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Abstract

Turing instability in activator-inhibitor systems provides a paradigm of nonequilibrium pattern formation;

it has been extensively investigated for biological and chemical processes. Turing pattern formation should

furthermore be possible in network-organized systems, such as cellular networks in morphogenesis and

ecological metapopulations with dispersal connections between habitats, but investigations have so far been

restricted to regular lattices and small networks. Here we report the first systematic investigation of Turing

patterns in large random networks, which reveals their striking difference from the known classical behavior.

In such networks, Turing instability leads to spontaneous differentiation of the network nodes into activator-

rich and activator-low groups, but ordered periodic structures never develop. Only a subset of nodes having

close degrees (numbers of links) undergoes differentiation, with its characteristic degree obeying a simple

general law. Strong nonlinear restructuring process leads to multiple coexisting states and hysteresis effects.

The final stationary patterns can be well understood in the framework of the mean-field approximation for

network dynamics.
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I. INTRODUCTION

In 1952, A. Turing published a seminal paper [1], demonstrating that differences in diffusion

rates of reacting species can alone destabilize the uniform state of the system and lead to the

formation of spatial patterns and suggesting this as a possible mechanism of biological morphogen-

esis. The Turing instability and resulting patterns have subsequently been theoretically analyzed

and experimentally confirmed for various chemical, biological, and ecological systems [2–6]; they

are generally viewed as a paradigm of nonequilibrium pattern formation. In 1971, Othmer and

Scriven [7] pointed out that the Turing instability is also possible in network-organized systems and

this should be important for the understanding of multi-cellular morphogenesis. At an early stage

of the organism development, a network of inter-cellular connections is formed and morphogens

are diffusively transported over such a network; differentiation of cells may thus be induced by

the network Turing instability. On the other hand, many ecosystems represent metapopulations

distributed over discrete habitats forming networks with dispersal connections [8, 9]. Prey and

predator or host and parasite species may migrate over such networks with different diffusional

mobilities. Recently, diffusional spreading of infectious diseases over airline transportation net-

works has attracted much attention [10]. Epidemic dynamics on the networks can be described

by reaction-diffusion models where infected and susceptible individuals play the role of interacting

species [11, 12]. In all such network-organized systems with diffusional transport of interacting

species, the Turing instabilities and resulting nonlinear patterns can generally be expected.

Although nonlinear dynamics on complex networks is attracting significant attention, most

of the investigations have focused on synchronization phenomena of oscillator networks (see, e.g.,

recent reviews [13, 14]). Despite the potential importance of network Turing patterns and the large

amount of research on classical Turing patterns in spatially extended systems, very little research

on this problem has been performed so far. Early studies by Othmer and Scriven [7, 15] have

provided abstract mathematical framework for the analysis of network Turing instability, but they

explicitly considered only simple examples of regular lattices close in their properties to continuous

media. Recently, Horsthemke et. al. [16, 17] have discussed the possibility of Turing instability in

coupled chemical reactors, but only for small networks.

In this article, we present the systematic analytical and numerical study of the Turing instability

and of the developing nonlinear patterns in large random networks. We find that the Turing

instability generally occurs in network-organized activator-inhibitor systems, but its properties are

very different from those characteristic for the classical continuous media.
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II. NETWORK-ORGANIZED ACTIVATOR-INHIBITOR SYSTEMS

Classical activator-inhibitor systems in continuous media are described by equations of the form

∂

∂t
u(x, t) = f(u, v) +Dact∇

2u(x, t),

∂

∂t
v(x, t) = g(u, v) +Dinh∇

2v(x, t), (1)

where u(x, t) and v(x, t) are local densities of the activator and inhibitor species. Here, the

functions f(u, v) and g(u, v) specify dynamics of the activator that autocatalytically enhances

its own production and of the inhibitor that suppresses the activator growth. Dact and Dinh are

the diffusion constants of the activator and inhibitor species. The classical Turing instability [1]

sets in as the ratio Dinh/Dact of the two diffusion constants is increased and exceeds a threshold.

It leads to spontaneous development of alternating activator-rich and activator-low domains from

the uniform background.

In our study, we consider the network analog of the model (1), where activator and inhibitor

species occupy discrete nodes of a network and are diffusively transported over the links connecting

them. We consider a connected network consisting of N nodes, i = 1, · · · , N . The network topology

is defined by a symmetric adjacency matrix whose elements Aij take values Aij = 1 if the nodes i

and j are connected (i 6= j) and Aij = 0 otherwise. Diffusive transport of the species into a certain

node i is simply given by the sum of incoming fluxes to the node i from other connected nodes {j},

where the fluxes are proportional to the concentration difference between the nodes (Fick’s law).

By introducing the network Laplacian matrix whose elements are given by Lij = Aij − kiδij , where

ki =
∑N

j=1Aij is the degree of the node i, diffusive flux of the species u to node i is expressed as
∑N

j=1Lijuj =
∑N

j=1Aij(uj − ui), and similarly for v. Generally, diffusional mobilities of species u

and v on the network are different. The equations describing network-organized activator-inhibitor

systems are thus given by

d

dt
ui(t) = f(ui, vi) + ε

N
∑

j=1

Lijuj ,

d

dt
vi(t) = g(ui, vi) + σε

N
∑

j=1

Lijvj , (2)

for i = 1, · · · , N . Here, f(u, v) and g(u, v) specify the local activator-inhibitor dynamics on indi-

vidual nodes. We denote the diffusional mobility of the activator species as ε(= Dact) and of the

inhibitor species as σε(= Dinh), so that σ = Dinh/Dact is the ratio between them. The considered
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systems have a uniform stationary state (ū, v̄), where f(ū, v̄) = 0 and g(ū, v̄) = 0. This uniform

state can become unstable as a result of the Turing instability. If u and v correspond to the acti-

vator and inhibitor species, functions f and g should satisfy several conditions which are given in

the Methods section.

As the examples of activator-inhibitor systems, we use the Mimura-Murray model of prey-

predator populations [3] and the classical Brusselator model [2] which are described in the Methods

section. This study is focused on the Turing instability and pattern formation in large random

networks. We use scale-free networks which are ubiquitous in Nature [13, 14, 18, 19] and the classical

Erdös-Rényi random networks [18, 19], both described in the Methods section. For convenience,

network nodes {i} are always sorted below in the decreasing order of their degrees {ki}, so that

the condition k1 ≥ k2 ≥ · · · kN holds.

III. THE TURING INSTABILITY

The Turing instability is revealed through the linear stability analysis of the uniform stationary

state with respect to nonuniform perturbations (see Methods for the details). In the classical case of

continuous media [1], nonuniform perturbations are decomposed over a set of spatial Fourier modes,

representing plane waves with different wavenumbers. As has been originally noticed by Othmer

and Scriven [7], in the networks, the role of plane waves should be played by eigenvectors of their

Laplacian matrices. The eigenvalues Λα and eigenvectors φ(α) = (φ
(α)
1 , · · · , φ

(α)
N ) of the Laplacian

matrix Lij are determined [13, 20] by
∑N

j=1 Lijφ
(α)
j = Λαφ

(α)
i , with α = 1, · · · , N . All eigenvalues

of Lij are non-positive. We sort the indices {α} in the decreasing order of the eigenvalues, so that

the condition 0 = Λ1 ≥ Λ2 ≥ · · · ≥ ΛN always holds.

Introducing small perturbations (δui, δvi) to the uniform state as (ui, vi) = (ū, v̄) + (δui, δvi)

and substituting this into equations (2), a set of coupled linearized differential equations is ob-

tained. By expanding the perturbations over the set of Laplacian eigenvectors as δui(t) =
∑N

α=1 cα exp [λαt]φ
(α)
i and δvi(t) =

∑N
α=1 cαBα exp [λαt]φ

(α)
i , these equations are transformed into

N independent linear equations for different normal modes. The linear growth rate λα of the α-th

mode is determined from the characteristic equation. When Re λα is positive, the α-th mode is

unstable. The Turing instability takes place when one of the modes (i.e., the critical mode) begins

to grow. At the instability threshold, Re λα = 0 for some α = αc and Re λα < 0 for all other

modes. In the Turing instability, the critical mode is not oscillatory, Im λαc
= 0.

As an example, Fig. 1 shows the growth rate λ as a function of Λ for the Mimura-Murray model.
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At ε = 0.060, three curves corresponding to different ratios σ of diffusion constants (below, at and

above the instability threshold) are displayed. In this figure, critical curves for two other values of

the parameter ε are also shown.

Generally, the Turing instability becomes possible for σ > σc. The dispersion curve λ =

F (εΛ) first touches the horizontal axis at Λ = Λc and the Laplacian mode φ
(αc)
i , possessing the

Laplacian eigenvalue Λαc
that is closest to Λc, becomes critical. For the critical mode, the coefficient

Bα is positive, so that when the activator concentration increases, the inhibitor concentration

also increases accordingly. Explicit expressions are given in the Methods section. Note that the

Laplacian spectrum of a network is discrete and, therefore, the instability actually occurs only

when one of the respective points on the dispersion curve crosses the horizontal axis.

The above results are analogous to those holding for continuous media (cf. [21]). The critical

ratio σc in the networks is the same as in the classical case. The Laplacian eigenvalue Λc of the

critical network mode corresponds to −q2c , where qc is the wavenumber of the critical mode in the

continuous media. Despite such formal analogies, properties of the network Turing patterns are

very much different from their classical counterparts, as demonstrated in the following sections.

IV. LOCALIZATION OF LAPLACIAN EIGENVECTORS AND CHARACTERISTIC

PROPERTIES OF CRITICAL TURING MODES

When a Turing pattern starts to grow after slightly exceeding the instability threshold, the

activator distribution in this pattern is determined by the critical Laplacian eigenvector, i.e. we

have δui ∝ φ
(αc)
i . Therefore, to understand organization of the growing Turing patterns, properties

of Laplacian eigenvectors should be considered.

As an example, Figs. 2(a,b) display critical eigenvectors of a network for two different values of

the diffusion constant ε. The same eigenvectors are shown graphically in Figs. 2(c,d). In the chosen

representation, network nodes with larger degrees (hubs) are located in the center and the nodes

with lower degrees in the periphery of the graph. The nodes are colored red when φ
(αc)
i ≥ 0.1 (e.g.

activator concentration is significantly increased), blue when φ
(αc)
i ≤ −0.1 (significantly decreased),

and yellow for −0.1 < φ
(αc)
i < 0.1 (no significant change).

It is clearly seen in Fig. 2 that spontaneous differentiation of the nodes takes place - the dis-

tinguishing feature of the Turing instability. However, it affects only a fraction of all nodes. The

differentiated nodes, with significant deviations of the activation level, tend to have close degrees.

When the diffusional mobility ε is small, only a subset of hub nodes undergoes differentiation
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[Figs. 2(a),(c)]. If ε is large, differentiated nodes have just a few links [Figs. 2(b),(d)]. Thus, a cor-

relation between the characteristic degrees of the differentiated nodes and the diffusional mobility

is present. The behavior observed in Fig. 2 is general. As we show below, it is related to the effect

of localization of Laplacian eigenvectors in large random networks.

As has recently been discussed [22], Laplacian eigenvectors in large random networks with

relatively broad degree distributions tend to localize on subsets of nodes with close degrees. The

localization effect for a scale-free network is illustrated in Fig. 3. Here, all nodes are divided into

groups with equal degrees k. For each group k and a given Laplacian eigenvalue Λ, the number

of “differentiated” nodes with φ
(α)
i ≥ 0.1 or φ

(α)
i ≤ −0.1 in the respective eigenvector φ

(α)
i is

counted. The density diagrams in Fig. 3 display in the color code the relative numbers of such

nodes as functions of the Laplacian eigenvalue Λ and the degree k. Examining Fig. 3, one can see

that differentiated nodes are approximately located along the diagonal of the density map. The

localization effect is more pronounced for the larger network of size N = 1000. Similar localization

behavior is observed for the Erdös-Rényi networks (see Supplementary information). Thus, we

see that each Laplacian eigenvector φ
(α)
i is characterized by its characteristic localization degree

k̄α. Moreover, this characteristic degree is approximately equal to the negative of the respective

eigenvalue, so that a simple relationship k̄α ≃ −Λα holds.

On the other hand, as implied by the linear stability analysis (see Methods), the growth rate λα

of each mode depends only on the combination εΛα of the diffusional mobility ε and the eigenvalue

Λα of that mode, i.e. we have λα = F (εΛα). Therefore, the Laplacian eigenvalue Λαc
of the critical

mode αc with λαc
= 0 should be inversely proportional to the diffusive mobility ε, i.e., Λαc

∝ 1/ε.

Hence, modes with large negative eigenvalues Λα tend to become unstable for the small mobilities

ε (note that Λα ≤ 0 in our definition).

Combining the two relationships, k̄α ≃ −Λα and Λαc
∝ 1/ε, a simple scaling law k̄αc

∝ 1/ε

is obtained. It implies that the characteristic degree k̄αc
of the differentiating subset is inversely

proportional to the diffusional mobility ε.

The dependence Λαc
∝ 1/ε holds for any activator-inhibitor model exhibiting the Turing in-

stability. The localization of Laplacian eigenvectors has been observed by us (to be separately

published) also for other random networks with relatively broad degree distributions. The charac-

teristic localization degree k̄αc
of the critical Turing mode is generally a monotonously increasing

function of the negative of the critical Laplacian eigenvalue, −Λαc
, and thus a decreasing function

of the diffusional mobility ε.
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V. STATIONARY TURING PATTERNS

The initial exponential growth is followed by a nonlinear process, leading to the formation of

stationary Turing patterns. The nonlinear evolution of the system and the properties of emerging

stationary patterns have been studied by us in numerical simulations. Figure 4 presents typical

results, obtained for intermediate diffusional mobility (ε = 0.12) and slightly above the instability

threshold (σ = 15.6) for the Mimura-Murray model on the random scale-free network of size

N = 1000 and mean degree 〈k〉 = 20. The nodes are sorted in the order of their degrees, as shown

in Fig. 4(d).

Starting from almost uniform initial conditions with small perturbations, exponential growth is

observed at the early stage. The activator pattern at this stage, Fig. 4(b), is similar to the critical

mode, Fig. 4(a), with the deviations due to the contributions from neighboring modes that are

already excited to some extent. Later on, however, strong nonlinear effects develop, and the final

stationary pattern, Fig. 4(c), becomes very different from the one determined by the critical mode.

Observing the nonlinear development, we notice that some nodes get progressively kicked off the

main group near the destabilized uniform solution in this process (see Video in the Supplementary

information). Eventually, in the asymptotic stationary state, the nodes become separated into two

groups. The separation into two groups occurs only for the nodes with relatively small degrees

(roughly i > 200, ki < 24), while the nodes with high degrees (i < 200, ki > 24) do not undergo

the differentiation.

Our numerical investigations furthermore reveal that the outcome of nonlinear evolution de-

pends sensitively on initial conditions. Different Turing patterns are possible at the same parameter

values and strong hysteresis effects are observed. As an example, Fig. 5(a) shows how the amplitude

of the stationary Turing pattern, defined as A =
[

∑N
i=1

{

(ui − ū)2 + (vi − v̄)2
}

]1/2
, varies under

gradual variation of the parameter σ in the upward or downward directions. Stationary patterns

observed at points P , Q, and R in Fig. 5(a) are shown in Fig. 5(b).

As σ was increased starting from the uniform initial condition, the Turing instability took place

at σ = σc, with the amplitude A suddenly jumping up to a high value that corresponds to the

appearance of a kicked-off group. If σ was further increased, the amplitude A grew. Starting to

decrease σ, we did not however observe a drop down at σ = σc. Instead, a punctuated decrease in

the amplitude A, which is characterized by many relatively small steps, was found. Reversing the

direction of change of the parameter σ at different points, many coexisting solution branches could

be identified. The characteristics of Turing patterns vary with their amplitudes. When A is close
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to zero [ point R in Fig. 5(a) ], only a few kicked-off nodes remain in the system. Such localized

Turing patterns with only a small number of destabilized nodes can coexist with the linearly stable

uniform state and are found below the Turing instability threshold, for σ < σc.

VI. THE MEAN-FIELD THEORY

To understand properties of the developed Turing patterns above the instability boundary

(σ > σc), one can use the mean-field approximation, similar to that previously employed in the

investigations of epidemics spreading on networks [23] and for the networks of phase oscillators [24].

We start by writing equations (2) in the form

d

dt
ui(t) = f(ui, vi) + ε(h

(u)
i − kiui),

d

dt
vi(t) = g(ui, vi) + σε(h

(v)
i − kivi), (3)

where local fields felt by each node, h
(u)
i =

∑N
j=1Aijuj and h

(v)
i =

∑N
j=1Aijvj , are introduced.

These local fields are further approximated as h
(u)
i ≃ kiH

(u) and h
(v)
i ≃ kiH

(v), where global mean

fields are defined by H(u) =
∑N

j=1wjuj and H(v) =
∑N

j=1wjvj. The weights wj = kj/
(

∑N
ℓ=1 kℓ

)

=

kj/ktotal take into account the difference in contributions of different nodes to the global mean

field, depending on their degrees (cf. [23, 24]). Thus, the local fields are taken to be proportional

to the degree of a node, ignoring the details of its actual connections.

With this approximation, the individual activator-inhibitor system on each node interacts only

with the global mean fields, and its dynamics is described by

d

dt
u(t) = f(u, v) + β(H(u) − u),

d

dt
v(t) = g(u, v) + σβ(H(v) − v). (4)

We have dropped here the index i, since all nodes obey the same equations, and introduced the

parameter β(i) = εki. If diffusion ratio σ is fixed and the global mean fields H(u) and H(v) are

given, the parameter β plays the role of a bifurcation parameter that controls the dynamics of

each node. Equations (4) have a single stable fixed point when β = 0 (i.e. ε = 0), and, as β is

increased, this system typically undergoes a saddle-node bifurcation that gives rise to a new stable

fixed point.

As an example, we have computed stationary Turing patterns for the Mimura-Murray model by

numerical integration of equations (2) and determined the respective global mean fields H(u) and
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H(v) at σ = 15.6 and σ = 30. Substituting these computed global mean fields into equations (4),

bifurcation diagrams for a single node have been obtained (solid curves in Fig. 6 (a,c)). In this

example, one of the two stable branches vanishes by another saddle-node bifurcation when β is

increased further. These diagrams can be compared with the actual stationary Turing patterns.

Each node i in the network is characterized by its degree ki, so that it possesses a certain value

of the bifurcation parameter, β = εki. Therefore, the Turing pattern can be projected onto these

bifurcation diagrams, as shown by crosses in Fig. 6(a,c). We see a relatively good agreement

between the stable branches and the data from the actual Turing patterns. Furthermore, we

directly compare in Fig. 6(b,d) the computed Turing patterns with the mean-field predictions,

based on equations (4). The Turing patterns are well fitted by the stable branches, though the

scattering of numerical data gets enhanced near the branching points.

In the Supplementary information, a similar analysis is performed for the Brusselator model.

This model has a different bifurcation diagram in the presence of external fields. Nonetheless,

a good agreement with the predictions of the mean-field theory is again observed. Thus, fully

developed Turing patterns in the networks are essentially explained by the bifurcation diagrams of

a single node coupled to global mean fields, with the coupling strength determined by the degree

of the respective network node. The mean-field theory is generally not applicable for the localized

Turing patterns found below the Turing instability threshold.

VII. DISCUSSION AND CONCLUSIONS

The fingerprint property of the classical Turing instability in continuous media is the sponta-

neous formation of periodic patterns above the critical point. Our investigations of the Turing

problem for large random networks have revealed that, while the bifurcation remains essentially

the same, properties of the emerging patterns are strongly different. In the networks, the critical

Turing mode is localized on a subset of network nodes with the degrees close to a characteristic

degree controlled by the mobility of species. The final stationary patterns are much different from

the critical mode. Multistability, i.e. coexistence of a number of various stationary patterns for

the same parameter values, is typically found and the hysteresis phenomena are observed. Above

the instability threshold, network Turing patterns can be well understood in the framework of

the mean-field approximation. In this approximation, each network element is coupled to certain

global fields collectively determined by the entire system, and interactions of the element with its

neighbor nodes are neglected. The strength of coupling to the global fields depends on the number
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of links connecting an element to the rest of the network.

The Turing instability is also possible in regular lattices representing a special case of networks.

An activator-inhibitor system on a lattice can be viewed as a finite-difference approximation for

the respective reaction-diffusion problem in the space and Turing patterns on the lattices should

therefore have almost the same properties as in the continuous media. The divergent behavior,

characteristic for large random networks, must be related to a difference in the structural properties

of such systems. Diameters of random networks are relatively small and nodes in such networks

cannot be separated by large distances (roughly estimated as L = lnN for the Erdös-Rényi and

scale-free networks [25]). For comparison, a cubic lattice with N nodes in the d-dimensional space

has the diameter about L = N1/d. Thus, a lattice with the same size N as a random network and

a comparable diameter L must have a high dimension d ≫ 1. In lattices with high dimensionality

and short lengths, Turing patterns with many alternating domains are however not possible and

just a few domains (clusters) shall be found, resembling what is indeed observed by us in large

random networks.

Because of their small diameters, diffusional mixing in random networks is strong. Large random

networks are, therefore, structurally much closer to the globally coupled systems than to the

low-dimensional lattices. Globally coupled activator-inhibitor populations have previously been

considered and spontaneous separation of the elements into two groups has also been found in such

systems [26]. There is, however, an important further aspect distinguishing random networks from

the lattices or simple globally coupled systems. All nodes in a lattice (or in a globally coupled

population) are equivalent and have the same degree (number of neighbors). In contrast to this,

random networks effectively represent strongly heterogeneous systems. They are characterized

by broad degree distributions (less broad but still relatively wide for the finite-size Erdös-Rényi

networks). This heterogeneity becomes essential in the problems involving diffusion. Under the

same concentration gradients across the links, a node with a higher degree receives a larger incoming

flux from the neighboring nodes.

The heterogeneity is responsible for the localization of Laplacian eigenvectors on the subsets

of nodes with close degrees. Laplacian eigenvectors of networks are known to play an important

role in the synchronization phenomena. However, only the second and the last of such eigenvectors

are significant there (see [13]). In contrast, in network Turing problems, the entire Laplacian

spectrum becomes significant. By varying the diffusional mobility of species, critical Turing modes

corresponding to different Laplacian eigenvectors are realized.

In the present study, a general framework for the analysis of network Turing patterns has been
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proposed. Numerical investigations, confirming the theory, have been performed for the ecological

predator-prey Mimura-Murray model [3] and for the classical chemical Brusselator model [2]. Both

models belong to the activator-inhibitor class. There is moreover a different broad class of models

where the first species is characterized by autocatalytic growth (i.e., represents an activator) and

it consumes for its growth the second species which effectively represents a renewable resource

(see, e.g., [21]). In these systems, growth of the activator leads to the depletion of the renewable

resource, which has an inhibitory effect on the activator. The considered Turing instabilities should

also exist in such other network-organized systems.

The results of our study may be important in a broad range of applications. Turing instabilities

can generally be expected in various cellular, ecological or epidemic networks in Nature and their

detection and observation represent a major scientific challenge. With the progress in engineering of

synthetic ecosystems [27], artificial ecological networks exhibiting Turing patterns can be designed

in the future.

VIII. METHODS

Since u is the activator and v is the inhibitor in equations (2), partial derivatives of f(u, v) and

g(u, v) at (ū, v̄) should satisfy the following conditions: fu = ∂f/∂u|(ū,v̄) > 0, fv = ∂f/∂u|(ū,v̄) < 0,

gu = ∂g/∂u|(ū,v̄) > 0, and gv = ∂g/∂v|(ū,v̄) < 0. The uniform stationary state of the system

(ui, vi) = (ū, v̄) for all i = 1, · · · , N is assumed to be linearly stable in the absence of diffusion,

which requires fu + gv < 0 and fugv − fvgu > 0.

In the Mimura-Murray model [3], u and v correspond to the prey and the predator densities.

In this model, we have f(u, v) = {(a + bu − u2)/c − v}u and g(u, v) = {u − (1 + dv)}v, where

the parameters have been chosen as a = 35, b = 16, c = 9, and d = 2/5 in the present study,

yielding the fixed point (ū, v̄) = (5, 10). In the Brusselator model [2], variables u and v correspond

to densities of chemical activator and inhibitor species. Here we have f(u, v) = p− (r + 1)u+ u2v

and g(u, v) = ru−u2v and the parameters have been chosen as p = 1 and r = 1.8. The fixed point

is (ū, v̄) = (1, 1.8).

Scale-free networks are generated by the preferential attachment algorithm of Barábasi and

Albert [18, 19], in which nodes with larger degrees tend to acquire more links. Starting from m

fully connected initial nodes, we are adding m new connections at each iteration step, so that the

mean degree is 〈k〉 ≃ 2m. The simple Erdös-Rényi networks are generated by preparing N nodes

and then randomly connecting two arbitrary nodes with probability q, yielding the mean degree of
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〈k〉 ≃ Nq [19].

The Laplacian Lij of any network is a real, symmetric, and negative semi-definite matrix [20]. All

eigenvalues are real and non-positive. The eigenvectors are orthonormalized as
∑N

i=1 φ
(α)
i φ

(β)
i = δα,β

where α, β = 1, · · · , N .

The linear stability analysis is performed in close analogy to the classical case of continuous

media. Small perturbations δui and δvi obey linearized differential equations

d

dt
δui(t) = fuδui + fvδvi + ε

N
∑

j=1

Lijδuj ,

d

dt
δvi(t) = guδui + gvδvi + σε

N
∑

j=1

Lijδvj . (5)

Expanding δui and δvi over the Laplacian normal modes φ
(α)
i as described in the main text, the

following eigenvalue equation is obtained:

λα







1

Bα






=







fu + εΛα fv

gu gv + σεΛα













1

Bα






. (6)

From the characteristic equation {λα − fu− εΛα}{λα − gv −σεΛα}− fvgu = 0, a pair of conjugate

growth rates are obtained for each Laplacian mode as λα = (1/2){fu + gv + (1+ σ)εΛα ± [4fvgu +

(fu − gv + (1− σ)εΛα)
2]1/2}. Only the upper branch can become positive and it is always chosen

as λα in our analysis. From the condition that λα touches the horizontal axis at its maximum,

the critical value of σ is determined as σc = {fugv − 2fvgu + 2[fvgu(fvgu − fugv)]
1/2}/f2

u and the

critical Laplacian eigenvalue is determined for a given ε as Λc = {(fu − gv)σc −
√

|fv|guσc(σc +

1)}/{εσc(σc − 1)}. The critical eigenvector in the (u, v) plane is given by (1, Bc) where Bc =

{−fu+gv+(σc−1)εΛc+[4fvgu+(fu − gv − (σc − 1)(εΛc))
2]1/2}/(2fv). These expressions coincide

with the respective expressions for the continuous media (see, e.g., [21]), if we replace there Λ by

−q2, where q is the wavenumber of the plane wave mode.
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FIG. 1: Linear stability analysis. Linear growth rates λα of the Laplacian modes α = 1, · · · , N for the

Mimura-Murray model on a scale-free network (N = 200 nodes and mean degree 〈k〉 = 10) for three values

of the diffusional mobility ε and for the critical ratio of diffusion constants σ = 15.5 ≃ σc. Three curves

corresponding ε = 0.425, 0.165, and 0.060 are plotted as functions of the Laplacian eigenvalues Λα. For

comparison, curves with σ = 15.0 and σ = 16.0 are also drawn for ε = 0.060. Critical modes are indicated

for each value of ε. The critical modes and the corresponding Laplacian eigenvalues are αc = 15, Λc = −3.62

for ε = 0.425, αc = 135, Λc = −9.32 for ε = 0.165, and αc = 190, Λc = −25.3 for ε = 0.060.
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FIG. 2: Critical Turing modes for a scale-free network of size N = 200 and mean degree 〈k〉 = 10. (a,b):

Critical eigenvectors (a) αc = 190 and (b) αc = 15 plotted against the node index i. Node degrees ki are

shown by green stepwise curves. Node indices {i} are sorted according to their degrees {ki}. (c,d): The

same critical eigenvectors (c) αc = 190 and (d) αc = 15 displayed graphically on the network.
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FIG. 3: Localization of Laplacian eigenvectors in scale-free networks. The network size and mean degree

are (a) N = 200, 〈k〉 = 10 and (b) N = 1000, 〈k〉 = 20. All nodes are divided into groups with equal

degrees. For each group, the number of “differentiated” nodes with φ
(α)
i

≥ 0.1 or φ
(α)
i

≤ −0.1 for each

eigenvector α is counted. Then the fraction of such nodes in each group for each Laplacian eigenvector α

is determined. Thus, these diagrams show density distributions of differentiated nodes for the entire set of

Laplacian eigenvectors.
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FIG. 4: Nonlinear evolution and a stationary Turing pattern of the Mimura-Murray model on a scale-free

network at ǫ = 0.12 and σ = 15.6. The network size and mean degree are N = 1000 and 〈k〉 = 20. (a) The

critical mode (the Laplacian eigenvector with αc = 422), (b) the activator pattern at the early evolution

stage (t = 200), and (c) the stationary activator pattern at the late stage (t = 1500). Nodes are ordered

according to their degrees; with (d) showing the dependence of the degree on the node index.
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FIG. 5: Hysteresis and multistability. (a) Amplitude A of the Turing pattern vs. the diffusion ratio σ;

variation directions of σ are indicated by arrows. The inset shows the blowup near R. (b) Stationary Turing

patterns at the parameter points P (σ = 17.0), Q (σ = 13.5), and R (σ = 12.8).
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FIG. 6: Developed Turing patterns and mean-field bifurcation diagrams. Stationary Turing patterns com-

pared with the bifurcation diagrams of the activator-inhibitor system on a single node coupled to global

mean fields. The parameters are ε = 0.12 and (a,b) σ = 15.6, (c,d) σ = 30. Blue curves (dots) indicate stable

branches and light-blue curves (dots) correspond to the unstable branches. Crosses show the computed Tur-

ing patterns. The global mean fields are (H(u), H(v)) = (4.95, 9.97) for σ = 15.6 and (H(u), H(v)) = (4.8, 9.9)

for σ = 30.
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