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The best known Turing patterns are composed of stripes or simple hexagonal arrangements of spots.

Until recently, Turing patterns with other geometries have been observed only rarely. Here we

present experimental studies and mathematical modeling of the formation and stability of hexagonal

and square Turing superlattice patterns in a photosensitive reaction-diffusion system. The superlat-

tices develop from initial conditions created by illuminating the system through a mask consisting

of a simple hexagonal or square lattice with a wavelength close to a multiple of the intrinsic Turing

pattern’s wavelength. We show that interaction of the photochemical periodic forcing with the

Turing instability generates multiple spatial harmonics of the forcing patterns. The harmonics

situated within the Turing instability band survive after the illumination is switched off and form

superlattices. The square superlattices are the first examples of time-independent square Turing

patterns. We also demonstrate that in a system where the Turing band is slightly below criticality,

spatially uniform internal or external oscillations can create oscillating square patterns.

© 2006 American Institute of Physics. �DOI: 10.1063/1.2214167�

Turing patterns in reaction-diffusion systems have been

proposed as a mechanism for morphogenesis,
1–3

and the

Turing instability may play a major role in the generation

of skin patterns in a number of animals.
3–5

Early research

focused on Turing patterns that arise spontaneously from

random initial conditions, which are typically stripes or

hexagonal arrangements of spots. Additional patterns—

squares and superlattices composed of several simple

lattices—have been found in hydrodynamics. These re-

sults prompted a search for conditions under which such

patterns appear in reaction-diffusion systems with Turing

instability. Here we examine two overlapping classes of

these patterns: superlattices and squares.

I. INTRODUCTION

Turing’s seminal paper
1

on what are now known as Tur-

ing patterns triggered the study of pattern formation in non-

equilibrium reaction-diffusion systems. Turing patterns are

temporally stationary, spatially periodic patterns in reaction-

diffusion systems that arise via a saddle-node bifurcation of a

spatially uniform steady state that occurs at a finite wave

number. This bifurcation is often called the Turing bifurca-

tion. The initial theoretical investigations of the Turing insta-

bility were devoted to biological systems, but the first experi-

mental observation of Turing patterns
6

occurred in a

chemical reaction-diffusion system almost 40 years after Tur-

ing’s publication. Since then, most experimental and theoret-

ical studies of Turing patterns have concentrated on simple

hexagonal and stripe patterns, which arise spontaneously

from random initial conditions in experiments and computer

simulations.
7–11

The search for new Turing patterns also continued, in-

spired by findings in hydrodynamics, where nonequilibrium

macroscopic patterns in autonomous Bénard convection and

nonautonomous Faraday waves revealed the existence of

novel structures. Square patterns were observed in various

versions of Bénard convection, both in experimental and the-

oretical studies,
12–20

but such configurations were not found

in reaction-diffusion systems with Turing instability. It was

soon pointed out that a square pattern arising from a super-

critical Turing bifurcation is usually unstable to a stripe per-

turbation in a homogeneous, isotropic, reaction-diffusion

system.
21

Also, superlattices were found in experiments with

Faraday waves
22–24

and with Bénard convection
25,26

in verti-

cally vibrated fluid layers.

Gunaratne et al.
27

were the first to find new geometries

of Turing patterns. They demonstrated the existence of rhom-

bic patterns, which represent moderate deviations from hex-

agonal Turing structures, and, more importantly, they discov-

ered the simplest Turing hexagonal superlattice, the so-called

“black eye” pattern. Later, Zhou et al.
28

demonstrated that

these black eye patterns are not projections of a body-

centered cubic structure and suggested instead that they arise

from interaction between two layers with different activator

diffusion coefficients. On the theoretical side, Judd and

Silber
29

have analyzed superlattice Turing patterns formed

by interacting square or hexagonal lattices with different

wavelengths and spatial phases. Bachir et al.
30

have found

superlattice patterns in a bistable FitzHugh-Nagumo

reaction-diffusion model when the two homogeneously

stable states have Turing instabilities with different wave

numbers.

Our group has employed the photosensitivity of the chlo-

rine dioxide-iodine-malonic acid �CDIMA� reaction to affect

Turing patterns and to create specific initial conditions in

order to generate new patterns.
31–38

We have also studied

systems of two coupled layers with Turing instability to find

out what patterns can arise from their interaction.
39,40

Here

we present a review of our recent publications and some new
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results concerning two types of Turing patterns: superlattices

and squares.

II. METHODS

A. Two-layer system

The CDIMA reaction was carried out in a one-sided,

continuously-fed, unstirred reactor �CFUR� �Fig. 1�a��. The

reactor was thermostated at 4.0±0.2 °C. Two gel layers were

placed between a glass optical window and the feeding

chamber, a continuously fed stirred tank reactor �CSTR�. The

feed to the reactor consisted of three solutions, one contain-

ing chlorine dioxide, another iodine �Aldrich�, and the third

malonic acid �MA, Aldrich� and polyvinyl alcohol �PVA, Al-

drich, average molecular weight 9000-10000�, all in 10 mM

sulfuric acid. The residence time of the solution in the CSTR

was 230 s.

Above the feeding chamber, we placed an Anapore

membrane �Whatman, 0.2 �m pore size, thickness 0.10 mm�
impregnated with 4% agarose gel to eliminate stirring ef-

fects, and a cellulose nitrate membrane �Whatman, 0.45 �m

pore size� to improve contrast. The two gel layers separated

by an Anapore membrane were located above the mem-

branes: a 0.3 mm thick 2% agarose �Fluka� gel loaded with

10 g/ l PVA immediately above the top membrane, and a

0.3 mm thick polyacrylamide �PAA, Bio-Rad� gel �PAAG�
containing 10 g/ l starch �Aldrich� solution above the agarose

gel.

B. One-layer system with photochemical prepatterning

In this setup, the working medium was a single 2% aga-

rose gel layer �Fluka, thickness 0.3 mm, diameter 25 mm�. A

nitrocellulose membrane �Whatman, pore size 0.45 �m,

thickness 0.12 mm� was placed beneath the gel layer to en-

hance the contrast of the patterns. To provide rigidity to the

system, an Anapore membrane �Whatman, pore size 0.2 �m,

thickness 0.10 mm� impregnated with 4% agarose gel was

placed between the nitrocellulose membrane and the CSTR

chamber. A 300 W quartz halogen lamp was used for illumi-

nation. A patterned mask printed on transparent film was

placed in front of the light source, and its image was focused

on the gel. The mask consisted of a gray-scaled pattern of

hexagons or squares. We selected �F, the forcing wavelength

�wavelength of the mask image projected on the surface of

the gel layer�, as our control parameter. Two crossed polar-

izers or different types of neutral density filters were em-

ployed to control the light intensity. A Pulnix CCD video

camera equipped with a Hamamatsu camera controller was

used for image acquisition �Fig. 1�b��. Snapshots were taken

at a light intensity of 0.6 mW/cm2. In the absence of addi-

tional illumination through a mask after the pattern suppres-

sion, the iodine concentration replenished itself and the con-

centration of the starch–triiodide complex gradually

increased, giving rise to a new labyrinthine Turing pattern.

III. RESULTS

A. Mechanism of spontaneous formation
of black eye patterns in two-layer systems

1. Computational study

Zhou et al. suggested that the black eye patterns arise

due to interaction of two layers with different activator dif-

fusion coefficients.
28

We investigated this idea by developing

a simple model of two interacting layers, each of which ex-

hibits a Turing instability, but with different wavelengths.
39

Each layer contains the same set of reactants with the same

kinetics, but the diffusion coefficients within the layers differ

considerably. This situation might be realized experimentally

if there were a significant difference in the concentrations of

fixed ligands
41

between the two layers. The layer with faster

diffusion gives rise to the longer wavelength.

We employed a four-variable model with the general

form

�u1

�t
= Du1

�2u1 + ��u2 − u1� + f�u1,v1� ,

�v1

�t
= D

v1
�2

v1 + ��v2 − v1� + g�u1,v1� ,

�1�
�u2

�t
= Du2

�2u2 + ��u1 − u2� + f�u2,v2� ,

FIG. 1. Schematics of experimental setups. �a� Two-layer system that allows

spontaneous formation of superlattice patterns. �b� One-layer system for

photochemical induction of superlattices.
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�v2

�t
= D

v2
�2

v2 + ��v1 − v2� + g�u2,v2� ,

where the reactive species, u and v, and their diffusion coef-

ficients, Du and D
v
, are distinguished by subscripts i, j

=1,2, that specify the layer. The Laplacian terms describe

two-dimensional diffusion within the layers, while diffu-

sional exchange between the layers is represented by the lin-

ear coupling terms involving the parameter �. The functions

f and g specify the kinetic behavior of the system. We em-

ploy two specific models: the Brusselator,
42

with kinetics

given by

f�u,v� = a − �1 + b�u + u2
v ,

�2�
g�u,v� = bu − u2

v ,

and the Lengyel-Epstein �LE� model of the CDIMA

reaction,
41

with

f�u,v� = a − u −
4uv

1 + u2
,

�3�

g�u,v� = b�u −
uv

1 + u2� .

Figure 2�a� shows a dispersion curve for model �1,2� that

displays two Turing bands, one supercritical, the other sub-

critical. The different positions of the two bands are due to

the considerable differences between the diffusion coeffi-

cients in the layers. We changed the relevant diffusion coef-

ficients so as to keep constant the wave number of the maxi-

mum of the supercritical band while varying the wave

number of the maximum of the subcritical band. Figures 2�b�
and 2�c� show black eye patterns that develop starting from

the uniform steady states with small random perturbations of

the variables. When the ratio of diffusion coefficients in the

two layers is around 3, black eye patterns arise �Fig. 2�b��
with the ratio of moduli of the principal component vectors

equal to �3:1, as observed in experiments.
27,28

If the ratio of

diffusion coefficients is close to 4, the patterns that emerge

show a 2:1 ratio of moduli of the principal component vec-

tors �Fig. 2�c��.
These computational results demonstrate that interaction

between two thin layers with large differences in diffusion

can lead to spontaneous formation of black eye patterns.

2. Experiment

Gunaratne et al.
27

and Zhou et al.
28

have obtained black

eye patterns in a two-sided CFUR with different initial reac-

tants fed from the two sides, which leads to the establishment

of large opposing gradients of the initial reactants. The pat-

terns were attributed to interaction between a polyacrylamide

gel �PAAG� layer and a porous glass layer, in which, accord-

ing to their data, diffusion coefficients are 3–4 times smaller

than those in PAAG. We tried to get superlattice patterns in

more controlled conditions. We used a one-sided CFUR with

weaker, aligned gradients of initial reactants and two adja-

cent gel layers with drastically different diffusion coefficients

for starch and PVA, respectively. In this setting, we obtained

a superlattice pattern inverted with respect to the black eye

�Fig. 3�, which we termed a “white eye.”
40

The pattern has

been found only in a layer with minimal diffusion of the

starch-triiodide complex, a result in accord with our model-

ing results,
39

where superlattice patterns formed only in the

FIG. 2. Emergence of black eye patterns in model �1,2� of a two-layer

reaction-diffusion system. �a� Dispersion curve for model �1,2� displaying

two Turing bands, one above and the other below criticality. �b� Black eye

pattern that develops from random initial conditions; the ratio of moduli of

the principal component vectors is �3:1. Parameters are a=3.0, b=9.0, �

=0.1, Dx1
=16.7, Dy1

=36.4, Dx2
=49.5, Dy2

=117.6. �c� If the ratio of diffu-

sion coefficients is near 4, patterns emerge with the ratio of moduli of the

principal component vectors equal to 2:1. Parameters as in �a� and �b� ex-

cept: Dx1
=12.6, Dy1

=27.5. Periodic boundary conditions, system size 200

�200 space units.

FIG. 3. “White eye” Turing pattern in the two-layer experimental system.

The pattern emerges spontaneously at feed concentrations �I2�0=0.36 mM,

�ClO2�0=0.155 mM, �MA�0=1.87 mM and PVA concentration 1 g/ l. Fou-

rier spectrum of the pattern is shown as inset. Frame size is 4�4 mm.
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layer with the shorter wavelength. The pattern in Fig. 3 is not

perfectly regular, probably due to spatial nonuniformities in

this multilayer system.

B. Emergence of superlattices from simple lattice
initial conditions

In our first study of the effects of spatially organized

photochemical forcing on Turing patterns, we found that

hexagonal patterns of illumination with wavelengths close to

the intrinsic wavelength accelerate evolution of the sponta-

neously occurring, somewhat irregular, hexagonal patterns

toward perfect lattices without defects.
34

Later, we examined

the effects of subharmonic patterned illumination with ratios

of the illumination wavelength to that of the intrinsic pattern

near 2.0, 3.0, etc. The most interesting phenomena occur in

the middle of the Turing parametric domain, where the width

of the Turing instability band is the largest and labyrinthine

stripe patterns develop spontaneously. There, photochemi-

cally induced concentration patterns of simple hexagonal or

square lattices evolve into superlattice patterns after the illu-

mination is switched off.
37

When the CSTR underneath the gel layer was fed with

the reagents of the CDIMA reaction with initial concentra-

tions �I2�0=0.37 mM, �MA�0=1.8 mM, �ClO2�0=0.14 mM,

and �PVA�0=10 g/ l, labyrinthine patterns developed sponta-

neously. Fourier spectra showed that the wavelength of a

stationary pattern, �P, was 0.45±0.02 mm. After the labyrin-

thine pattern was established, the system was brought to a

spatially uniform steady state by illumination with uniform

light of high intensity �70 mW/cm2 at the gel surface� from

a quartz halogen lamp. As a result of this strong illumination,

which was typically maintained for 5 min, the iodine con-

centration and the concentration of the starch–triiodide com-

plex �responsible for the dark blue color� decreased in the

entire illuminated area, and the uniform “white” state re-

placed the pattern.

After pattern suppression the light intensity was reduced

to 23.6 mW/cm2, a mask was placed between the light

source and the reactor, and the image of the mask was fo-

cused on the surface of the gel layer. The illumination

through the mask was turned off when the photochemically

induced pattern became stationary, which typically happened

after 30 min of illumination.

1. Hexagonal superlattices

In most cases, we used masks with hexagonal patterns of

transparent spots with the transmittance of light through the

mask proportional to a sum of sinusoidal functions in the

x , y space. The intensity of the light falling on the surface of

the gel layer �w� is given by

w = W��sin�2�

�F

x� + sin	2�

�F

�1

2
x +

�3

2
y� +

�

6



+ sin	2�

�F

�1

2
x −

�3

2
y� +

�

3

�2

9
+

1

3
� . �4�

Here W is the intensity of the light falling on the gel surface

in the absence of a mask. �F is the wavelength of the mask

image projected on the surface of the gel layer, i.e., the forc-

ing wavelength. Specific values of �F were set by changing

the distance from the light source to the CFUR while keep-

ing the mask image focused on the surface of the gel layer.

We varied the ratio �R� of the forcing wavelength �F to �P:

R = �F/�P �5�

in the range 0.8–6.0.

Figure 4 shows superlattices induced with hexagonal

masks with R=2.0, 2.5, 3.0, 3.2, 4.0, and 5.0. The first row

shows a black eye pattern. Other superlattices include hon-

eycomb structures containing continuous black lines. Super-

lattices induced with integer values of R persisted for more

than 10 h before slowly beginning to deteriorate. All the su-

perlattices preserved the positions and sizes of the unit cells

of the original illumination patterns. Superlattices can be in-

duced for a range of spatial periods of the illumination pat-

tern, i.e., R can deviate significantly from an integer. A su-

perlattice induced with R at or near an integer N displays

concentration oscillations along the principal translation axes

in which one spatial period contains N maxima. We desig-

nate such a pattern superlattice-N. Figures 4�b�–4�d� all show

superlattice-3 patterns but superlattices induced with R equal

to 2.5 or 3.2 were less stable than those obtained with R

FIG. 4. Development of hexagonal superlattices in experiments with the

CDIMA reaction-diffusion system. The initial conditions were created by

illumination through transparent spot hexagonal masks with R= �a� 2.0, �b�
2.5, �c� 3.0, �d� 3.2, �e� 4.0, �f� 5.0. The first column displays patterns

immediately after the end of illumination through the mask. The numbers

above the columns show the time after cessation of illumination. Black

corresponds to high concentration of the triiodide-PVA complex. Frame size

is 5�5 mm.
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=3.0. Defects appeared after 1–2 h, and these superlattices

gradually evolved into labyrinthine patterns. Figure 4�f�
demonstrates that an illumination pattern with R=5 produces

an imperfect superlattice-4 with multiple defects, probably

due to a zig-zag instability.

Superlattice patterns were also obtained using illumina-

tion through inverted hexagonal masks, where the center of

each spot is opaque and the area between spots is transpar-

ent. Superlattice patterns formed with such masks resemble

the superlattice patterns obtained with the corresponding

original mask, though the latter patterns display fewer de-

fects. Figure 5 demonstrates the evolution of hexagonal su-

perlattices induced with opaque spot masks. Illumination

with R=2.0 and 3.0 yielded superlattice-2, while R=4.0 gen-

erated superlattice-4. These patterns have more defects than

the patterns induced with transparent spot masks and soon

start to lose the symmetry of the elementary cells.
38

To analyze the mechanism of generation and the charac-

teristics of these superlattices, we employed a modified LE

model:
9,32,41

�u

�t
= a − u −

4uv

1 + u2
− w�x,y� + �2u ,

�6�
�v

�t
= �	b�u −

uv

1 + u2
+ w�x,y�� + d�2

v
 ,

where w�x ,y� represents the effect of the photochemical re-

action that consumes I− and produces ClO2
− at a rate propor-

tional to the intensity of illumination. As in the experiment,

the illumination patterns are hexagonal lattices with the in-

tensity of illumination determined by the sum of three sinu-

soidal functions chosen so that the minimum intensity is

zero. The maximum intensity is designated W, as shown in

Eq. �4�.
Simulations allow us to follow the development of su-

perlattices in detail and to generate high quality Fourier spec-

tra of the patterns. Figure 6 shows simulations of the evolu-

tion of a superlattice-4 from direct and inverted hexagonal

illumination patterns with R=4.0. The first column shows the

illumination patterns, which have the same single spatial fre-

quency. The Fourier spectra in the second column, taken im-

mediately after the end of illumination, reveal that interac-

tion of the photochemical periodic forcing with the Turing

instability results in generation of multiple resonant triplets

of wave vectors, which are subharmonics of the external

forcing. The two illumination patterns generate two different

sets of transient spatial harmonics. During evolution of the

system after cessation of illumination, only harmonics situ-

ated within the Turing instability band grow. The amplitudes

of other harmonics decrease drastically, so they are practi-

cally invisible in the spectra in the last column of Fig. 6,

where the final identical patterns and Fourier spectra are

shown.
38

Our simulations showed that illumination patterns with

opaque spots always induce superlattices with black central

disks, while illumination pattern with transparent spots gen-

erate superlattices-2 and -4 with black central disks and

superlattices-3 and -5 with white central disks �Fig. 7�. Thus,

inversion of the illumination pattern leads to inversion of the

resulting superlattice at odd N, but makes no difference at

even N. This coincides with the experimental results for N

=2, 3, and 4.

We note that black eye patterns that arise from random

initial conditions have ratios of the moduli of the principal

wave vectors equal to 1:�3 in Ref. 27 and 1:�3 or 1:2 in our

computational experiments,
39

while those generated from the

hexagonal lattice initial conditions show ratios of 1 :�3/2.
37

FIG. 5. Development of hexagonal superlattices induced with the opaque

spot hexagonal masks with R= �a� 2.0, �b� 3.0, �c� 4.0 in experiments with

the CDIMA system. Frame size is 5�5 mm.

FIG. 6. Simulated development of a superlattice-4 induced by direct and

inverted hexagonal illumination patterns with R=4.0 and the amplitude of

illumination, W=3.0 �Eq. �4��. The first column shows illumination patterns

with illuminated spots on a dark background �top row� and opaque spots on

an illuminated background �third row�. The second column shows the in-

duced patterns and their Fourier spectra almost immediately after the end of

illumination. The last column shows the identical stable superlattice-4 pat-

terns. Model �6� with parameters: a=12, b=0.2, d=1, �=50. Zero-flux

boundary conditions, system size 256�256 space units.
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2. Square lattices

By illuminating the surface of the gel layer with square

patterns of transparent spots that had R around 2, 3, and 4 we

were able to obtain square superlattices-2, -3, and -4 �Fig.

8�.37
The square superlattices were rather short-lived and

evolved into labyrinthine patterns after several hours. When

R was 5.0, the pattern that emerged under illumination had a

hexagonal elementary cell and evolved to a mixture of

stripes and spots within 1 h �Fig. 8�d��.

We employed our modified LE model
32

to simulate for-

mation of square Turing superlattices from the forced square

lattice photochemical patterns. We obtained superlattices-2 to

-4 �Fig. 9�, but only superlattice-3 was stable, the others

eventually turned into various types of stripe patterns.

3. Stability of superlattice patterns

Previous studies have shown that near the boundaries of

the Turing domain simple hexagons are stable, but deeper

inside this domain, hexagonal patterns become unstable to

stripelike perturbations and are converted to stripe patterns.

Still deeper within the Turing domain, stripe patterns un-

dergo the Eckhaus instability, resulting in labyrinthine pat-

terns. The basic square pattern is generally unstable.
8

We were able to induce superlattice patterns in the cen-

tral region of the Turing domain, where the spectrum of Tur-

ing instability is quite wide, the labyrinthine stripe patterned

perturbations are the fastest growing, and the basic symmet-

ric patterns are unstable. In our simulations, all hexagonal

superlattices with N from 2.1 to 5.0 and square superlattice-3

were stable under both zero flux and periodic boundary con-

ditions. To confirm their stability, the established superlat-

tices were subjected to global perturbation by small ampli-

tude natural labyrinthine patterns for times an order of

magnitude longer than the time of development of the super-

lattices. After removal of the noise, the perturbed patterns

relaxed back to the original superlattices. We also studied

competition between labyrinthine patterns and superlattices.

We subjected part of a rectangular area to patterned illumi-

nation, while the remaining part was not illuminated. During

the transition period after switching off the illumination, lim-

ited invasion of the labyrinthine pattern into the superlattice

region took place. This invasion resulted in formation of a

narrow stripe-dot boundary between the two regions, parallel

to the original boundary of illumination. After that, some

FIG. 7. Parity relations in simulations of illumination patterns and the re-

sulting superlattices. Top row: mask of opaque spots; bottom row: mask of

transparent spots. Numbers above the columns show the wavelength ratio, R

and the amplitude of illumination, W �Eq �4��. Model �6� with parameters as

in Fig. 6. Zero-flux boundary conditions, system size 128�128 space units.

FIG. 8. Square Turing superlattices induced by illumination through square

masks of transparent spots in experiments with the CDIMA system. First

column shows patterns immediately after the end of illumination through the

mask; second column displays patterns 1 h later. R= �a� 2.1, �b� 3.2, �c� 4.3,

�d� 5.3. Frame size is 5�5 mm.

FIG. 9. Square Turing superlattices develop from forced square lattice pho-

tochemical patterns in computer simulations. The wavelength ratio, R and

the amplitude of illumination, W are �a� R=2.0, W=1.0; �b� R=2.4, W

=1.0; �c� R=3.2, W=2.0; �d� R=4.0, W=2.0. Model �6� with parameters as

in Fig. 6. Zero-flux boundary conditions, system size 128�128 space units.
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rearrangement took place in the labyrinthine portion of the

system, but no further changes occurred in the superlattice

pattern.
37

On the other hand, in the experiments some superlattices

persisted for more than 10 h but ultimately deteriorated into

labyrinthine patterns. Since the corresponding patterns in the

model are stable, we believe that the instability in the experi-

ments arose from imperfections in the experimental system.

C. Square superlattices induced
by oscillatory forcing

We have found stable oscillating square superlattices in

the Brusselator reaction-diffusion model where a subcritical

Turing band interacted with bulk oscillations. The bulk os-

cillations could originate from the Hopf instability in the

autonomous system or from spatially uniform external peri-

odic forcing. In both cases we found the same superlattice-2,

which transformed from black eye patterns to double lattices

of solid squares and back during various phases of the oscil-

latory cycle �Fig. 10�.43

To summarize our results on Turing square patterns, we

have found stable square Turing patterns in reaction-

diffusion models. In all cases we investigated, however,

these patterns were always superlattices. No stable simple

square patterns were found.

D. Multistability and coexistence of superlattices

We have generated stable and robust hexagonal superlat-

tices with N from 2 to 5 and square superlattices-3 in our

simulations with model �6� using the same set of parameters

and various lattice initial conditions �see Sec. III B�. This

multistability can be employed to create multiple adjacent

domains with different geometries and stationary domain

walls between them. Here we demonstrate several examples.

Figure 11 presents development of coexisting stable domains

of square and hexagonal superlattices-3. Figure 12 demon-

strates that domains of square superlattice-3 and hexagonal

superlattices-2, -3, and -4 can develop simultaneously from

suitable initial conditions and form a stable compound pat-

tern with stationary domain walls.

IV. DISCUSSION

Until recently the only known symmetric stable Turing

patterns were hexagonal lattices, parallel stripe patterns and a

single superlattice, the black eye pattern. Inspired by the dis-

covery of square and superlattice patterns in Bénard convec-

tion, where the basic instability is of the same type as Tur-

ing’s, we have sought to expand the zoo of symmetric Turing

patterns

We have found that, in the CDIMA reaction-diffusion

system, illumination patterned as a simple hexagonal or

square pattern creates initial conditions leading to develop-

ment of superlattice patterns that persist for 10 h or more

before starting to deteriorate. In computer simulations, we

have shown that such a procedure results in formation of

stable superlattices in wide ranges of parameters. We have

also shown that these superlattices can form coexisting do-

mains separated by stationary domain walls.

The square superlattices are the first examples of time-

independent Turing square patterns found in reaction-

diffusion models. Recently, Roussel and Wang
44

found a

simple square lattice pattern in an excitable version of the

Gray-Scott model. They showed that sequential duplication

FIG. 10. A stable oscillating square superlattice-2 in the Brusselator

reaction-diffusion model when a subcritical Turing band interacts with bulk

oscillations. Transformation of the pattern is shown from a black eye to a

double lattice of solid squares and back during various phases of the oscil-

latory cycle. Reaction kinetics is given by Eq. �2�. Parameters are a=3.0,

b=10.2, Du=6.0. D
v
=10.0. Periodic boundary conditions, system size

128�128 space units.

FIG. 11. Coexistence of stable domains of square and hexagonal

superlattices-3 in simulations. The top frame shows the illumination pattern,

the next frame displays the pattern immediately after the end of illumination

and the third frame shows the stable pattern. Model �6� with parameters as

in Fig. 6. Zero-flux boundary conditions, system size 512�256 space units.
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of a single rectangular spot can lead to development of a

long-lived, nearly stationary, simple square lattice in a square

system with periodic boundary conditions and length eight

times the pattern wavelength. However, when we repeated

their simulation for a time five times longer than theirs, the

square lattice eventually evolved to a hexagonal lattice. It is

known that in small systems a square boundary can stabilize

square lattices in models where a Turing bifurcation is super-

critical. Still, the fact that the square pattern is a metastable

attractor in the Roussel and Wang study points to the possi-

bility of finding truly stable simple square lattices in systems

with a subcritical Turing bifurcation.

We have also demonstrated that in a system where the

Turing band is subcritical, internal or external spatially uni-

form oscillations can create oscillating square patterns. Thus,

specific initial conditions, internal resonances and spatially

uniform periodic forcing of Turing systems can produce a

variety of stable symmetric patterns with geometries differ-

ent from the more familiar ones.
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