lecture by co-recipient Richard Stearns will appea r  in 

the November issue of Communications of the ACM. 

lighted in Turing's  1936 paper  [14] and were impressed 

by the elegance, crispness and simplicity of the undecid- 

ability results and basic recursive function theory. Tm'- 

ing's work supplied us with the necessary well-defined 

abstract computer  model in our later work. I personally 

was deeply impressed with Shannon's  communication 

theory [12]. Shannon's  theory gave precise quantitative 

laws of  how much inforlnation can be "reliably" transmit- 

ted over a noisy channel in terms of the channel capacity 

and the entropy of the inforlnation source, l loved physics 

for its beautifully precise laws that govern and explaiu the 

behavior of the physical world. In Shannon's  work, ti)r the 

first time, 1 saw precise quantitative laws that governed 

the behavior of the abstract entity of information. For an 

ex-physicist the idea that there could be quantitative laws 

governing such abstract entities as information and its 

transmission was surprising and imlnensely fascinating. 

Shannon had given a beautiful example of quantitative 

laws for intbrmation which by its nature is not directly 

constrained by physical laws. This raised the question 

whether there could be precise quantitative laws that gov- 

ern the abstract process of computing,  which again was 

not directly constrained by physical laws. Could there be 

quantitative laws that de termine  for each problem how 

much computing effort (work) is required for its solution 

and how to measure and determine it? 

From these and other considerations grew our deep 

conviction that there lnust be quantitative laws that gov- 

ern the behavior of information and computing.  The  re- 

sults of  this research eftbrt were summarized in our illSt 

paper  on this topic, which also named this new research 

area, "On the computat ional  complexity of  algorithms" 

[5]. To capture the quantitative behavior of  the comput ing 

effort and to classify computations by their intrinsic com- 

putational complexity, which we were seeking, we needed 

a robust computing model  and an intuitively satisfying 

classification of the complexity of  problems. The  Tur ing 

machine was ideally suited for the computer  lnodel, and 

we modified it to the multi-tape version. To classify com- 

putations (or problems) we introduced the key concept of 

a complexity class in terms of  the Tur ing machines with 

bounded  computat ional  resources. A complexity class, for 

example,  C,,e in our original notation, consists of all prob- 

lems whose instances of length n can be solved in n 2 steps 

on a multi-tape Turing machine. In contemporary  nota- 

tion, C,,z = TIME[n2]. 

Today, complexity classes are central objects of  study, 

and many results and problems in complexity theory are 

expressed in terms of  complexity classes. 

A considerable part  of our  early work on complexity 

theory was dedicated to showing that we had defined a 

meaningful classification of problems according to their 

computat ional  difficulty and deriving results about it. We 

showed that our  classification was robust and was not es- 

sentially altered by minor  changes in the model  and that 

the complexity classification indeed captured the intuitive 

ideas about the complexity of numbers  and functions. We 

explored how computat ion speed changed by going from 
one-tape to multi-tape machines and even to multi- 

dimensional tapes and derived bounds tbl  these "speed- 
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ups." Somewhat later, Manuel Blum, in his Ph.D. disserta- 

tion at MIT [1 ], developed an axiomatic theory of  compu- 

tational complexity and, among many other results, 

showed that all complexity measures are recursively re- 

lated. Our  speed-up results were special cases of  this rela- 

tionship. For us it was a delight to meet Manuel while he 

was writing his dissertation and to exchange ideas about 

computational complexity. Similarly, we were impressed 

and influenced by H. Yamada's work on real-time compu- 

tations in his dissertation at the University of Pennsylvania 

[15] under  the supervision of Robert McNaughton. We 

also proved Hierarchy Theorelns that asserted that a 

slight increase in computation time (bounds) permits sohl- 

tion of new problelns. More explicity: if T(n) and U(n) are 

"nice" functions and 

T(n) ~ 
lim - -  = 0 

' , -  >~ U ( n )  

then complexity class TIME[T(n)] is properly contained in 

TIME[U(n)]. These results showed that there are prob- 

lems with very sharp, intrinsic computational complexity 

bounds. No lnatter what method and computational  algo- 

rithm was used, the problem solution required,  say n 2, 

operation for problem instance of  size n. Blum in his dis- 

sertation showed that this is not the case for all problems 

and that there can exist exotic problems with less sharply 

defined bounds. 

To relate our classification of the real numbers by their 

computation complexity to the classical concepts, we 

showed that all algebraic numbers are in the low complex- 

ity class TIME[n"] and found, to our  surprise, some tran- 

scendental numbers that were real-time computable (i.e., 

they were in TIME[n]). Since we could not prove that any 

irrational algebraic numbers  were in TIME[n], we conjec- 

tured that all real-time computable numbers are either 

rational or transcendental.  This is still an open problem 

30 years later and only gradually did we realize its mathe- 

matical depth and the profound consequences its p roof  

would have in mathematics. 

Toward the end of the introduction of our  first paper  

on complexity theory [5], we state: "The final section is 

devoted to open questions and problem areas. It is our 

conviction that numbers and functions have an intrinsic 

computational nature according to which they can be clas- 

sified, as shown in this paper,  and that there is a good 

opportuni ty  here for further research." Indeed there was! 

We had opened a new computer  science area of research 

and given it a name. 

At the GE Research Laboratory, Phil Louis jo ined  us to 

explore tape- (or memory- ) bounded computations that 

yielded many interesting results and established computa- 

tional space as another  major computational  resource 

measure [7, 13]. We showed that all context-free lan- 

guages could be recognized on (log n)2-tape. This result 

led Savitch [10] to his elegant result about the relation 

between deterministic and nondeterministic tape- 

bounded computations: for "nice" functions F(n), 

NTAPE[F(n)] is contained in TAPE[F(n)2]. 

Our  colleague at the Laboratory, Daniel Younger [16], 

showed that context-free languages were contained in 

TIME[n:~]. Soon many others jo ined  the exploration of the 

complexity of computation,  and COlnputational complex- 

ity theory grew into a major research area with deep and 

interesting results and some of the most notorious open 

problems in computer  science. 

Looking at all of computer  science and its history, 1 am 

very impressed by the scientific and technological achieve- 

ments, and they far exceed what I had expected. Com- 

puter  science has grown into an important  science with 

rich intellectual achievements, an impressive arsenal of 

practical results and exciting fllture challenges. Equally 

impressive are the unprecedented technological develop- 

ments in computing power and communication capacity 

that have amplified the scientific achievements and have 

given computing and computer  science a central role in 

our  scientific, intellectual and commercial activities. 

1 personally believe that computer  science is not only a 

rapidly maturing science, but that it is more. Computer  

science differs so basically f iom the other sciences that it 

has to be viewed as a new species among the sciences, and 

it must be so understood.  Computer  science deals with 

intbrmation, its creation and processing, and with the sys- 

tems that perform it, much of  which is not directly re- 

strained and governed by physical laws. Thus computer  

science is laying the foundations and developing the re- 

search paradigms and scientific methods for the explora- 

tion of the world of informat ion and intellectual processes 

that are not directly governed by physical laws. This is 

what sets it apart  from the other sciences and what we 

vaguely perceived and found fascinating in our early ex- 

ploration of computational complexity. 

One of the defining characteristics of  computer  science 

is the immense difference in scale of the phenomena com- 

puter  science deals with. From the individual bits of pro- 

grams and data in the computers to billions of operations 

per second on this infbrmation by the highly complex 

machines, their operat ing systems and the various lan- 

guages in which the problems are described, the scale 

changes through many orders  of  magnitude.  Donald 

Knuth 2 puts it nicely: 

Computer Science and Engineering is a field that attracts a 

different kind of thinker. I believe that one who is a natural 

computer scientist thinks algorithmically. Such people are espe- 

ciaUy good at dealing with situations where different rules 

apply in different cases; they are individuals who can rapidly 

change levels of abstraction, simultaneously seeing thin U "in 

the large" and "in the small." 

The computer  scientist has to create many levels of ab- 

stractions to deal with these problems. One has to create 

intellectual tools to conceive, design, control, program,  

and reason about the most complicated of human crea- 

tions. Fur thermore ,  this has to be done with unprece- 

dented precision. The underlying hardware that executes 

the computations are universal machines and therefore 

they are chaotic systems: the slightest change in their in- 

structions or data can result in arbitrarily large differences 

in the results. This, as we well know, is an inherent  prop- 

2Personal conmmnication. March 10, 1992 letter. 
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erty ofl tmiversal computing devices (and theory makes 

clear that giving up universality imposes a very high 

price). Thus computer  scientists are blessed with a univer- 

sal device which can be instructed to perfbrm any compu- 

tation and simulate in principle any physical process (as 

described by our current  laws of physics), but which is 

therefore chaotic and must be controlled with unprece- 

dented precision. This is achieved by the successive layers 

of implemented abstraction wrapped around the chaotic 

universal machines that help to bridge the many orders  of 

magnitude in the scale of things. 

It is also this universality of the computing devices that 

gives the computing paradigm its immense power and 

scope. During various periods people have used the con- 

ceptualizations of 1 their newest devices to try to under-  

stand and explain how nature and humans function. Thus 

our current  heavy reliance on computer  concepts and 

computer  simulations fbr various phenomena  has been 

compared  to the use of the explanatory role of steam- 

driven devices, gears and latches, or clocks. 

The  universality of  digital computers and the ever- 

increasing computing power give the computing pala-  

digm a different and a very central role in all of our  intel- 

lectual activities. The  digital computer  is a universal de- 

vice and can pe l fbrm in principle any computat ion 

(assuming the Chmch-Tming  thesis, it captures all com- 

putations) and, in particular, any mathematical procedure  

in an axiomatized formal system. Thus in principle the 

thll power of mathematical reasoning, which has been civ- 

ilization's pr imary scientific tool, can be embodied in our  

colnputers f lom numerical  computations and simulation 

of physical processes to symbolic computations and logical 

reasoning to theorem proving. This universality and the 

power of modern  computers are indeed very encompass- 

ing of our intellectual activities and growing in scope and 

power. 

Clearly, computer  science is not a physical science; still, 

very often it is assumed that it will show strong similarities 

to physical sciences and may have similar research para- 

digms in regard to theory and experiments.  The failure of  

computer  science to conlbrm to the paradigms of physical 

sciences is ofi.en interpreted as immatmi ty  of computer  

science. This is not the case, since theory and experiments  

in computer  science play a different role than in physical 

sciences. For a more detailed contrasting of the research 

paradigms in physics and computer  science, see [4]. 

Even a brief look at research topics in (:omputer science 

reveals the new relation between theory and experiments.  

For example,  the design and analysis of  algorithms is a 

central theme in theoretical computer  science. Methods 

are developed for their design, measures are defined for 

various computational  resources, trade-otis between dif- 

terent  resources are explored,  and upper-  and lower- 

resource bounds are proved tbr the solutions of various 

problems. Similarly, theory creates methodologies,  logics 

and various semantic models to help design programs,  to 

reason about programs,  to prove their correctness, and to 

guide the design of new programming  languages. Theo- 

ries develop models, measures and methods to explore 

and optimize VLS1 designs, and to try to conceptualize 

techniques to design efficient computer  and communica- 

tions systems. 

Thinking about the previously ment ioned (and other) 

theoretical work in computer  science, one is led to the 

very clear conclusion that theories do not compete with 

each other fbr which better explains the fundamental  na- 

ture of information. Nor are new theories developed to 

reconcile theory with experimental  results that reveal 

unexplained anomalies or new, unexpected phenomena  

as in physics. In computer  science there is no history of 

critical experiments  that decide between the validity of 

various theories, as there are in physical sciences. 

The  basic, underlying mathematical model  of digital 

computing is not seriously challenged by theory or experi-  

ments. The  ultimate limits of effective computing,  imposed 

by the theory of computing,  are well unders tood and ac- 

cepted. There  is a strong effort to define and prove the 

.[easible limits of computation,  but  even here the basic 

model of' computat ion is not questioned. The  key effort is 

to prove that certain computations cannot be done in 

given resource bounds,  well illustrated by the P = NP? 

question. One should note that the solution of this prob- 

lem could have broad implications. For example,  it could 

give proof  of what encryption procedures  are safe under  

what attacks and fbr how long. It could also lead to a 

deeper  unders tanding of the limits of  human-computer  

reasoning power. In general,  the "separation" problems, 

that is the questions i fP  # NP ~ PSPACE ~ EXPTIME # 

NEXPTIME # EXPSPACE? are among the most impor-  

tant open problems in theoretical computer  science. But 

there are no experiments,  physical or computational ,  

which could resolve these problems, again emphasizing 

the different scientific nature of computer  science. 

In computer  science, results of theory are j udged  by the 

insights they reveal about the mathematical nature of vari- 

ous models of computing and/or  by their utility to the 

practice of computing and their ease of applicability. Do 

the models conceptualize and capture the aspects com- 

puter  scientists are interested in, do they yield insights in 

design problems, do they aid reasoning and communica- 

tion about relevant problems? In the design and analysis 

of algorithms, which is a central theme in theoretical com- 

puter  science, the measures of  perfbrinance are well de- 

fined, and results can be compared  quite easily in some of 

these measures (which may or may not fully reflect their 

performance on typical problems). Experiments with al- 

gorithms are used to test implementat ions and compare 

their "practical" performance on the subsets of  problems 

deemed important.  
Similarly, an inspection of the experimental  work and 

systems building in computer  science reveals a different 

pat tern than in physical sciences. Such work deals with 

perfbrmance measurements,  evaluation of  design meth- 

odologies, testing of new architectures, and above all, test- 

ing teasibility by building systems to do what has never 

been done befbre. 
Systems building, hardware and software, is the defin- 

ing characteristic of applied and/or  experimental  work in 

computer  science (though experimental  is not meant  in 

the old sense). This has the consequence that computer  
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Looking at all of computer science and its history, 

a m  v e r y  i m p r e s s e d  b y  t h e  s c i e n t i f i c  

a n d  t e c h n o l o g i c a l  a c h i e v e m e n t s ,  

and they far exceed what I had expected. 

science advances are often demonstrated and docu- 

mented by a dramatic demonstrat ion rather  than a dra- 

matic exper iment  as in physical sciences. It is the role of 

the demo to show the possibility or tieasibility to do what 

was thought to be impossible or not feasible. It is often 

that the (ideas and concepts tested in the) dramatic demos 

influence the research agenda in computer  science. 

This is reflected in the battle cry of  the young computer  

scientists, "demo or die," which is starting to rival the 

older  "publish or perish," which is still valid advice, but 

should be replaced by "publish in refereed journals  or 
perish." 

From the preceding observations we can see that theory 

and experiments in computer  science are contributing to 

the design of algorithms and computing systems that exe- 

cute them, that computer  science is concentrating more 

on the how than the what, which is more the focal point of 

physical sciences. In general the how is associated with 

engineering, but computer  science is not a subfield of en- 

gineering. Computer  science is indeed an independent  

new science, but it is intertwined and permeated  with en- 

gineering concerns and considerations. In many ways, the 

science and engineering aspects in computer  science are 

much closer than in many other disciplines. To quote 

Fred Brooks [2] about programming:  

The programmer, like the poet, works only slightly removed 

from pure thought-stuff. He builds his castles in the air, from 

air, creating by exertion of the imagination. Few media of cre- 

ation are so flexible, so easy to polish and re-work, so readily 

capable of  realizing grand conceptual structures. ( . . . late~, 

this ve U tractability has its own problems.) 

Yet the p~vgram construct, unlike the poet's words, is real in 

the sense that it moves and works, producing visible outputs 

separate Jrom the construct itself. It prints results, draws pic- 

tures, produces sounds, moves arms. The magic of  myth and 

legend has come true in our time. One types the correct incan- 

tation on a keyboard, and a display screen comes to life, show- 

ing things that never were nor could be. 

Webster's dictionary defines engineering as "the appli- 

cation of scientific principles to practical ends as the de- 

sign, construction, and operation of  efficient and econom- 

ical structures, equipment  and systems." By this 

definition, much of  computer  science activity can be 

viewed as engineering or at least the search 1or those sci- 

entific principles which can be applied "to practical ends, 

design, construction . . . .  " But again, keeping in mind 

Brooks' quote and reflecting on the scope of  computer  

science and engineering activities, we see that the engi- 

neering in our  field has difterent characteristics than the 

more classical practice of engineering. Many of the engi- 

neering problems in computer  science are not con- 

strained by physical laws, and they demand the creation of  

new engineering paradigms and methodology. 

As observed emlier, computer  science work is perme- 

ated by concepts of  efficiency and search for optimality. 

The "how" motivation of computer  science brings engi- 

neering concepts into the science, and we should take 

pr ide in this nearness of  our science to applicability. 

Somewhat facetiously, but with a grain of truth in it, we 

can say that computer  science is the engineering of mathe- 

matics (or mathematical processes). In these terms we see 

very strongly that it is a new torm of engineering. 

I am deeply convinced that we should not try to draw a 

sharp line between computer  science and engineering 

and that any at tempt to separate them is counterproductive.  

At the same time, I am convinced that computer  science 

ah-eady has made and has a t remendous potential to make 

contributions to the unders tanding of our  physical and 

intellectual world. The computing paradigm, suppor ted  

by ever more powertul universal computing devices, moti- 

vates and permits the exploration and simulation of physi- 

cal and intellectual processes and even assesses their 
power and limitations. 

Already Warren McCullach in 1964 [8] had a vision of 

"Experimental  epistemology, the study how knowledge is 

embodied in the brains and may be embodied in ma- 

chines." John McCarthy [9] states less modestly, "The 

study of  AI may lead to a mathematical metaepistemologi- 

cal analogous to metamathemat ics - - to  a study of the rela- 

tions between a knower's rule for accepting evidence and 

the world in which he is embedded.  This study could re- 

sult in mathematical theorems about whether certain in- 

tellectual strategies can lead to the discovery of certain 

JPacts about the world. I think that this possibility will even- 

tually revolutionize philosophy." 

The  computing paradigm has permit ted the clarifica- 

tion of  the concept of randomness by means of Kol- 

mogorov complexity of finite and infinite sequences [6]. 

Again, the universality of the computing model was essen- 

tial to prove the validity of these concepts. 

Computat ional  complexity considerations have refined 

the concepts of randomness relative to the intended appli- 

cations. It has been shown that what is (acceptable or 

passes as) random depends  on the computing power in 

the application. Still there remain deep open problems in 

this area about physical processes and computing. The 

Kolmogorov random strings are not computable,  in a very 

strong sense; no Turing machine can print  a Kolmogorov 

random string longer than its size (description). Does a 
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cor responding  law (theorem?) hold for all physical systems? 

Can small physical systems p roduce  long Kohnogorov  

r a n d o m  strings, or  bet ter  yet, can a finite physical system 

(properly formulated with the needed energy inflow without 

add ing  randomness?)  p roduce  u n b o u n d e d  Ko lmogorov  

r a n d o m  sequence? I f  so, then  indeed  physical processes 

are  not  fully capturable  by c o m p u t e r  simulation.  

Very recently,  c o m p u t e r  science mot ivat ion has led to 

the study of  interact ive proofs  and p r o o f  checking,  reveal-  

ing unexpec t ed  power  o f  r andomiza t ion  and interact ion 

be tween p rove r  and verif ier  [11]. These  results show that 

with very few quest ions about  a long p r o o f  a verif ier  can 

be convinced with arbitrari ly high probabili ty that  there  is 

a correct  p r o o f  wi thout  ever  seeing the whole proof.  

These  and related results have given fundamenta l  new 

insights about  the na tu re  of  mathemat ica l  proofs and are  

indeed  metamathemat ica l  results. 

Recursive funct ion theory,  originally mot ivated  by 

Goedel ' s  incomple teness  results, classified what  is and is 

not  effectively computable ,  thus clearly showing the power  

and limitations o f  formal  mathemat ica l  reasoning.  Com-  

plexity theory  is current ly  s t ruggl ing to d e t e r m i n e  what  is 

and is not feasibly computable .  In  this effort  the P = NP? 

prob lem is the best known open  p rob lem in this s truggle,  

but  by far not  the only open  separat ion problem.  W h e n  

the P = NP? and o ther  separat ion p rob lems  are  resolved 

and d e e p e r  insights are  ga ined about  the limits o f  the fea- 

sibly computable ,  the c o m p u t i n g  pa rad igm and complex-  

ity theory  may allow us to bet ter  unde r s t and  the power  

and limitations o f  the h u m a n - c o m p u t e r  reasoning.  I be- 

lieve that  c o m p u t e r  science has the potent ia l  to give deep  

new insights and  quant i ta t ive u n d e r s t a n d i n g  of  the com- 

pu t ing  pa rad igm and ou r  intellectual processes and thus, 

just  maybe, a possibility to grasp the limits of  the knowable. 
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