
iiiiiiii~iii!!!iiiii~iii
i:~Ji!!ii~i~!!!~ii~!~iii~!~!iii~i~ii:~!~!~i~;~i

On Computational Complexity

and the Nature of Computer Science

| n scientific work, the r ecogn i t i on by o n e ' s pee r s

is one o f the greates t rewards. In par t icular , an

official r ecogn i t i on by the scientific communi ty ,

as R icha rd Stearns a n d I a re h o n o r e d by the 1993

ACM Tur ing Award, is very satisfying a n d deep ly

apprec ia t ed . ~ Science is a g rea t in te l lec tua l adven tu re

a n d o n e o f h u m a n k i n d ' s g rea tes t ach ievements .

F u r t h e r m o r e , a research ca ree r can be an exci t ing,

r e w a r d i n g a n d e n n o b l i n g activity, pa r t i cu la r ly so if

o n e is f o r t u n a t e to pa r t i c ipa t e in the c r ea t i on o f a

c o m p l e t e l y new a n d very i m p o r t a n t sc ience , as

m a n y scientis ts are. My r o a d to c o m p u t e r sc ience

was n o t a d i r ec t one . Actua l ly it looks m o r e like a

r a n d o m walk, in re t rospect , with the r igh t intel lectu-

al s tops to p r e p a r e m e for work in c o m p u t e r science.

COMMUNICAT IONS OF THE ACM October 1994/Vol 37, No.10 3 7

L E C T U R E

I was born in Latvia, which lost its independence dur-

ing World War II and f iom which we had to flee because

of heavy fighting at the end of World War lI . After the war

as a D.P. (displaced person) in Germany, I finished a su-

perb Latvian high school in a D.P. camp staffed by elite

refugee academics who conveyed their enthusiasm for

knowledge, scholarship and particularly fbr science. I

studied physics at the Philips University in Marburg and

waited for a chance to emigrate to the United States. This

chance came after about two-and-a-half years of studies.

In the U.S. our sponsors were in Kansas City, and, after

arriving there, I proceeded to the University of Kansas

City (now part of the University of Missouri system). My

two-plus years of study were judged to be the equivalent

of a bachelor 's degree, and I was accepted for graduate

work and very generously awarded a fellowship. Since

there was no graduate program in physics, I was advised

(or told) to study mathematics, which had a graduate pro-

gram. A year later l emerged with a master 's degree in

mathematics and with a fhr better appreciation of the

power and beauty of mathematics. The California Insti-

tute of Technology accepted me for graduate work and

from my record decided that I looked like "an applied

mathematician" (which is probably what you get if you

mix two years of European physics with a year of Kansas

City mathematics, though I had never taken a course in

appl ied mathematics). Since there was at that time no pro-

gram in applied mathematics at Cal Tech, I was advised

1 would be perfectly happy studying pure mathematics.

This was good advice, and foul" years later, after one of

the most stilnulating intellectual periods in my life, I had

earned my Ph.D. in mathematics with a dissertation in

lattice theory and a minor in physics. Though I loved

pure mathematics and was impressed by the beauty and

power of mathematical abstractions, I felt some intellec-

tual restlessness and a hope to find research problems

with a more direct link to the world around us. Still, 1

followed nay advisor's recommendat ion and accepted a

faculty position in lnathematics at Cornell University.

During the second year at Cornell I was offered and ac-

cepted a summer job at General Electric Research Labora-

tory in Schenectady, N.Y., in their new information stud-

ies section headed by Dr. Richard Shuey. That summer was

a sharp turning point in my scientific interests. At the GE

Research Laboratory, I was caught up in the excitement

about participating in the creation of a new science about

information and computing. Computer science offered me

the hoped-for research area with the right motivation,

scope and excitement. One academic year later l jo ined the

GE Research Laboratory as a research scientist. The follow-

ing year Richard Stearns, a mathematics graduate student

at Princeton, spent a sulnmer at the Laboratory where we

started our collaboration. After completing his Ph.D. at

Princeton with a dissertation in game theory, Dick jo ined

the Laboratory_ and we intensified our collaboration.

Our views of what kind of computer science we wanted

to do were influenced by our backgrounds and the inten-

sive study of the relevant l i terature we could find. We de-

IThe Tur ing Award Lecture by co-recipient Richard Stearns will appea r in

the November issue of Communications of the ACM.

lighted in Turing's 1936 paper [14] and were impressed

by the elegance, crispness and simplicity of the undecid-

ability results and basic recursive function theory. Tm'-

ing's work supplied us with the necessary well-defined

abstract computer model in our later work. I personally

was deeply impressed with Shannon's communication

theory [12]. Shannon's theory gave precise quantitative

laws of how much inforlnation can be "reliably" transmit-

ted over a noisy channel in terms of the channel capacity

and the entropy of the inforlnation source, l loved physics

for its beautifully precise laws that govern and explaiu the

behavior of the physical world. In Shannon's work, ti)r the

first time, 1 saw precise quantitative laws that governed

the behavior of the abstract entity of information. For an

ex-physicist the idea that there could be quantitative laws

governing such abstract entities as information and its

transmission was surprising and imlnensely fascinating.

Shannon had given a beautiful example of quantitative

laws for intbrmation which by its nature is not directly

constrained by physical laws. This raised the question

whether there could be precise quantitative laws that gov-

ern the abstract process of computing, which again was

not directly constrained by physical laws. Could there be

quantitative laws that de termine for each problem how

much computing effort (work) is required for its solution

and how to measure and determine it?

From these and other considerations grew our deep

conviction that there lnust be quantitative laws that gov-

ern the behavior of information and computing. The re-

sults of this research eftbrt were summarized in our illSt

paper on this topic, which also named this new research

area, "On the computat ional complexity of algorithms"

[5]. To capture the quantitative behavior of the comput ing

effort and to classify computations by their intrinsic com-

putational complexity, which we were seeking, we needed

a robust computing model and an intuitively satisfying

classification of the complexity of problems. The Tur ing

machine was ideally suited for the computer lnodel, and

we modified it to the multi-tape version. To classify com-

putations (or problems) we introduced the key concept of

a complexity class in terms of the Tur ing machines with

bounded computat ional resources. A complexity class, for

example, C,,e in our original notation, consists of all prob-

lems whose instances of length n can be solved in n 2 steps

on a multi-tape Turing machine. In contemporary nota-

tion, C,,z = TIME[n2].

Today, complexity classes are central objects of study,

and many results and problems in complexity theory are

expressed in terms of complexity classes.

A considerable part of our early work on complexity

theory was dedicated to showing that we had defined a

meaningful classification of problems according to their

computat ional difficulty and deriving results about it. We

showed that our classification was robust and was not es-

sentially altered by minor changes in the model and that

the complexity classification indeed captured the intuitive

ideas about the complexity of numbers and functions. We

explored how computat ion speed changed by going from
one-tape to multi-tape machines and even to multi-

dimensional tapes and derived bounds tbl these "speed-

8 October 19941Vol.37, No.10 COMMUN|¢ATIOIHUG OP THIil ACM

ups." Somewhat later, Manuel Blum, in his Ph.D. disserta-

tion at MIT [1], developed an axiomatic theory of compu-

tational complexity and, among many other results,

showed that all complexity measures are recursively re-

lated. Our speed-up results were special cases of this rela-

tionship. For us it was a delight to meet Manuel while he

was writing his dissertation and to exchange ideas about

computational complexity. Similarly, we were impressed

and influenced by H. Yamada's work on real-time compu-

tations in his dissertation at the University of Pennsylvania

[15] under the supervision of Robert McNaughton. We

also proved Hierarchy Theorelns that asserted that a

slight increase in computation time (bounds) permits sohl-

tion of new problelns. More explicity: if T(n) and U(n) are

"nice" functions and

T(n) ~
lim - - = 0

' , - >~ U (n)

then complexity class TIME[T(n)] is properly contained in

TIME[U(n)]. These results showed that there are prob-

lems with very sharp, intrinsic computational complexity

bounds. No lnatter what method and computational algo-

rithm was used, the problem solution required, say n 2,

operation for problem instance of size n. Blum in his dis-

sertation showed that this is not the case for all problems

and that there can exist exotic problems with less sharply

defined bounds.

To relate our classification of the real numbers by their

computation complexity to the classical concepts, we

showed that all algebraic numbers are in the low complex-

ity class TIME[n"] and found, to our surprise, some tran-

scendental numbers that were real-time computable (i.e.,

they were in TIME[n]). Since we could not prove that any

irrational algebraic numbers were in TIME[n], we conjec-

tured that all real-time computable numbers are either

rational or transcendental. This is still an open problem

30 years later and only gradually did we realize its mathe-

matical depth and the profound consequences its p roof

would have in mathematics.

Toward the end of the introduction of our first paper

on complexity theory [5], we state: "The final section is

devoted to open questions and problem areas. It is our

conviction that numbers and functions have an intrinsic

computational nature according to which they can be clas-

sified, as shown in this paper, and that there is a good

opportuni ty here for further research." Indeed there was!

We had opened a new computer science area of research

and given it a name.

At the GE Research Laboratory, Phil Louis jo ined us to

explore tape- (or memory-) bounded computations that

yielded many interesting results and established computa-

tional space as another major computational resource

measure [7, 13]. We showed that all context-free lan-

guages could be recognized on (log n)2-tape. This result

led Savitch [10] to his elegant result about the relation

between deterministic and nondeterministic tape-

bounded computations: for "nice" functions F(n),

NTAPE[F(n)] is contained in TAPE[F(n)2].

Our colleague at the Laboratory, Daniel Younger [16],

showed that context-free languages were contained in

TIME[n:~]. Soon many others jo ined the exploration of the

complexity of computation, and COlnputational complex-

ity theory grew into a major research area with deep and

interesting results and some of the most notorious open

problems in computer science.

Looking at all of computer science and its history, 1 am

very impressed by the scientific and technological achieve-

ments, and they far exceed what I had expected. Com-

puter science has grown into an important science with

rich intellectual achievements, an impressive arsenal of

practical results and exciting fllture challenges. Equally

impressive are the unprecedented technological develop-

ments in computing power and communication capacity

that have amplified the scientific achievements and have

given computing and computer science a central role in

our scientific, intellectual and commercial activities.

1 personally believe that computer science is not only a

rapidly maturing science, but that it is more. Computer

science differs so basically f iom the other sciences that it

has to be viewed as a new species among the sciences, and

it must be so understood. Computer science deals with

intbrmation, its creation and processing, and with the sys-

tems that perform it, much of which is not directly re-

strained and governed by physical laws. Thus computer

science is laying the foundations and developing the re-

search paradigms and scientific methods for the explora-

tion of the world of informat ion and intellectual processes

that are not directly governed by physical laws. This is

what sets it apart from the other sciences and what we

vaguely perceived and found fascinating in our early ex-

ploration of computational complexity.

One of the defining characteristics of computer science

is the immense difference in scale of the phenomena com-

puter science deals with. From the individual bits of pro-

grams and data in the computers to billions of operations

per second on this infbrmation by the highly complex

machines, their operat ing systems and the various lan-

guages in which the problems are described, the scale

changes through many orders of magnitude. Donald

Knuth 2 puts it nicely:

Computer Science and Engineering is a field that attracts a

different kind of thinker. I believe that one who is a natural

computer scientist thinks algorithmically. Such people are espe-

ciaUy good at dealing with situations where different rules

apply in different cases; they are individuals who can rapidly

change levels of abstraction, simultaneously seeing thin U "in

the large" and "in the small."

The computer scientist has to create many levels of ab-

stractions to deal with these problems. One has to create

intellectual tools to conceive, design, control, program,

and reason about the most complicated of human crea-

tions. Fur thermore , this has to be done with unprece-

dented precision. The underlying hardware that executes

the computations are universal machines and therefore

they are chaotic systems: the slightest change in their in-

structions or data can result in arbitrarily large differences

in the results. This, as we well know, is an inherent prop-

2Personal conmmnication. March 10, 1992 letter.

COMMUNICAT IONSOFTHE ACM Octobcr 1994/Vo1.37, No.lO ~

L E C T U R E

erty ofl tmiversal computing devices (and theory makes

clear that giving up universality imposes a very high

price). Thus computer scientists are blessed with a univer-

sal device which can be instructed to perfbrm any compu-

tation and simulate in principle any physical process (as

described by our current laws of physics), but which is

therefore chaotic and must be controlled with unprece-

dented precision. This is achieved by the successive layers

of implemented abstraction wrapped around the chaotic

universal machines that help to bridge the many orders of

magnitude in the scale of things.

It is also this universality of the computing devices that

gives the computing paradigm its immense power and

scope. During various periods people have used the con-

ceptualizations of 1 their newest devices to try to under-

stand and explain how nature and humans function. Thus

our current heavy reliance on computer concepts and

computer simulations fbr various phenomena has been

compared to the use of the explanatory role of steam-

driven devices, gears and latches, or clocks.

The universality of digital computers and the ever-

increasing computing power give the computing pala-

digm a different and a very central role in all of our intel-

lectual activities. The digital computer is a universal de-

vice and can pe l fbrm in principle any computat ion

(assuming the Chmch-Tming thesis, it captures all com-

putations) and, in particular, any mathematical procedure

in an axiomatized formal system. Thus in principle the

thll power of mathematical reasoning, which has been civ-

ilization's pr imary scientific tool, can be embodied in our

colnputers f lom numerical computations and simulation

of physical processes to symbolic computations and logical

reasoning to theorem proving. This universality and the

power of modern computers are indeed very encompass-

ing of our intellectual activities and growing in scope and

power.

Clearly, computer science is not a physical science; still,

very often it is assumed that it will show strong similarities

to physical sciences and may have similar research para-

digms in regard to theory and experiments. The failure of

computer science to conlbrm to the paradigms of physical

sciences is ofi.en interpreted as immatmi ty of computer

science. This is not the case, since theory and experiments

in computer science play a different role than in physical

sciences. For a more detailed contrasting of the research

paradigms in physics and computer science, see [4].

Even a brief look at research topics in (:omputer science

reveals the new relation between theory and experiments.

For example, the design and analysis of algorithms is a

central theme in theoretical computer science. Methods

are developed for their design, measures are defined for

various computational resources, trade-otis between dif-

terent resources are explored, and upper- and lower-

resource bounds are proved tbr the solutions of various

problems. Similarly, theory creates methodologies, logics

and various semantic models to help design programs, to

reason about programs, to prove their correctness, and to

guide the design of new programming languages. Theo-

ries develop models, measures and methods to explore

and optimize VLS1 designs, and to try to conceptualize

techniques to design efficient computer and communica-

tions systems.

Thinking about the previously ment ioned (and other)

theoretical work in computer science, one is led to the

very clear conclusion that theories do not compete with

each other fbr which better explains the fundamental na-

ture of information. Nor are new theories developed to

reconcile theory with experimental results that reveal

unexplained anomalies or new, unexpected phenomena

as in physics. In computer science there is no history of

critical experiments that decide between the validity of

various theories, as there are in physical sciences.

The basic, underlying mathematical model of digital

computing is not seriously challenged by theory or experi-

ments. The ultimate limits of effective computing, imposed

by the theory of computing, are well unders tood and ac-

cepted. There is a strong effort to define and prove the

.[easible limits of computation, but even here the basic

model of' computat ion is not questioned. The key effort is

to prove that certain computations cannot be done in

given resource bounds, well illustrated by the P = NP?

question. One should note that the solution of this prob-

lem could have broad implications. For example, it could

give proof of what encryption procedures are safe under

what attacks and fbr how long. It could also lead to a

deeper unders tanding of the limits of human-computer

reasoning power. In general, the "separation" problems,

that is the questions i fP # NP ~ PSPACE ~ EXPTIME #

NEXPTIME # EXPSPACE? are among the most impor-

tant open problems in theoretical computer science. But

there are no experiments, physical or computational ,

which could resolve these problems, again emphasizing

the different scientific nature of computer science.

In computer science, results of theory are j udged by the

insights they reveal about the mathematical nature of vari-

ous models of computing and/or by their utility to the

practice of computing and their ease of applicability. Do

the models conceptualize and capture the aspects com-

puter scientists are interested in, do they yield insights in

design problems, do they aid reasoning and communica-

tion about relevant problems? In the design and analysis

of algorithms, which is a central theme in theoretical com-

puter science, the measures of perfbrinance are well de-

fined, and results can be compared quite easily in some of

these measures (which may or may not fully reflect their

performance on typical problems). Experiments with al-

gorithms are used to test implementat ions and compare

their "practical" performance on the subsets of problems

deemed important.
Similarly, an inspection of the experimental work and

systems building in computer science reveals a different

pat tern than in physical sciences. Such work deals with

perfbrmance measurements, evaluation of design meth-

odologies, testing of new architectures, and above all, test-

ing teasibility by building systems to do what has never

been done befbre.
Systems building, hardware and software, is the defin-

ing characteristic of applied and/or experimental work in

computer science (though experimental is not meant in

the old sense). This has the consequence that computer

0 Octobe r 1994 / Vo].~ 7, No,|0 C O M M U N I C A T I O N S OF THE ACM

I

Looking at all of computer science and its history,

a m v e r y i m p r e s s e d b y t h e s c i e n t i f i c

a n d t e c h n o l o g i c a l a c h i e v e m e n t s ,

and they far exceed what I had expected.

science advances are often demonstrated and docu-

mented by a dramatic demonstrat ion rather than a dra-

matic exper iment as in physical sciences. It is the role of

the demo to show the possibility or tieasibility to do what

was thought to be impossible or not feasible. It is often

that the (ideas and concepts tested in the) dramatic demos

influence the research agenda in computer science.

This is reflected in the battle cry of the young computer

scientists, "demo or die," which is starting to rival the

older "publish or perish," which is still valid advice, but

should be replaced by "publish in refereed journals or
perish."

From the preceding observations we can see that theory

and experiments in computer science are contributing to

the design of algorithms and computing systems that exe-

cute them, that computer science is concentrating more

on the how than the what, which is more the focal point of

physical sciences. In general the how is associated with

engineering, but computer science is not a subfield of en-

gineering. Computer science is indeed an independent

new science, but it is intertwined and permeated with en-

gineering concerns and considerations. In many ways, the

science and engineering aspects in computer science are

much closer than in many other disciplines. To quote

Fred Brooks [2] about programming:

The programmer, like the poet, works only slightly removed

from pure thought-stuff. He builds his castles in the air, from

air, creating by exertion of the imagination. Few media of cre-

ation are so flexible, so easy to polish and re-work, so readily

capable of realizing grand conceptual structures. (. . . late~,

this ve U tractability has its own problems.)

Yet the p~vgram construct, unlike the poet's words, is real in

the sense that it moves and works, producing visible outputs

separate Jrom the construct itself. It prints results, draws pic-

tures, produces sounds, moves arms. The magic of myth and

legend has come true in our time. One types the correct incan-

tation on a keyboard, and a display screen comes to life, show-

ing things that never were nor could be.

Webster's dictionary defines engineering as "the appli-

cation of scientific principles to practical ends as the de-

sign, construction, and operation of efficient and econom-

ical structures, equipment and systems." By this

definition, much of computer science activity can be

viewed as engineering or at least the search 1or those sci-

entific principles which can be applied "to practical ends,

design, construction " But again, keeping in mind

Brooks' quote and reflecting on the scope of computer

science and engineering activities, we see that the engi-

neering in our field has difterent characteristics than the

more classical practice of engineering. Many of the engi-

neering problems in computer science are not con-

strained by physical laws, and they demand the creation of

new engineering paradigms and methodology.

As observed emlier, computer science work is perme-

ated by concepts of efficiency and search for optimality.

The "how" motivation of computer science brings engi-

neering concepts into the science, and we should take

pr ide in this nearness of our science to applicability.

Somewhat facetiously, but with a grain of truth in it, we

can say that computer science is the engineering of mathe-

matics (or mathematical processes). In these terms we see

very strongly that it is a new torm of engineering.

I am deeply convinced that we should not try to draw a

sharp line between computer science and engineering

and that any at tempt to separate them is counterproductive.

At the same time, I am convinced that computer science

ah-eady has made and has a t remendous potential to make

contributions to the unders tanding of our physical and

intellectual world. The computing paradigm, suppor ted

by ever more powertul universal computing devices, moti-

vates and permits the exploration and simulation of physi-

cal and intellectual processes and even assesses their
power and limitations.

Already Warren McCullach in 1964 [8] had a vision of

"Experimental epistemology, the study how knowledge is

embodied in the brains and may be embodied in ma-

chines." John McCarthy [9] states less modestly, "The

study of AI may lead to a mathematical metaepistemologi-

cal analogous to metamathemat ics - - to a study of the rela-

tions between a knower's rule for accepting evidence and

the world in which he is embedded. This study could re-

sult in mathematical theorems about whether certain in-

tellectual strategies can lead to the discovery of certain

JPacts about the world. I think that this possibility will even-

tually revolutionize philosophy."

The computing paradigm has permit ted the clarifica-

tion of the concept of randomness by means of Kol-

mogorov complexity of finite and infinite sequences [6].

Again, the universality of the computing model was essen-

tial to prove the validity of these concepts.

Computat ional complexity considerations have refined

the concepts of randomness relative to the intended appli-

cations. It has been shown that what is (acceptable or

passes as) random depends on the computing power in

the application. Still there remain deep open problems in

this area about physical processes and computing. The

Kolmogorov random strings are not computable, in a very

strong sense; no Turing machine can print a Kolmogorov

random string longer than its size (description). Does a

COMMUHICA'IrlONS QF'IrHll ACM October 1994/Vol.37, No.10 4 1

THE MOST UP-TO-DATE
HAHDBOOK OH

COMPUTER VIRUSES

ROBERT SLADE'S GUIDE
TO COMPUTER VIRUSES
How to Avoid Them, How Io Gel Rid of Them,
ond How Io 6el Help

As society comes to rely more heavily on comput-
ers, the importance of safeguarding data from com-
puter viruses should be of concern to all computer
users. But how bad is the virus problem today?
How bad will it become? If you find yourself bewil-
dered, Robert Slade's Guide to Computer Viruses
is a book you must read!

Written by a key figure in the virus protection com-
munity, this comprehensive bookcovers everything
from the basics to detailed information on the most
virulent and the newest viruses known. It also
includes a complete ieview of the major antiviral soft-
ware available. As a computer user, you will learn
valuable guidelines on how to minimize the risk of
infection, as well as how to access the latest infor-
mation through electronic bulletin boards and news
groups. This complete book will provide all the infor-
mation you need to make informed decisions to pro-
tect your system, regardless of the platform you are
using. Packaged with the book are five antiviral soft-
ware programs to help you get started quickly.
1994/480 pp., 19 illus./Softcover $29.95
Includes 3.5" diskette I |
ISBN 0-387-94311-0

Three Ensy Whys 1o Order
Toll-Free 1-800-SPRINGER (NJ call 201-348.4033)

or FAX 201-348-4505. Please mention S965.
to Springer-Verlag New York, Inc.,

Attn: J. Jeng, 175 Fifth Avenue, Dept. S965,
New York, NY 10010-7858.
VISIT your local bookstore.

Payment can be made by check, purchase order,
or credit card. Please enclose $2.50 for s h i p p i n g

($1.00 each additional book) & add appropriate sales
tax if you reside in CA, IL, MA, N J, NY, PA, TX, VA,
and VT. Canadian residents please add 7% GST.
Foreign residents include $10.00 airmail charge.

Remember...your 30-day return privilege is always

guaranteed!
10/94 Reference #$965

@ Springer-Verlag New York

Circle # 11 on Reader Service Card

4 2 October 1994/VoL37, No.10 C O M M U N I C A T I O N S O F T H E A C M

cor responding law (theorem?) hold for all physical systems?

Can small physical systems p roduce long Kohnogorov

r a n d o m strings, or bet ter yet, can a finite physical system

(properly formulated with the needed energy inflow without

add ing randomness?) p roduce u n b o u n d e d Ko lmogorov

r a n d o m sequence? I f so, then indeed physical processes

are not fully capturable by c o m p u t e r simulation.

Very recently, c o m p u t e r science mot ivat ion has led to

the study of interact ive proofs and p r o o f checking, reveal-

ing unexpec t ed power o f r andomiza t ion and interact ion

be tween p rove r and verif ier [11]. These results show that

with very few quest ions about a long p r o o f a verif ier can

be convinced with arbitrari ly high probabili ty that there is

a correct p r o o f wi thout ever seeing the whole proof.

These and related results have given fundamenta l new

insights about the na tu re of mathemat ica l proofs and are

indeed metamathemat ica l results.

Recursive funct ion theory, originally mot ivated by

Goedel ' s incomple teness results, classified what is and is

not effectively computable , thus clearly showing the power

and limitations o f formal mathemat ica l reasoning. Com-

plexity theory is current ly s t ruggl ing to d e t e r m i n e what is

and is not feasibly computable . In this effort the P = NP?

prob lem is the best known open p rob lem in this s truggle,

but by far not the only open separat ion problem. W h e n

the P = NP? and o ther separat ion p rob lems are resolved

and d e e p e r insights are ga ined about the limits o f the fea-

sibly computable , the c o m p u t i n g pa rad igm and complex-

ity theory may allow us to bet ter unde r s t and the power

and limitations o f the h u m a n - c o m p u t e r reasoning. I be-

lieve that c o m p u t e r science has the potent ia l to give deep

new insights and quant i ta t ive u n d e r s t a n d i n g of the com-

pu t ing pa rad igm and ou r intellectual processes and thus,

just maybe, a possibility to grasp the limits of the knowable.

Acknowledgments
T h e views expressed here have been deeply inf luenced by

the author ' s par t ic ipat ion in the Nat ional Research Coun-

cil study resul t ing in the repor t , Computing the Future: A

Broader Agenda for Computer Science and Engineering [3] and

by discussions with col leagues at Cornel l Univers i ty and at

the Max Planck Insti tut fur In format ik in Saarbruecken,

Germany. Particularly influential have been Rober t Con-

stable, Fred Schneider , and Richard Zippel. T h e impor -

tance o f demos in c o m p u t e r science was emphas ized by

Constable and the impor tance of the immense differences

in the scale o f p h e n o m e n a in c o m p u t e r science was elo-

quent ly exp la ined by Zippel and c o m p a r e d to the still

badly unde r s tood p h e n o m e n a of tu rbu lence in fluid dy-

namics, where the wide r ange o f scales is cont r ibut ing to

the difficulty of the problem. []

References
1. Blum, M. A machine independent theory of the complexity

of recursive functions. J. ACM 14 (1967), 322-336.
2. Brooks, F.P. Jr. The Mythical Man-Month: Essays on Software

Engineering. Addison-Wesley, Reading, Mass., 1975.
3. Hartmanis, J. and Lin, H., Eds. Computing the Future: A

Broader Agenda for Computer Science and Engineering. National

Academy Press, Washington, D.C., 1992.
4. Hartmanis, J. Some observations about the nature of com-

putev science. In Foundations of Software Technology and Theo-

retical Computer Science. Lecture Notes in C o m p u t e r Science,

Vol. 761. Springer-Verlag, 1993, 1-12.

5. Har tmanis , J. and Stearns, R.E. On the contputat ional com-

plexity of algori thms. Trans. Amer. Math. Soc., 177 (1965),

285-306.

6. Li, M. and Vitanyi, P.I~I.B. An b~troduction to Kohnogorov Com-

plexity and Its Applications. Springer-Verlag, Heidelberg, Ger-

many, 1993.

7. Lewis, P.M., Stearns, R.E., and Har tmanis , J. Memory

bounds for the recognit ion for context-free and context-

sensitive languages . In Proceedings of IEEE Sbcth Annual Sym-

posium on Switching Circuit Theory and Logical Design. (1965),

pp. 191-202.

8. McCullach, W.S. A historical in t roduct ion to the postula-

tional fottndations of exper imenta l epistemology. In (hvss-

Cultural U~derstanding: Epistemology in Anthropology. F.C.S.

Northl 'op, and H.H. Livingston, Eds., Ha rpe r and Row, New

York, 1964.

9. McCar thy,J . Mathematical logic and artificial intelligence. In

The ArtiJ~cal Intelligence Debate. S.R. Grattbard, Ed., MIT

Press, Cambridge , Mass., 1988.

10. Savitch, w.J. Relat ionship between nondeterminis t ic and

determinist ic tape complexi t ies .J . Comput. Syst. Sci., 4 (1970),

177-192.

11. Shamiv, A. IP = PSPACE. J . ACM 39 (1992), 869-877.

12. Shannon , C. T h e mathemat ica l theory commtmicat ion . Bell

System 7~ch. J. 27 (1948), 379-656.

13. Stearns, R.E., Havtmanis , J., and Lewis, P.M. Hierarchies of

m e m o r y limited computa t ions . In Proceedings of IEEE Sixth

Annual Symposium on Switching Circuit TheoTy and Logical De-

sign. (1965), pp. 179-190.

14. Tur ing , A.M. On computable n tnnbers with an application to

the Entsche idungaprob lem. In Proceedings of the London

Mathematical Society, series 2, 42 (1936), 230-265.

15. Yamada, H. Real-time computa t ion and recursive functions

not real-t ime computable , 1EEE Trans. Elec. Comput. 11, 6

(1962), 753-760.

16. Younger , D.H. Recognit ion and pars ing of context-fi 'ee lan-

guages in t ime n :~. Information and Cont~vl 10, 2 (1967), 189-

208.

About the Author:

JURIS H A R T M A N I S is the Walter R. Read Professor of Engi-

nee r ing in the d e p a r t m e n t of compu t e r science at Cornell Uni-

versity. Cu r r en t research interests include theory of comput ing ,

computa t iona l complexity, and structural complexity. Author's

Present Address: Depa r t men t of C o m p u t e r Science, Cornell

University, 5149 Upson Hall, Ithaca, NY 14853; email:

jh@cs .cornel l .edu

This research was supported in part by National Science Foundation grant
#CCR-9123730 and by the Alexander von Humboldt Foundation and the
Max Planck Institut fur lnformatik in Saarhruecken, Germany.

Permission to copy without f~e all or part of this material is granted pro-
vided that the copies are not made or distrihuted for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© ACM 0002-0782/94/01000 $3.50

THE ONE HANDBOOK
FOR LINUX USERS

STEFAN STROBEL & THOMAS UHL

LINUX - UNLEASHIN6
THE WORKSTATIOH
IN YOUR PC
Busics, Inslullulion end Praclicul Use

Linux has emerged as a viable alternative to
commercial UNIX systems, with its ability to
turn a 386/486-PC into a UNIX workstation
with performance characteristics comparable

to a RISC workstation. As the definitive guide
to Linux, this book introduces the concepts
and features of Linux and explains how to

install and configure the system. Moreover,
it describes the features and services of the
Internet which have been instrumental in
the rapid development and wide distribution

of Linux. This book focuses on the Linux
graphical interface, its network capability

and extended tools. Using the book, readers

can get started quickly with Linux and begin
to explore a wide range of shareware applica-

tions that are available for the system.

1994/238 pp., 50 illus./Softcover $29.95
ISBN 0-387*58077-8

Three Ensy Weys Io Order
Toll-Free 1-800-SPRINGER (NJ call 201-348-4033)

or FAX 201-348-4505. Please mention S966.
WRfI1E to Springer-Verlag New York, Inc.,
Attn: J. Jeng, 175 Fifth Avenue, Dept. $966,
New York, NY 10010-7858.
VISIT your local bookstore.

Payment can be made by check, purchase order,
or credit card. Please enclose $2.50 for shipping
($1.00 each additional book) & add appropriate sales
tax if you reside in CA, IL, MA, N J, NY, PA, TX, VA,
and VT. Canadian residents please add 7% GST.
Foreign residents include $10.00 airmail charge.

Remember...yoar 30-day return privilege is always
guaranteed!
10/94 Reference #S966

@ Springer-Verlag New York

Circle.# 11 on Reader Service Card

¢ O M M U N | ¢ A T I O N S O F T H ~ A C M October 1994/Vol.37, No.10 4 3

